N

N

Attribute specifications for graphical interface
generation

Paul Franchi-Zannettacci

» To cite this version:

Paul Franchi-Zannettacci. Attribute specifications for graphical interface generation. [Research Re-
port] RR-0937, INRIA. 1988. inria-00075621

HAL 1d: inria-00075621
https://inria.hal.science/inria-00075621
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075621
https://hal.archives-ouvertes.fr

o

Rapports de Recherche

3

N°937

Programme 1

ATTRIBUTE SPECIFICATIONS
FOR GRAPHICAL INTERFACE
GENERATION

R T P B e

=

ol 5

o3 N ARSI Y 5

LA

!)3'
sg\u

.

e,

)

R S e o o o oy

.

N

Paul FRANCHI-ZANNETTACCI

IR

ot
2

Décembre 1988

G TG

ATTRIBUTE SPECIFICATIONS
FOR GRAPHICAL INTERFACE GENERATION 1!

Paul FRANCHI-ZANNETTACCI 2
LISAN - University of Nice
Avenue A. Einstein
06561 Valbonne Cedex, France
e-mail: pfzQ@cerisi.cerisi.fr

Keywords

Formal specifications, abstract syntax, attribute grammars, language-based editor,
programs generator, programming environments, interactive graphics.

Abstract

This work deals with the automatic generation of graphic language-based editors.
From an abstract syntax and a formal specification for the edition of graphical objects,
we show how to generate an incremental editor for the involved objects supported by a
bitmap workstation. The intended products are convivial programming environments
like browsers, structured text-editors, graphical software, etc. The main features of this
work are the use of (i) attribute grammars (AG) for graphic formal specification, (ii)
a meta-language to generate AGs on nested boxes and (iii) incremental re-evaluation
of the layout rules. Using well-known AG results, we prove that under acceptable
conditions while using the meta-language, the generated AG belongs to the OAG class
which provides the user with security and efficiency.

!This work is supported by CNRS-GRECO in Programming
2Currently at INRIA Sophia-Antipolis

SPECIFICATIONS ATTRIBUEES
POUR LA GENERATION D’EDITEURS GRAPHIQUES

Paul FRANCHI-ZANNETTACCI 4
LISAN - Universite de Nice
Avenue A. Einstein
06561 Valbonne Cedex, France
e-mail: pfzQ@cerisi.cerisi.fr

Mots clés

Spécifications formelles,syntaxe abstraite, grammaires attribuées, éditeur syntax-
ique, environnement de programmation, graphique interactif.

Résumé

Ce travail concerne la génération automatique d’éditeurs syntaxiques graphiques.
A partir d’une spécification formelle sur une syntaxe abstraite, pour 'édition d’objets
graphiques, nous montrons comment générer un éditeur incrémental pour ces objets
sur une station "bitmap”. Les domaines d’applications incluent les environnements
de programmation conviviaux(Browser,...), les éditeurs de textes structurés, les logi-
ciels graphiques interactifs, etc. Les points clés de ce travail sont (i) 'utilisation des
grammaires attribuées (AG) pour la définition de spécifications graphiques, (ii) un
méta-langage pour générer ces AGs sur un systéme de boites et (iii) une ré-évaluation
incrémentale des régles d’affichage. En utilisant des résultats connus des AGs, nous
prouvons que, sous des conditions raisonables, la grammaire attribuée obtenue a partir
du méta-langage, appartient a la classe OAG, ce qui confére au systéme sécurité et
efficacité.

3Cette étude est financée avec le concours du GRECO de Programmation
*Actuellement & I’ INRIA Sophia-Antipolis

| 0

g D PAPIER RECUPERE ET RECYCLE

Contents

1 Executable specifications for graphical editors generation

2 Attribute Specifications for Graphics

2.1 ADOXSYSIEM . . v v v v vt e e i e e e e e e e e e e e
2.2 Somemnested bOXES . . . v v v h i ittt e e e e e e e
2.3 An attributesystem forboxes o o oo oo
2.4 An example: the Defined_Sum operator

3 The Graphical Specification Language GSL
3.1 Afirstlookat GSL oo i i i it i e e e

3.2 GSL source for the Defined-Sum expression

4 The theoretical framework of GSL
41 From GSLto AG o i e et e e e
4.2 Equations generategl by GSL e e e e e e e e
4.3 Fundamental properties it e i e

5 Conclusion an.d topics for future research

Annex A: Implementation schema of GSL

Annex B: Equations generated by GSL

Annex C: SSL generated for the defined.sum operator
Annex D: Generated environments

References

- . T S

10
10
12
13

15

16

17

20

23

27

1 Executable specifications for graphical editors generation

This research is devoted to the language-based edition of tree-structured graphics and to
the formal executable specifications from which such editors can be automatically generated.
Extending the scope of well-known program or text manipulation systems such as MENTOR
[9], CENTAUR [4], SYNTHESIZER GENERATOR [24], GANDALF [12], which do not support
graphic editing, we want to provide the end-user with a convivial environment for editing
both graphical and textual structured objects in a syntax directed way.

The development of such environments is a real challenge for the state of the art in
software engineering. To be useful tools, indeed, these environments must offer very so-
phisticated functions and good performances while accepting continuous changes according
to the specific needs of the user.

Our approach is based on a graphic specification language [20]. This language must
be powerful enough to describe low-level aspects of layout, operational enough to be an
input to a generator for producing an editor and friendly enough for a designer. This editor
works on a bitmap workstation with interactive functionalities as windows, menus, icons
and selection. The editing process within this environment is done accordingly to the rules
involved in the generation of the editor.

Our solution provides a two-level specification mecanism:

1. Specification by Attribute Grammars (AG) [18].
This methodology has been intensively used for compiler-compiler development and
other semantic applications. We use it here to specify rules for computing layout
attributes (position, size, bitmap image,...) attached to an abstract representation of
the objects (graphic or textual). The AG technique implies several advantages in this
domain:

o The power of expression allows to specify very low-level features for graphics and
thus to generate sophisticated edition functions.

¢ The specification, expressed by rules in a declarative way, is a set of syntax-
oriented linear equations or directed constraints on objects. The algorithms for
computing the values involved in these equations are not specified by the designer
but can be deduced from the specification [16,7.8]. '

¢ This technique is doubly incremental: during the development step (as any rule-
based system) and during the run-time step if the attribute system belongs to
some well-known classes of AG [10,14,22].

* The attribute specification can be also used for generating semantic tools (as-
sociated values, analysis, checks,...) and this enhances the consistency between
editing and semantic processing [26,2].

2. Specification by a graphical high level language (GSL).
This language avoids the fastidious work of hand-definition by AG in generating
attributed equations from high-level specifications based on the nested box paradigm
[19]. The key-point for this second level language is that we give it a full semantic
definition by AG which leads to the following consequences :

4

e A GSL compiler (from graphic box specifications to attributed equations) can
be obtained by a bootstrapping step using the Generator itself [annex A].

o Each GSL specification leads to a consistent set of attributed rules, in the sens
of non circular AG [theorem section 4.3].

The complexity, in terms of tree-traversals, for (re-)evaluating layout attributes
has an upper bound for any GSL specification [corollary 1 in 4.3].

This architecture makes it possible to easiliy extend the GSL language or tailor
it to specific cases, by modifying its semantics and bootstrapping it again.

These paradigms: the attribute specifications and the GSL language are the basis of
the GiGAs system [5], our current implementation under UