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CAUSAL TREES

Philippe Darondeau ! & Pierpaolo Degano 2

Abstract. The intent of the paper is to reconcile two antagonist views on
bisimulation semantics for concurrency: the interleaving approach and the
approach by partial orders. The so-called causal trees are a variant of
Milner’s synchronisation trees with enriched action labels which supply
indication of the observable causes of observable actions. Concerning CCS,
we construct an algebra of causal trees with two byproducts: a complete
axiomatization of weak causal bisimulation between finite terms and a

fully abstract model of recursive programs.
ARBRES CAUSAUX *

Résumé. Le propos de cet article est de réconcilier deux approches
antagonistes quant & la sémantique des systémes concurrents par
bisimulations: 1l’approche par entrelacements et 1”approche par ordre -
partiels. Les arbres causaux sont ﬁne variante des arbres' de
synchronisation de Milner, dans lesquels 1‘étiquetage indique les causes
observables des actions observables. Nous définissons pour CCS une algebre
d’arbres causaux - dans laquelle nous construisons un modéle . pleinement
abstrait des programes récursifs et une axiomatisation compléte de la
bisimulation causale faible entre termes finis.
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I.Introduction

The purpose of the present note is to reconcile two antagonist views
on bisimulation semantics for concurrency: the interleaving approach (see,
e.g., (AB84,BHR84,BK84,DG87,Hen88,Mi1180,Mi185,Niv82]) and the approach by
partial orders (see,e.qg., [BC88a,BC88b,§SB7,Dar80,DM87a,DM87b,Lam78,Maz77,
NPW81,Pet80,Pra86,REX88,Win80,Win82]). The interleaving approach, probably
best illustrated in the expansion theorem of Milner’s Calculus of
Communicating Systéms [Mil80], takes as a basic principle reduction from
asynchrony to concuirency, and has the main advantage of simplicity. The
approach by partial orders, as taken in Winskel’s Event Structures
[NPW81], aims at a faithful treatment of causal dependencies and avoids
carefully any confusion between concurrency and independence. The drawback
in the latter approach is a general trend to deal with non syntactic
entities, such as partial orders and their homomorphisms, despite recent
effort to adhere more tightly to operational definitions. But the
resulting models are not so handy, essentially because they are not

treelike and have therefore no obvious syntactic description.

Our intent is to recast partial ordering semantics in the framework
of trees and draw all possible benefits from the technical facilities
afforded in this way. The so-called causal trees are a variant of Milner’s
Synchronization Trees (Mil80], with enriched action labels which supply
indications of the visible causes of visible actions. As regards CCS, our
privileged field of application, we construct an algebra of causal trees
with two byproducts: a complete axiomatization of weak causal bisimulation
between finite terms, and an abstract model of recursive programs. Only a

minor effort was needed for achieving these goals: most of the technical



steps are adaptions of similar steps for interleaved semantics. This 1is
true for the t-laws, which are carried on unchanged, andl also for a
modified form of the expansion theorem which holds for causal trees,
although this theofem may read as interleaving! Indeed, causal trees are

an interleaved but faithful representation of partial orders.

There already ekist in the litterature several papers where semantics
expressing causality are defined for CCS-1like languages. Some
representative instances are [BC88a,BC88b, DDM87b, DDM88a, DDM88b, DDM88c,
DGM87,GV87,01d87]. However, these papers provide neither a complete
axiomatization for finitary agents of the considered languages (with
communication), nor fully abstract models for them (including the
recursive case), which are in our opinion the two main achievements of our
work. Actually, Boudol and Castellani give in [BC88a] a complete

axiomatization for a language without communication

We think the use of causal trees and the like may brihg further
clarifications and new developments in many fields of concurrency,
beginning with Petri neﬁs [Pet80,Rei85]. For instance, causal tiees supply
representations for labelled event structures [MS81,NPW81,Win82,Win87] and
for non deterministic measurement systems [DDM87a)], amenable to algebraic
laws for bisimulation semantics. Some efforts are needed for investigating
this direction. A comparison between our causal equivalence and other
equivalences preserving other forms of causality (e.g.[BC88b,CH87,DDM88b])

is also in order.

The paper is organized as follows. Causal trees are smoothly
introduced on top of labelled event structures (II); causal trees induced

by CCS programs viewed as transition systems are then defined (III). A




general basis is provided for building up algebras of causal trees (IV}); a
specific algebra is constructed for CCS (V), and shown a fully abstract

model (VI). Weak causal bisimulation is finally studied and axiomatized

for finitary agents (VII).

IT.Causal trees and labelled event structures

In order to help the intuition, we offer rules for translating
labelled event structures into ‘naive’ causal trees and show some simple
examples. Owing to synchronized events, we encounter serious difficulties
for defining inductively the parallel compositioh of naive causal trees;

we then introduce an improved version of causal trees.

Let E be a set (of events). An event structure on E is a structure S
= (E,<,#) or (E,S,#,A) where {<,#,A} is a partition of ExE, built up from
a transitive causality relation (£), an S-hereditaiy conflict relation
(#), and an independence relation (A). The computations of S are the s-
left closed and conflict free subsets of E. A trace of $ is a total order
on some computation of S , compatible with £ (i.e. included in £). A trace

€ E occuring twice.

may be represented as a word e ...e_ with no letter e

1° i
Note that we consider a proper subset of the event structures defined in
[NPW81] where # need not be hereditary. Let L be a set (of labels). A
labelled event structure (or LES) on E and L is a structure S = (E,<,#,1)
where (E,%<,#) 1is an event structure, aﬁd l1: E ~->1L is a labelling
function. In the sequel, L is taken as A v {1}, where A is a set of labels
for observable events and T (¢A) is a symbol for unobservable events.

For any observable event e, the direct observable causes of e are the -

maximal events in C(e) = { e’e E | e'Se & e’#e & 1l(e')#1}.



A LES S gives rise toAa causal tree T = (V,E,L) as follows:
- vertices in V' are the traces of S,
- edges in E are pairs (v,ve) in V x V such that e € E,
- L : E-->{1} U (A xP(N)) is the labelling functionb L (v,ve) =1 if
l(e) =t else (l(e),C(e,v)), letting C(e,v) be the set of references for
the direct observable causes of e relative to v,
- the relative reference for e, in e ,...e ...e is the number of

i i

observable events in the right factor e, ...e (and thus may be thought of

i

as a backwards pointer to e,)

for the sake of illustration, let us consider the following LES’s

S S, and S,, reminiscent of CCS agents A= «.p.nil, A= B.y.nil and

1’ 2

A= ( o.pf.nil I‘E.y.nil ). Those LES’s are represented as Hasse diagrams
(growing upwards), supplemented with #-arcs indicating their minimal pairs

in conflict. Labels of events are written aside within parentheses.

S, e, P s, e Sy e®) e e, M
(@) | () \L e, B
€ €3 ’///,/’ 5 3

e (a)

The associated causal trees are respectively:

Tl elez T2 e3eq T3 ,
. \ ,
(B, (11 (v, {1}) \\ )
\ /
€ €, T, €,
(o, 2) B, 2) <a.z>\ /(B,z)
£ ‘ € €

where T, stands for the following causal tree (we leave the reader fill in

the dots above e3):



e ee_e 96684 e e ee

1727374 1372 1737472
(¥, (1)) (¥, (2}) (B, {3} |
eleZe3 e1e3e2 ele3e4 e1e5e6
(B, 2) (B,{z})\ /(7,{1}> | : v, {11
elez 9183 e1e5 .

(B, (11 (B, 2)

Remark For each trace in an event structure Sj_- e.qg. ef%e4e2in S 5=

there exists a unique corresponding path in the causal tree T, -e.q.
(a,z)(ﬁ,z)(y,{l})(ﬁ,{3}) in Ta' A path allows to recover causality
relation Si restricted to observable events occuring in that trace.
Furthermore, causal tree T, (i<3) may be considered up to isomorphism,
thus ignoriﬁg that vertices are traces: the label of a path still
determines the partially ordered multiset of observable actions generated
along that path. This is not true for the causal tree Tq, which has

dangling references such as 3 in (B, {3}).

The apparent difficulty to define inductively the parallel
composition of naive causal trees stems from synchronized communications
which induce cross inheritance of causes. In S 3 above, e inherits cause
e, from e, which represents synchronization between e, and e,, but this

side effect makes no problem because e, and eé have no <-comparable

causes. Let us consider the following event structure S which augments S 3

and can be derived from the CCS agent (A.5.a.P.nil | ©.B.y.nil):



The unique path with trace ee e e.e, in the causal tree T induced by
S is labelled (A,2)t(o, {1})T(Y,{1}) and results from synchronized

composition of paths ee‘ee, and e"e.e,. If the parallel compositiqn of

naive causal trees was defined inductively that sequence would arise from
the inductive composition of sequences (A,2) (8, {1}) (o, {1})(B,{1}) and
(3,@)(3,{1})(7,{1}), nevermindiné the exact definition. 1In the resulting
sequence, a single cause is picked up for y from the set {1,2} (or {o,6A})
formed by amalgamating the respecﬁive causes of B and'ﬁ ( E inherits cause
A from & via communication eo). Nevertheless, at the time (A,@)T(e,{1})

is produced along the induction, one is left with the pair of residuals
(B, {1}) and (F,{2})(y,{1}) -remind that t’s are skipped by backwards

pointers- where nothing indicates that 2 refers to the cause A of the

cause oa of P! Hence the resulting sequence would certainly be

A, @)t(o, {1})T(Y, {1,2})!

The simplest way out is to introduce redundancy by joining hereditary
causes to direct causes in the labelling of causal trees. Since hereditary
causes were already defined unambiguously in naive causal trees, the neat
effect of the extension is to make - this information available from

subtrees, and thus accessible in inductive statements on trees.



Technically, the modification amounts to revise the definition of
observable causes C(e,v) in the statement of the labelling function L. In
the revised version, we set C(e,v)= {(kl,Kl),...,(kn,Kn)} where {k1"'kn}
is the set of references for the immediate causes e, of e relative to v;
and the K, are sets of references for the hereditary causes of e
relative to v and excluding e, itself. Partially ordered sets Ki could of
course have been chosen, but the extra cost in complexity is useless.

Thus, function L is valued in the set {1t} U (A x P( N, x P( N)))) and the

following is verified for each label L (e)= (A, {(kl'Kl)""'(kn'Kn)} )
Vivji ( k, ¢ Kj) and ViVk ( k € K, = k,< k) : is-cause.

In the sequel, K denotes the set of pairs (k,K) with finite K satisfying
ke K = k<k’, KK is the family of finite sets KK € P(K ) satisfying 4is-

‘

cause, and L stands for set of labels {(A,KK) | AcA and KK € K }.

Generalizing on the above, we call a causal tree (¢ CT) any
synchronization tree T labelled on {t} U L . We consider causal trees up
to strong bisimulation in Milner’s sense [Mil80]. We thus obtain a syntax
for causal trees with operations 1. and (A,KK). of prefixing (by T or by
some pair (A,KK) in L ) and sum + (associative, commutative, idempotent,
and with neutral element nil = Z{Tiliez} ). Next section specifies causal

trees induced by CCS programs.

The following notations and definitions apply to causes KKe KK :
- dom(KK) = {k|3IK (k,K)e KK} and KK(k)=K for (k,K)e KK,
- KK+n means the increment by n of all integers occuring in KK, and
similarly for K+n, O0(KK)= KK+l and §(K)= K+1,

- *KK is the set of all integers occuring in KK, thus &(*KK)=*(3(KK)),



- The fusion of causes KK’,KK" ig the set KK = KK’| KK" defined as
follows. Let *KK = *KK’U *KK" and let £ be the least order relation on *KK
such that i<j if 3I [jeIl & (i,I) € (KK'’U KK")]. Then KK'| KK" = { (k,K)|

(k is S-minimal in *KK) & (K= {k‘e€ *KK| k<k’ & k#k’}) }. The reader may
verify readily that | operates on KK., is associative, commutative and

idempotent.

III.A causal calculus of communicating systems

The goal of this section is to specify causal trees induced by CCS
via the method of structural operational semantics. To this purpose, we
embed CCS into a wider set of Aterms CCCS (a Causal Calculus of
Communicating Systems). The transition system defined on CCCS is a direct
extension of the original system for CCS:> the definition of CCS is
retrieved from the definition of CCCS by merely erasing all ihdications

about causes.

Let XY = Z,Vviv 22 be the signature of CCS, defined hereafter with
the usual meaning from the set of actions A = A U A :
L=(nil}, L= {0 | p e AU{T} } U { \a loed } U { B/a | a,Bed }, = {+ I}.
Let REC(X,X) Dbe the set of recursive Y-terms over X (a set of variables)
which satisfy the Greibach condition of well-guardedness (w.r.t. guarding
operators H{). Terms have possible forms x (e€X) or rec x.t or f(tl,...tn)
for £ € Zn. The CCS programs are the elements of CREC(Y,X), the subset of

the closed terms in REC(J},X).

Let X'= X, U {\a| aeA} U {f/al a,PeA} and X"= {KK=> | KKe KK }. 1In
CCCS derivations, operators KK=> will be used to indicate, at each step,

the activating causes of all the active terms and subterms, given by




backwards references to the past of the derivation. Provided a CCS term t
is represented in the initial step as (é=t) where € = {(1,2)}, the set of
CCS terms is embedded in CCCS = TERM(X’,X"(CREC(X,X))), the family of 3’
terms over generators (KK=t). A typical CCCS term, with causes KKi
attached to all outermost occurences of guarding opeiators and recursion
symbols, is ((KKf: l.nil)l(KKf: rec x.t)). We assume henceforth that all
operators (KK=») in X" distribute over all operators in Y’, so that all
CCCS terms are reducible to that canonical form. We also let & operate on
CCCS terms and distribute over all operators in Y‘, and put J(KK=>t) =
(0(KK)=t). The intuition behind & is that an agent O (KK=>t) has lost one

turn, hence its backwards pointers have been incremented.

The CCCS transition system, defined in SOS style [Plo81], is made of
three species of labelled transitions between terms, namely
{ 2,, ALKK,, A KK,KK! } where AeA and KK,KK’e KK . In arrows of the third
type, KK’ represents the cause of some complementary action T, whereas
arrows of the second type are reserved for non synchronized events. The

axioms and rules of inference for transitions are the following.
Notations e,e’,e" range over CCCS and t over CCS térms,
Z, stands for 1z, or A,KK, or A.KK,KK! |,

=

z\a is defined if z = 1T or A ¢ {a, T},

z[E/alig’if z=T else A[B/a] KK  or A[B/a], KK,KK’

letting A[B/al=A if Ae{a,&}, P if A=, B if A=G .

10



AXIOMS
(KK= 1(t)) I, (KK=t)

(KK= A(t)) A,KK. ({(1,8(*KK))}=t)

(KK= A(t)) A,KK,KK’ ((KKIKK’)=>t).

RULES -
’ ”
I S 2 S
’
e’'+e" z e e’'+e" z_ e
e z_ e’ o
—’ .
———————————————— ’ z\a defined
r
e\a z, e \o
e -z, e’
e[p/al -z[B/a) e’ [P\a]
e’ T e e" 1T e
———— —————
’ " ” I ” 14
e’ |e T . ele e'le Tt e le
e’ MKK_e e" A,KK e
___________________ , S ot
e’ le" A,KK e|b(e") e’le” AKK d(e’)]e
e’ M KK,KK' e e" MAKK,KK’ e
_____________________ , e e e
e’ le” A KK,KK'_ ele" e’le"” A KK,KK’ e'le
er l,KK,KK' el" ‘eﬂ -X,KK ,KK enn

el lell tr e’ llle""
f —ly

. (kx:: (t [rec x.t/x])) z, e

 (KK= rec x.t) z e

11

tauact
isolact

comact

plus

restrict

relab

partau

parisol

parcom

synch

rec




Comments Axiom tauact means essentially that 1’s are skipped by backwards
references to the past (i.e. references to observable events in the trace
of the derivation). Axiom isoiact allows for the autonomous firing of a
guard A: the direct cause of activation of the residual term ¢t is 1
(referring to A), and the hereditary cause is incremented by 1). Axiom
comact serves to fill in the premisses for synch. In this case, the action
A which appears in A,KK,KK’ is meant to be synchronized in further
steps of deduction with some independent action‘x, hence it should be
considered unobservable as regards backwards chaining. For that reason,
the cause of t is simply the fusion of the respective causes KK of A and
KK’ of A with no additional delay. The same argument explains'why parcom

induces no updating 6f causes for the'inactive process, to the contrary of

Parisol which contributes premisses to synch.

For e in CCCS, the operational meaning of e is the causal tree [e]op
formed by unfolding from root e the transition system {e’ _z  e"| zeLuU{t}}.
It may be observed that CCCS transitions e_LLg’e' resp. e_z’e' are
connected to CCS transitions t_&bt' resp. ¢t j.t’ by the following
implications, where Y:CCCS—CCS is the ’cause erasing morphism’ Y (KK=t)=t
e MK, e = ye ) ye’

resp. e t.e’ = vye T ye’,
tA,t’ = (ye=t = Je’( ye’=t’ & IKK (e A, KK_e’)))

resp. t Tt” = ( ye=t = Je’ (ye'=t’ & e T.e’)).
The lgst implication relies on the free choice of KK’ in comact. It may
also be observed tha? causal trees [£:=>t]op do not coincide exactly with
causal trees induced by LES’s. For instance, the causal tree [e:Alhm
derived from A = &.B.nil bears labels (o, {(1,2)}) (B, {(1,{2})}), slightly

different from (o, @) (B, {(1,2)}) in the causal tree induced by LES S , (see

12



II). The new labelling is better suited to the definition of algebras of

causal trees, equipped with operations of external product such as KK(1)T.

Let us establish right now some useful properties of causal trees
induced by CCCS expressions. A causal tree is n-bounded if for any
sequence w. (A,KK) labelling some initial path in the tree, k<n+|w| for any
ke *KK letting |w| mean the length of w minus the number of 7's in w. A
causal tree is well formed if (n,K’)e KK’ = K’= * (KK+n) for any sequence

w. (A, KK) .w’. (A ,KK’) labelling some initial path with |w’]|= n-1.

Fact 1. [e]op is always a bounded causal tree : the wupper bound for
integers occuring in expressions is increased by 1 through
derivations A,KK_(owing to 8) and preserved through derivations.l’(owing
to the matching condition of causes in rule synch and in spite of comact).

Hence, any cause KK in [e]mp is finite.

Fact 2. [e]op is always well formed : in any derivation sequence

e _w.(AKK).w’ e’ such that |w’'{=n, (n,K')e KK’ = K’= *(KK+n) for any

operator KK’= in e’ . 1In view of isolact and parisol, this is true when
w/ is empty, and this remains true when the derivation is extended by one

step, say 1in e w.(l,KK).wﬂ=e". If w"= w’.T and the 1T-transition was

proved from tauact, then all operators KK"=» in e" already occured in e’.
If w"= w'.T and-the T-transition was proved from synch, then all operators
KK"= in e" either are of the form (KKllKK2)=$ with the KK, already occuring
in e’ (from comact), or are inherited from e’ (due to parcom). If w"=
w’.(l(,KK') and KK"= occurs in e" then KK"=(1,*KK’+l) or KK"=1¥XX and XX=

occured in e’ (from parisol).

13




Let L, = {(A,KK,KK’)| AeA & {KK,KK'} C KK }. Synchronization trees on
{t} UL U L are called extended causal trees (e CT+) and are considered
from now on up to strong bisimulation in Milner’s sense. Extended causal
trees are equipped with operations of prefixing (t., (A,KK)., (A,KK,KK’).)
and sum (+). The operation of sum is assoéiative, commutative, idempotent,
and has the empty sum nil as neutral element. For e in CCCS, let [e]ow_be
the extended causal tree formed by unfolding from root e the transition
system {e’_z’ e"| ze {T}ULVUL }}. 1In fact, the extended causal tree [e]op+
may be retrieved from the causal tree [e]op, from which it differs only by
redundant information. Redundancy is just needed for the inductive
definition of transitions via structural inferences. Let us clarify a
little more the relations between [e]°p and [e]°p+. A connection between
sets CT and CT, may be established by the following pair of functions
EXP (expand): CT—-)CT+ and SHR (shrink): CT;»CT. For T, in CT+, SHR(T+) is
T, minus all arrows A,KK,KK’ and corresponding subtrees. For KK in KK
and T in CT, 1let KK(1)T mean the substitution of KK for reference 1 in T
(see IV for more precisions), then EXP is the unique function from CT to
CT, satisfying the well-guarded recursive formula:

EXP(( X T.T)+( X (kj,KKj).Tj))-—- ( £ T.EXP(T)) + (X (lj,KKj).EXP(Tj))+
ieI jeg iel jed

(X X (Xj,KKj,KK).EXP(( KKjl KK)(l)Tﬁ
jeJ KK

Now for any :=7"2S and TeCT, T=SHR(EXP(T)) obviously, ([e]op = SHR[e]opﬁ
by definition, and ([e]Op+ = EXP[e]op) as will emerge from section VI.
Most importantly, causal trees [e]op are finitely branching, whereas
extended causal trees [e]°p+ are not. Although KK’ is left free in agiom
‘comact, which is the unique cause of infinite branching, this apparent

freedom is reduced to naught by the matching condition of causes in synch.

14



IV.Combinatory operators on causes and causal trees

We introduce via axiomatic definitions three indexed families of
basic combinatory operators on causes and causal trees, subsequently used
for upgrading the set CT of causal trees into a (XUX")-algebra. Le% us
give some hints before we state precise definitions. Operators (n) are a
direct generalization of operator (1) in.section III and thus KK(n)T
means substitution of cause KK+(n-1) for backwards refe;ence n in tree T.
Operators [n] serve to increment by 1 all backwards references greater
than n in a tree. Finally, operators <n> set up the indiiect‘cause n+l
wherever n occurs in a tree, meaning that n+l is the unique cause of n.

In all definitions Eelow, we let T = (X (A,KK).T) + ( ; T.0,),

ieI jedJd
k,n,m € N, Ke K and KK € KK . Index sets for sums are left implicit.
All operators result in the empty sum when they are applied to the empty
sum (nil). As a general rule, summands with undefined labels are ignored,
possibly inducing the empty sum. Undefined labels (A,KK) may arise from
fusion, which produces undefined causes from undefined causes. Fusion
plays a crucial role in all statements, where it is needed' to enforce

axiom is-cause in the definition of KK (see II).

The family of operators <m> (neN,) is the unique family of unary
operators on CT satisfying the well-guarded recursive formula:
<n> T = (( X (A,<n> KK).<n+l> T ) + ( X T.<n> u))

where €<n> : KK — KK is defined as follows:

<n>{ (kllxl) RN, (kp'Kp) } = (<n>(kllK1) l v '<n>(kerp) ),
<n>(n,2) = (n, {n+l}),
<n>(ntm,K) = <n>(ntm,K) if nekK,

<n>(n;m,KU{n}) = (nim,Ku{n,n+l}).

15




The reason why <n>(n,K) is undefined for non empty K, thus leading to
equalities such as <1> (A,(1,{2,3})).T = nil , will appear in the
definition of guarding operators on causal trees (see axioms lambda and

1amhfda+ in section V).

The family of operators [n] (neN ) is the unique family of wunary
operators on CT satisfying the ;ell-guarded recursive formula:

[a] T = (( X (A,[n] KK)).[n+1] T)) + ( X 7.[n] U))

where [n] : KK - KK is defined as follows:
[n]{(kllKl)I"‘I (kp'Kp)} = ([n] (kllKl)l---l[n] (kp'Kp))'
[n]l (k,K) = ([nlk,{[n]lk’] k’e K}),

[n] (n-m) = n-m, [n](n) = n+l, [n] (n+m) = n+m+1l.

The faﬁily of unary operators KK(n), KKe KK and newN , is the unique
family of operators on CT satisfying the well-guarded recursive formula:
KK(n) (T) = (( £ (A,KK(n)KK,). KK(n+1)T ) + ( X 7. KK (n)U, )
where KK(n) : KK — KK is defined as follows:

KK (n) {(k1'K1)"°"(kp'Kp)} = (KK(n)(kl,Kl)l...lKK(n)(kp,Kp)),
KK(n) (n-m,K) = {(n-m, KK(n)K)},

KK(n) (n,K) = (KK+(n-1}),

KK(n) (n+m,K) = {(n+m-1, KK(n)K )},
KK(n)K = U { KK(n)k | ek 1},
KK{(n) (n-m) = {n-m} , KK(n)Kn) = *KK + (n-1), KK(n) (n+m) = {n+m-1}.

The reason why n+m-1 occurs in place of n+m will appear in the definition

of the asynchronous composition of causal trees (section V).

Let wus state some algebraic laws satisfied by operators (mn),[n] and
<n>. Each 1law is shaped as an indexed family of equations over causal

trees. Since causal trees may be infinite, we cannot in general apply
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induction on trees to prove the validity of equations. However, weé can
still use a very general principle of recursive proofs, justified by the
metric properties of trees:

in order to prove F_(T) = F’ (T) simultaneously for all neN_ and TeCT,

show that F_(T) = 3 Aj
jed
for some Aje ({t} VL), n

.Fnj(Tj) and F’ (T) = > A .F'nj(Tj)

je
€ N _and Tje CT, where jed.

3
A very similar principle will be used for proofs on extended causal trees.
The following statements, where KK ranges over KK and T over CT, are all

proved in this way ( see appendix 1 ).

-

Laws of (n)
o. KK(n) ( KK’| KK" ) = ( KK(n)KK’ | KK(n)KK" )

( KK’ (n)KK | KK"(n)KK )

B. ( KK'| KK" ) (n)KK
Y. if (n,K’)e KK’ implies K’cC *(KK+n) then
KK (n+p-1) (KK’ (p) KK") = (KK(anK’)(p)(KK(n+p) KK") and

KK (n+p-1) (KK’ (p)T) = (KK(n)KK’) (p) (KK(n+p)T)

Laws of (n) and [m]
5. KK(n) ([n]KK’) = KK’ and KK(n) ([n]T) = T

€. KK(n+1) ([1]KK') = [1](KK(n)KK') and KK(n+l1) ([1]T) = [1](KK(n)T)

Léﬁs of (n) and <m>
€. KK(n+l) (<n>KK’) = (1,*KK+1l) (n)KK’ for KK’ bounded by n, and

KK (n+1) (<n>T) = (1,*KK+1) (n)T for T an n-bounded causal tree.

;

The above laws extend obviously to the combinatory operators KK(m), [n] and
<n> : CT, — CT, defined as follows:
KK(n)T, = EXP ( KK(n) SHR(T,))), [n]T, = EXP ([n] SHR(T))),

and <n>T = EXP (<n> SHR(T+) ) .
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Laws Y and € are carried on unchanged, whereas 8§ and { evolve into:

8,. KK(n)([n]T,) = EXP(SHR(T)),

§, KK(n+l) (<a>T) = (1,*KK+l)(n)T, for SHR(T,) an n-bounded tree.

V.An algebra of causal trees

We turn now the set CT of causal trees into an interpretation for
CCCS terms and take a step towards showing the full adequacy of the
induced model. For that purpose we define an alternative, highly
redundant, interpretation of CCCS terms in the set CT, of extended causal
trees. Both interpretations are connected 5y the pair ‘expand’ and
‘shrink’. We shall prove later on that CT, captures exactly the extended
causal trees generated from CCS programs, whereby the adequacy of the

(irredundant) model CT will be established.

The (XuX")-algebra of céusal trees is the unique model of the
following axioms on carrier CT with + interpreted as sum of trees. For the
sake of readability, pairs (k,K) in K -are figured with sharp brackets,
énd set braces are usually omitted for singleton sets. These conventions
hold in the remaining part of the paper, including appendices. We remind
the reader that €=<1,2>. We let T = (2%1.T1+ Zj(lj,KKj).ij in all axioms.

Index sets are assumed disjoint.

init KK=T = KK(1)T
nil . nil = nil
tau ' T(T) = 1T.T

lambda A(T) = (A,€).<1>T
relab T(B/a] = (Z,T. (T, [B/a) )+2‘.j (kj (B/a] KK,) . (T, [B/a]))

restrict T\o = (Zi‘t.(Ti\a) + X (A

,KKj).(Tj\a)
(lj\a defined)

j
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interleave let U = (E;F.Um+ Zn(vn,KKn).Un) then T|U =
LT (T 10) + X (A KK . (T 1 [1]0) +
1.(TIU) + X (v ,KK).([1]1T|U) +

X_ t.( ((KK,IKK)(1)T,) | ((KK JKK)(1)U) )
A=V 3 n 3 3 n n

i n
Some comments are in order. The first axiom is used to replace
backwards reference 1 by cause KK in tree T, and the second axiom
. interprets nil as the empty tree. The third and fourth axioms concern
prefixing. When the prefixed action is 1, no further change is made in the
prefixed tree since T’s are totally ignored in the coding of causes. Axiom
lambda expresses the prefixing of a tree by a visible action. Causes must
be updated so that, in the resulting tree, A is the cause of all and only
the actions which had empty cause € in T. This is precisely reflected by
letting <n>(n,K) be undefined for non empty K! Axiom =relab relabels
actions without changing the structure of the tree, while restrict prunes
branches labelled by actions cut by restriction. Finally, interleave
merges two trees by interleaving their actions (the first four summands)
or by synchronizing them when complementary (the last summand). In the
first case, if the action is T, then T (resp.U,) is composed with
U(resp.T) left unchanged (see axiom tau). If the action is A, then the
causal tree U(reép.T) is ’delayed’ by operator [1] , which increments by 1
all backwards references pointing outside U(resp.T). If complementary
actions Xj and v_are synchonized, «resulting in 1, the fusion of their
respecpive causes KKJ,,KKn must pass down to their descendants. Moreover,
both Tj and U must be ‘advanced’ by 1, since T is invisible while Kj and
v were visible. Hence, the merge proceeds inductively with (KKleKn)(l)Tj

and (KKjIKKn)(l)Un. This may be seen as the causal counterpart of Milner’s

expansion theorem.

19




The (XUX")-algebra of extended causal trees is defined as the unique
model of the following axioms on carrier CT, letting + be interpreted as
sum of trees . We set T = (XT.T+ Zj(lj,KKj).Tj+ 2, (A KK KK’ ))

everywhere, and assume disjoint index sets.

init, KK=T = KK(1)T
nil+ nil = nil
tau, T(T) = T.T

lambda  A(T) = (A,€).<I>T + X (A€ KK). (E|KK) (1) (<1>T)

relab,  T(B/a) = (ZT.(T,(B/a)) + I, (A [B/a],KK) .(T,[B/a]) +
T (A [B/a] KK KK’ ). (T, [B/a]))

restrict, T\a = (X.1.(T\a) +

p (A, ,KK)) . (T \ot) + p) (A ,KK ,KK’ ) .(T \a))
(A\e def.) oy (A \a def.) e B -

interleave,k let U = (Zl‘t.Ul+Zm(vm,KKm) .Um+5_',n (v ,KK ,KK’ ).U ) then T|U =
L. (T 10) + X, (A, KK) . (T,1[1]0) + X, (A, KK, KK’). (T, |U) +
th-(TIUl) + ZQ(VN,KKN)-(IIJTIU;) + 2%(vn'KKn'KK'n)'(TIUn) +

2 T.(T _|U),
kRn kion

where: kRn & (A%év;) & (KKk== KK'n) & (KK’k= KKh)'

Most comments made about the algebraic axioms for causal trees carry
over the above axioms with obvious adaptations. The metamorphosis of the
interleaving axiom, and specially the symmetry of causes set as a
condition for synchronization, may help in better understanding the
operat%onal rules comact and parcom. Essential to the forthcoming results
is the fact that well-formedness of causal trees is preserved by all
operators in 2JUX". This property is patent for all operators but guarding
and parallel composition. For guarding, the trick is the undefinedness of

<n>(n,K) for non empty K. In the case of parallel composition, there
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suffices to show the property for stringlike trees, i.e. for finite or
infinite words on {T}UL. If wt,wu are well-formed, then the interleaving
axiom implies that wpt’,wpu’ are well-formed when p(t’|u’) is a summand of

(t|u). Hence we can make the following statement.

proposition 1. The algebra WCT (of well-formed causal trees) is a

subalgebra of the algebra CT (of causal trees).
We are now ready to state the connection between algebras CT and CT..

proposition 2. Function EXP acts as a morphism of (XUX")-algebras from

the algebra WCT to the algebra CT, (of extended causal trees).

This proposition is established by recursive proof (see appendix 2),
using the combinatory law 8 and a variant form of law a for causal trees,

which we introduce below as proposition 3. First, we need a definition.

definition . Cause KK is p-compatible with tree T if, for any initial
path w.(A,KK’) in T, <p+|w|,K’'>e KK’ = K'C *(KK+p+|w|). (We remind the

reader that 1’s occuring in w do not contribute to the length |w| of w.)

prqposition 3 . If KK is p-compatible with both T and U then:

KK(p) (TIU) = (KK(p)T) | (RK(P)V).

Proposition 3 is in turn established by recursive proof (appendix 3),

using the combinatory laws o,y and €.

ﬁet the set WCT  (of well-formed extended causal trees) be defined as
EXP(WCT), then WCT is a subalgebra of CT, (proposition 2). Both algebras
WCT and WCT, may be used as interpretations for CCCS, letting reex.t be

interpreted as the fixed point at x of the functional interpretation [t]
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of t. Existence and unicity of fixed points are guaranteéd by the
assumption of well-guardedness of recursive definitions (they induce
contracting operators) and by the metric continuity of all operators in
2UX" (those operators are distance preserving, due to the form of the
defining axioms, letting the distance between pairs of trees be the
maximal distance between trees). Henceforth, we let [e]ct,[e]wm, [e]cuﬂ
and [e-]wct_+ denote the ;espective interpretations of expression e in the
algebras CT, WCT, ct,, and WCT, . Since WCT is a subalgebra of CT, [e]ct
and [e]wct must coincide (by the uniqueness of fixed points in CT). Since

and [e] ..., must coincide (by the

WCT, is a subalgebra of CT,, [e] +

ct+
uniqueness of fixed points in CT+); Finally, [e]wdﬂ= EXP([e]mx) since
EXP acts as a morphism of algebras between WCT and WCT, (and by the

uniqueness of fixed points in WCT,) We suggest as an exercise to verify

the equality [recx.l(x)hn= (A,€). (A, <1,{2}>).(A,<1,{2,3}>)...

VI. Full adequacy

We establish here the equality between the operational meaning

[e] of an arbitrary CCCS expression .

op+

and the algebraic meaning [e]mn+

The full adequacy of the model CT, i.e. relation [e]°p= [e]ct, then
follows from equalities [e]°;=SHR[e]°p+ and [e]ct=SHR[e]ct+ . Furthermore,
we get for free a proof of relation [e]op+=EXP[e]op (from

[e]wdﬁ=EXP(SHR[e]wm”)) and another proof of the boundedness and well-

formedness of causal trees [e]op.

A quick comparison between the algebraic axioms for CT, and the
logical axioms set for CCCS transitions shows that all we have to

establish, for proving full adequacy of WCT,, is the following series of
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propositions which imply the existence of normal forms Zi(zi.[ei]aﬁ) for
extended causal trees [e]c“, Let us introduce tree-transitions
[e]ct+ io [e”] ct+ if ({e]ct+=zi (zi' [ei]ct+) ) = (31) (z=zi& lef ]ct+=[ei]ct+) ’

then indeed it 1is clear from propositions 4 to 7 below  that both

transitions e _z_ e’ between terms and transitions [e] [e’]

— ct+ i’ ct+

between trees obey the rules stated for CCCS in section III.

proposition 4. V(recx.t)e CREC(Y,X) VKKe KK :

[KK=>recx.t]wcH = [KK:t[recx.t/x]]wcH .

proposition 5. Vte CREC(XY,X) VKKe KK :

[KK=>T(t) ]m:t+ = T.[KK=t] and

wct+

[KK=A (t) |

(A, KK) . (<1, *RR+1>=t] .+ X ., (A, KK,KK’) . [ (KK|KK’)=3t]

wet+

proposition 6. YVt e CREC(X,X) VKKe KK :

[KK=>(t1+t2)] [KK=>t1] + [KK=:ot2]

= ’
wet + wet + wet+

[Kk=>(t\e) ] ., = [(KK=>t)\e] _ .

(RR=(t (B/a])] .., = [(Kk=t) [B/a]]

wct+

| [KK=t_ ]

[Kbi(tlltz)]ch' = [KK=t1] 2% wet+ °

wect+

proposition 7. Vee CCCS: [1](e] = [(de]

wct+ wet+ °

The above propositions (proved in appendix 4) rely upon the

combinatory law {, proposition 3 and the following lemma (proved ibidem).

lemma 1. Vte CREC(X,X): [t] is 1l-bounded and equal to [e=t] .

wct

The section may be summed up in the following theorem:

The algebraic models CT and WCT are fully adequate for CCCS.
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VII. Weak causal bisimulation and observational congruence.

At the present time, we dispose of an algebraic model of causal
trees, in which programs are identified when their associated transition
systems are strongly bisimilar. We noted above that causal .trees are
synchronization trees on a modified alphabet {tT} U L , where non-tT symbols
bear indication of their observable causes. Up to now, we contrived to let
the unobservable action T play the same role here as in Milner’s CCS. Our
motivation for preserving validity of Milner’s rgsults on synchronization
trees was to make easier the study of weak bisimulation between programs
in the framework of causal trees. Let us adapt the definition of

observational congruence to that modified setting.

For n20 and s=(ll,KK1)...(ln,KKn) in ( AXKK )", 1let s be the binary

. P . * w *
relation e s e’ if e( z,) (ll,KKl) ( I’) - (Ah’KKn) () e'. Weak

causal equivalence ~ is the largest bisimulation on CCCS compatible with
relations s, . Equivalently, ~ is the largest symmetric relation on CCCS

entails the following for any s in ( AxKK )*: if e s e’

such that e_~e
1 le==p

2

’ ’ r o 4 3 y
then (3Je 2) e,s, e, & e’ ~e’,. By way of extension, observational

equivalence on CCS programs is the equivalence t~t’ iff (e=t)~(e=t’), and
observational congruence on CCS programs is the largest equivalence -~°
included in ~ and preserved by all combinators of CCS, including

recursion.

Following [Mil-85), let us introduce equivalence ~' over CCS programs

+

by setting t ~*t’ iff t+t" ~ t’+t" for all programs t". Similarly, let =~

be the relation over CCCS expressions defined as e ~'e’ iff et+e" ~' e’+e"
for all expressions e". Then ~€ is included in ~*, and the next statement

is proved exactly like in Milner’s paper.
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proposition 8. The following are equivalent for all programs t,,t,:

+
(1) £, ~" ¢,

(2) (e>t)) ~

(e=$t2)

(3) For all B in (AxKK )u{t}
(i) if (£=>t1) _}:L_’el then, for some e, (e=>t2)l___’g’___‘e2 and e~ e,
(i1)if (e=>t2) _E.ez then, for some e (e=>t1)=._g_’ =1 and e~ e,

The next two propositions show that equivalence ~*is in fact a

e . . . c
congruence and coincides therefore with observational congruence -~".

(Proofs of propositions may be found in appendix 5.)
proposition 9. . The equivalence ~' is preserved by all combinators in z.

proposition 10. The equivalence ~' is preserved by all program.- contexts,

including recursive contexts.

By way of conclusion, let us mention the availability of a complete
system of equational axioms for observational congruence over finite i.e.
non recursive CCS programs t identified with CCCS expressions (e=t). The
considered axioms are equalities between CCCS expressions. The first seven
axioms are copies of Milner’s axioms Al-A4 for strong bisimulation and 1-
laws A5-A7, where label p ranges over (AxKK )U{t}. The remaining axioms
are init,nil,tau, lambda,relab, restrict, intexleave and the defining

equations for combinators <n>,[n], and (n) operating on causal trees

specified by sum expressions. Let us recall Milner’s axioms Al-~A7.

Al x#(y+z) = (x+y)+z A2 X+y = y+x

A3 X+Xx = X A4 x+nil = x

A5 X+T.x = T.X A6 RoAx+T.y) = R (x+T.Y)+H.Y
a7 R.T.Yy = 1.y
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The correctness and completeness of the resultant axiomatisation emerge
from the following remarks:

(i)} Al-A4 are valid because strong bisimulation implies equivalence ~',
(ii) axioms dinit,nil, tau, lambda, relab, restrict,interleave may be used to
derive from any non recursive CCCS expression an equivalent expression
on combinators nil, 1., (A,KK). and +,

(iii) since ~' is a copy of Milner’s relation ~*, the T-axioms A5-A7 are
valid (letting pe (AxKK )u{t}),

(iv) the normal forms of [Mil-85] may therefore be used in a remake of the

original proof of completeness for Hennessy-Milner’s axioms.

The reader may for instance derive from the above axioms relation
a(B.y.nilfB.nil)\B ~‘0..¥.nil, but some form of mechanical help would

certainly be welcomed in less immediate situations.

VIII. Summary

We have introduced Causal Trees, defined up to strong bisimulation,
which extend Synchronization Trees in that they record observable causes
of observable events. This makes Causal Trees a suitable semantic domain
for concurrency, describing the full interplay between nondeterminism and
partial ordering in a concurrent language.

In order to examplify Causal Trees, we have shown their informal
derivation from Labelled Event Structures. The other example dealt with in
full détail is Milner’s CCS for which a new operational semantics has been
defined, respecting causality and yet consistent with the originél one.
Then, 'Causal Trees have been equipped through axiomatic definition with a

structure of algebra providing an interpretation for CCS. The axiom for
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parallel composition may be read as an '‘expansion theorem’ reducing
parallelism to a combination of interleaving and nondeterminism, but the
considered form of interleaving preserves causality . The interpretation
for CCS has been proved fully abstract w.r.t. the operational semantics.
Finally, .the notion of causal observational congruence has been
introduced in a completely standard way (from weak bisimulation), and a
complete axiomatization of congruence has been given for finitaiy CCS. To
our knowledge, no complete axiomatization was ever defined before for a
language including communication. We do not know for the moment whether
causal congruence is preserved by action refinement.

Remarkably enough, we used here after simple adaptation all the stuff
developped for ccs in the classical interleaving approach. Similar
adaptations might probably work for extended forms of testing equivalences

coping with causality.
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Appendix 1. Proofs for laws on combinatory operators.

‘Relations a to { are patently valid on causal\trees Te CT, if they
are valid on causes KKe KK . Causal trees are therefore ignored in the
subsequent proofs, where operators and relations on integers are extended
elementwise to work on sets Ke K and pairs (k,K)e KK . 1In the following,

we let x (KK;) be an abbreviation for KKll...I KK .

proof of .

In view of the algebraic.properties of fusion, relation a is a
straightforward consequence of relation KK(n)(ni<ki,Ki>)= ni(KK(n)<ki,Ki>)

which is true by definition of (mn).
proof of PB.

In the above notations, relation P is a straightforward consequence
of relation (ni<ki,Ki>)(n) KK’ = n1(<ki,Ki>(n) KK’) , which we establish
hereaftef. By virtue of law @, we can restrict ourselves to the simple
case when KK'= <k’,K’'> and thus show (ni<ki,Ki>)(n)<k',K’> =
ni(<ki,Ki>(n)<k’,K'>) . If k= n, this amounts to 1:1KK1= 1:1KKi with KKi=
<ki,Ki>+(n—1). If nek’, the above amounts to the equality
<k',[*hi<ki,K1>](n)K'> = ni<k’,[*<ki,Ki>](n)K'>, whose truth emerges from
the obvious relation (L&K’i)(n) K’ = Lﬁ(K’i(n) K’) by setting K'1= {ki}%J
K,. If k’#n and ngK’ the relation of interest is of the form (KK=niKK) and

therefore holds by idempotence of fusion. All cases have been dealt with.
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proof of ¥.

Owing to the distributive laws a and B, there suffices to establish ¥y
in the restricted case when KK’= {<k’,K’>} and KK"= {<k",K“>}. So, let L
and R stand respectively for the left and right members of the following
equality, to prove:
KK (n+p-1) (<k’,K’>(p)<k",K">) = (KK(n)<k’,K’>) (p) (KK(n+p)<k", K">).
We proceed by case to case verification. Two obvious lemmas are used

intensively:

ijk+  (KK(i)j)+k = KK (i+k) (+k)

ijk-  (KK(i)j)-k = KK(i-k) (j-k)

case k"<p
L= <k",KK(n+p-1) (KK’ (p)K")>

R

<k",((KK(n)FK’)(p)(KK(n+p)K")>
Let us prove KK(n+p-1) (KK’ (p)q) = (KK(n)KK’) (p) (KK(n+p)q) for q in N,.
We proceed by case analysis.
gq<p : the relation to prove amounts to g=q,
q=p : we get KK(n+p-1) (*KK'+(p-1)) = *(KK(n)KK’)+(p-1).
By ijk+ the left member is equal to (KK(n) *KK’)+(p-1).
Now, *(KK(n)KK’) = (KK(n)*KK’) by the hypothesis
<n,K’>eKK’ = K’'C *(KK+n).
p<g<n+p : the relation to prove amounts to g-1l=qg-1,
g=n+p : it amounts to *KK+# (n+p-2)=(*KK+(n+p-1))-1,
g>n+p : the relation reduces to g-2=g-2.
Hence the proof is complete for the case k"<p.
case k'"=p
L= KK(n+p-1)<k’+p-1,K’'+p-1>

R= (KK(n)<k’,K’'>)+(p~-1)
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If k’=n then L=KK+(n+p-2)=(KK+(n-1))+(p-1)=R.
If k’<n or k’>n then accordingly: L= <k’+p-1,X> or <k’+p-2,X>, and

R

<k’+p-1,Y> or <k’+p-2,Y> for X= KK(n+p-1) (K'+(p-1)) and

Y= (KK(n)K’)+(p-1). Now,X=Y by ijk+.

case p<k"<n+p

L

<k"-1,KK (n+p-1) (K"-1) >
R= <k"-1, (KK (n+p)K")-1>
and L=R by ijk-.

case k"=n+p

L

i

KK+ (n+p-2)

R

KK+ (n+p-1) -1
whence L=R.
case k">n+p
The relation to prove is <k"-2,K"-2> = <k"-2,K"-2>.

Hence the proof of validity of law Yy is complete.

---------------------- Laws of (n) and [m]---=--=---omoo—somm—ee-—
proof of §.

In view of the idempotence of fusion and by laws «,p there suffices
to establish the simplified relation <k,K>(n)([n]{k',K'>) = <k’,K’'>. We
proceed by case analysis. If k’<n then [n]<k’,K’'> = <k’, [n]K’>, and since
nz[n]?’, the left member of the relation evaluates to <k’,K"> for K" =
{i| ieK’ & i<n} U {i+l1-1) ieK’ & i2n)}, hence K" = K’. If k’=n then
[n]<k’,K’> = <k’+1,K’+1> and both members of the relation evaluate to the
pair <k’,K’>. Finally, if k’>n then <k,K>(m) ([n]<k’,K’>) = <k’ ,K'>+1-1

which is still <k’,K’>.
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prcof of €.

For the same reaséns as above, there suffices to establish the
simplified relation <k,K>(n+1) ([1]<k’,K’>) = [1](<k,K>(n)<k’,K’>). Now,
[1]<k’,K’> = <k’+1,K’+1>, and we proceed by case analysis. If k’=n the
left member of the relation amounts to <k,K>+n and the right member to
<k,K>+(n-1)+1 hence they are equal. If k‘#n then both members evaluate to
<k",K"> for k"=k’ or k"=k‘+l according to k’>n or k’<n, and K"= {i+l]| ieK’

& i<n} U {i+n| neK’ & (i=k v ieK)} U {i| ieK’ & i>n+l }.

proof of (.

In view of laws o,f and since (1,*(m KK )+1l) = = (1,*KK+1), it
suffices to show the simplified relation <k,K>(n+l) (<n><k’,K’>) =
<1, {k+1}U(K+1)>(n)<k’,K’> under the hypotheses k’<n and K’Sn (isn VieK’).
The case by case verification follows.

If k’=n then K'’=g by the hypothesis K’Sn, and the leftmost expression
evaluates to <k,K>(n+l)<n, {n+1l}> and therefrpm to <n, {n+k}U(K+n)>, while
the rightmost expression evaluates to <1, {1+k}U(K+1)>+(n-1) which amounts
clearly to <n,{n+k}U(K+n)>. If neK’ then k’<n and the relation to
establish reduces to <k,K>(n+l)<k’,K'U{n+l}>= <k’ ,K"> for K" defined as
{i|ieK’ &i#n }u{n}u{k+n}U(K+n)f Since neK’, K" is equal to K'U{k+n}U (K+n),
whence <k,K>(n+l)<k’,K'U{n+l}> = <k’,K">., Finally, if k’<n and K’<n,
relation & reduces to <k,K>(n+1)<k',K'> = <1, {k+1}U(K+1)>(n)<k’,K’>, which

is nothing but <k’,K’>=<k’,K’'>.
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Appendix 2. Proof of proposition 2

The proposition results from seven elementary propositions, established
below. In all statements T,U € WCT with T=(L,T. T+, (A, KK )T,) and

Us(th.Um+Zn(vn,KKn)Un).

1. xx:#zxp(r) = EXP (KK=T)
this reads as KK(1)EXP (T)=EXP (KK(1)T), which holds since
KK (1)EXP (T) = EXP(KK(1)SHR(EXP(T))) and SHR(EXP(T)) = T.
2. nil = nil
3. T(EXP(T)) = EXP(T(T))

T(EXP(T))= T.EXP(T)= EXP(T.T)= EXP(T(T))

4. A(EXP(T)). = EXP (L(T))

A (EXP (T)) (A,€) .<1>EXP(T) + X _ (A, €, KK) ..(EIKK) (1) (<1>EXP(T)),
whiie EXP(A(T)) = EXP((A,€) .<1>T) =

(A, €) .EXP(<1>T) + X (A, & KK) .EXP ((E]KK) (1) (<1>T)),

now by definition <1>EXP(T) = EXP(<1>T) and (€|KK) (1) (EXP (<1>T)) =
EXP ( (€] KK) (1) (SHR (EXP (<1>T)))) = EXP((E}KK) (1) (<1>T)).

5. (EX®(T)) [B/a]

EXP (T(B/a])

(EXP(T)) [B/a)

]

LT (EXP(T))) [B/a) + X (A, (B/al, KK ). (EXR(T)) [B/a] +
zjz“(xjm/a] + KK, KK) . (EXP ( (KK, |KK) (1) T,)) (B/al,
EXP(T(f/a)) = Zi't.EXP(Ti[B/a]) + Zj(kj[B/a],KKj).EXP(Tj[ﬁ/a]) +

D (Kj[B/a],KK

Xk . KK) .}EXP((KKjIKK) 1) (Tj[B/a] )),

3
and the desired result is proved by recursive proof from relation:
(KKjIKK)(l)(Tj[ﬁ/a])%((KKjIKK)(1)Tj)[B/a],

which in turn may be easily established by recursive proof on CT.

6. (EXP(T))\a = EXP(T\a)

is proved exactly like proposition 5.
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7. EXP(T|U) = EXP(T) |EXP (U)
By definition, EXP(T|U) =
L T.EXP(T |U) + ):j (kj,KKj) -EXP(T,|[1]U) +
X T.EXP(T|U) + X (v KK ).EXP([1]T|U ) +
ijxx (ij,KKj,KK) -EXP ( (KK, | KK) (1) (T,1[1]U)) +
2 2. (v KK KK) .EXP (KK |KK) (1) ([1]T|U)) +

Y T.EXP( (KKjIKK )()T, | (KK IKK ) (1)U ),
A.=-V- , n b] 3 n n

3
while EXP (T) |EXP(U) =

1. (EXP(T,) |[EXP (U)) + 2, (kj,xxj) - (EXP(T,) | [1]EXP(U)) +
2 t. (EXP(T) [EXP(U )) + X (v_,KK ). ([1]EXP(T) |[EXP(U)) +

X%, (M KK, KK) . (EXP ((KK,|KK) (1)T,) [EXP(U)) +

3
X XV, KK ,KK) . (EXP(T) |EXP ((KK |KK) (1)U )) +

N X T.( EXP((KKIKK)(1)T) | EXP ((KK,|KK ) (1)U ) ).
.=V
J n

By hypotheses, T and a fortiori (kj,KKjY.T are well-formed , hence

3
KKj and a fortiori (KKjIKK) are l-compatible with TL Since any cause

is n-compatible with [n]JU for any tree U, (KKjIKK) is l-compatible with
[1]U. We are in the right conditions to apply proposition 3, which
leads to the equality ((KKleK)(l)(lelllU)) =
((KKjIKK)(l)Tj)I(KKjIkK)(1)([1]U)). The validity of the proposition

follows by recursive proof from the defining equality

[1]JEXP(T)=EXP([1]T) and the combinatory law 3§, since the trees

(KK)_IKK)(I)Tj and (KKanK)(l)Un are well formed.

’
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Appendix 3. Proof of proposition 3

Let T= (X T.T, + Zj(kj,KKj) .T,) and U= (2.0 + X (v ,KK).U).
Then KK (p)T= (Zit.KK(p)Ti + Zj(kj,KK(p)KKj) .KK(p+1)Tj),
and KK(p)U= (L T.KK(P)U + I (v ,KK(P)KK ) .KK(p+1)U ).
By definition, KK(p)T|KK(p)U=
X7 (KR ()T IKK(P)U) + Z, (A, KK(P)KK ). (KK(p+1) T, | [1] (KK(p)U)) +
Z,0- (KK(P)TIKK(P)U,) + Z (v, KK(P)KK ). ([1] (KK(P)T) |KK(p+1)U ) +

L I T LRKR) (KK IKK ) (1) (KK (P+1)T,) | (KK (P) (KK, KK ) (1) (KK (p+1)U,) ]
=V

3j n
while KK(p) (T|U)=

X,T-KK(p) (T, |U) + X, (A, KK(P)KK,) .KK(p+1) (T,1[1]U) +
2, T-KK(p) (TIU) + Z (v ,KK(P)KK ) .KK(p+1) ([1]TIU ) +

2 T-KR(P) [ (KK IKK ) (1)T,) | (KK |KK) (1)U )].
A=V
j n

From the hypotheses, KK is p-compatible with both T and U.

Hence K’C *(KK+p) for any pair (p,K’) occuring in (KKjIKKn).

We are in the right conditions to apply law Y, which yields the equality
KK () ( (KK, IKK ) (1)T,) = (KK(p) (KK, |KK )) (1) (KK(p+1)T,) .

Or: the other hand, KK(p+1) ([1]T)=[1] (KK(p)T) by direct application of .
“he proposition follows by recursive proof, seeing that p—coﬁpatibility
(of KK) with T and U entails (p+l)-compatibility with [1]T and [i1]u, pPp-
compatibility with Ti and Um, (p+1)~compatibility with Tjand Un, and

finally p-compatibility with (KKjIKKn)(l)Tj and (KKleKn)(l)Un.

’
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Appendix 4. Complements to section VI.

We establish here propositions 4 to 7 and the underlying lemma 1,

thereby completing the proof of full adequacy of WCT,

proof of lemma 1. The second assertion in the lemma is an imﬁediate
consequence of the main statement, which expresses 1-boundedness of [t]wct
for te CREC(},X). Suppose for contradiction that t’has been chosen with
minimal complexity in the set of terms for which [t] . is not l1-bounded .
From the algebraic axioms of CT, t must be of the form A(t’) or of the

form t’|t". If t= A(t") and [t’] is l1-bounded then [t] . is l-bounded

t

(by lambda). If t= t’|t" and both [t’]wa, [t} are 1l-bounded, then

wet

(t] is l-bounded (by lemma 2 below). Hence t cannot be minimal and we

wct

have got the desired contradiction.

lemma 2. Let causal trees T’,T" be n-bounded then T/ |T" is n-bounded.

(This property comes directly from the interleaving axiom for CT.)

proof of proposition 4. Since rec is interpreted as a fixed point
combinator, [reex.t] ., = [t[reex.t/x]] ., . whence (KK=recx.t] ., =

KK(1) [zecx.t] ,, = KK(1)(tlrecx.t/x]] ., = [KK=t[recx.t/x1] ., by

applying axiom init.

proof bf proposition 5.

The first half of the proposition is straightforward:
[KK::T}t)]wx+ = KK(1) [t(t)] ., = EXP(KK(¥)[T(t)]wct) =
T.EXP(KK(1) (t] ) = t.(KK(l)[t]:ct+) = 1. [KK=t] ., -
The second half of the proposition is more involved.

[KK=A(t)] ., = KK(1) (A(t)], ., = EXP(KK(1) A)l,,) =

EXP (KK (1) [ (A,€) .<1>[t] ] = EXP[(A,KK).(KK(2) (<1>[t] . ))].
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Lemma 1 enables the combinatory law { which in this case amounts to:
(KK(2)(<1>[t]wct)) = <1,*KK+‘1>(1)[t]wct .

Now, ((KKIKK’) (1) (<1,*KK+1>(1)([t] _)) = ((KKIKK') (1) ([t] ))

because the causal tree [t] 1is l-bounded.

(The reader may for instance verify the equality:

(KK|KK’) (2) (<1, *KK+1>(2)<1, {2}>) = (KK|KK') (2)<1,{2}>.)

As a consequence, [KK::l(t)]wm” = EXP[(A,KK) . (<1, *KK+1>(1) [t] )] =

(A, KK) . [<1, *KK+1>(1)EXP[t] _ ] + X, (A KK,KK’) .EXP ((KKIKK') (1) ([t] ) =

(A, KK) . [<1,*KK+1>=>t] _  + X, (A,KK,KK') . [(KK|KK")=>t] . .

proof of proposition 6. Only the last assertion deserves a proof.

[KK=(t1|t2)]wct+ KK (1) [tlltZ]wct+ = EXP (KK(I)([tI]HCtI [tZ]wct)

Since causal trees [tilmx are l-bounded, they are l-compatible with any

cause KK, and proposition 3 yields us the equality:

KK (1) [, 1t,] = (KK(1)[t,] )1 (KK(1) [t,] ).

Hence, [KK=(t It,)] ., = EXP((KK(1)([t ] )I(KK(1)[t,] )] =

EXP(KK(l){tll ) | EXP(KK(I)[tZ]mx) by proposition 2.

wet

We are finished because the last line is the definition of:

I [KK=>t,]

[KK=t ] 27 wet+

1% wet+

proof of proposition 7. If e is an expression of the form (KK=t) then

=

S (KK=t)=[ (KK+1)=>t] and the relation to prove is [1](KK(1)([t] )

) Now [1](KK(1)[t]wct) = ((KK+1)(1)[t]wct) because

wet+’ °

[t]wct‘ is 1l-bounded (lemma 1), and the above relation follows from

((KK+1) (1) [t]

symmetric application of EXP. There remains to check the case when e is an
expression of the compound form e’|e". We reason by induction on
expressions. By definition: [1][e’le"] ., = EXP([I]([e’]uctl[e"]wct))

= EXP([1] ([e’] )I[1]([e"]wa)) -by lemma 3 below-

wet
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= EXP([1] (le’],..)) IEXP([1] (.[e"]wct)) -by proposition 2-
= ([11(le'] . ,) I [11(le"] ) -by definition-

= ([8e’], ., 1[8e"] .
= [8e’(8e"]

) -by the inductiv'e- hypothesis-

wct+

= [e)

wet+ wct+*

lemma 3. [L]1(T’IT") = ([1]T’|[1]T") for l-bounded causal trees.

(This property comes directly from the interleaving axiom for CT.)

Appendix 5. Complements to section VII

We inten’d' to prove that relation ~* is a congruence over CCS
programs. The alternative characterisation of ~* offered in proposition 8
may be wused for that purpose, because full adequacy of the model CT
entails correSpondence between CCCS transitions e . e’ and tree-

po[e’] (for all p in L U {T}).

transitions [e]
WCE wct

In the sequel, we let ~' denote the equivalence over CT defined as

T, ~* T, iff for all pe L U {1}:

3 1 ’ ~ ’
(1) if T, LT'l then for some T’z, T2=..E_. =.T’2 and T 1 T,
i3 i r . 7!
(ii) if T, u T’, then for some T' s T epll, =T, and T, T,
where ~ is the largest bisimulation on causal trees compatible with tree-

transitions s, se€ (AxXKK )'.

proof of proposition 9.
t ~*t’ iff (e=t) ="(e>t’) -by proposition 8-

we ~ [emt’] - by proposition 8 and full adequacy of WCT-

~* (t’], . - by lemma 1-

C
In order to prove the proposition, it suffices therefore to show that

relation ~' is a congruence over the algebra WCT of well-formed causal
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trees. From axioms tau,lambda,relab,restrict it is patent that relation «'

is preserved by operators T,A,\a, [a/f]. The case for parallel composition
is a little more complex and may be dealt with as follows. Let relation R
over WCTibe defined as T R T’ if T=T1|T2 and T’=T'1|T'2 with T1~T’1 and
T2~T'2. Owing to implications T~T’= [1]T ~ [1]T’ and T~T'= KK(1)T =
KK(1)T’, the interleaving axiom shows that relation R is a bisimulation
w.r.t. tree-transitions g  (remind that nil is. a neutral element for
parallel composition). Relation R is thus included in the largest
bisimulation ~ ; compatibility relations T~'T'=>(T|U)~*(T’|U) and
T~'T’=(UIT)~"(U|T’) then follow as easy consequencés of the interleaviﬁq
axiom. Assume for instance T~'T’ and TIU_E’V then, from 4interleave,
T’ |[Ue=p lLy=pV’' and V R V' (and symmetrically on U).

proof of proposition 10.

For exactly the same reasons as in the proof of the above proposition 9,
it suffices to show that relation ~' is preserved by all elements in the
fixed point clone of operators on WCT defined on top of X. Let us
establish T~'T’'= recx.f(x,T)~'recx.f(x,T’) for non recursive operators ,
f(x,y) defined by wusual X-terms, well—éuarded in x. The case for
recursively defined operators f(x,y) is similar: Bekic’s principle féz
simultaﬁeous'fixed points is valid in WCT since any system of well-guarded
equations has a unique solution in that algebra. Let relation S over WCT
be defined as VS V! if V = g(recx.f(x,T),Tl,...Tn) for some g in the
(EJJZ"YFclone of operators on WCT and V'’ = g(:ecx.f(x,T'),T'l,f..T'n) for
corresponding trees T’1 satisfying T1~+T'1' Since VS V! = ([1jv S [1]V’)
and V S V' = ((KK(1)V) S (KK(i)V’)), an adaptation of the proof fpz

propositionb9 shows thaﬁ relation S is a weak bisimulation over WCT, hence
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S is included in ~ . 1In view of the algebraic axioms for WCT, the
implication T~"T'= recx.f(x,T)~'recx.f(x,T’) then follows from the

assumption of well-guardedneés of f(x,y) in x.
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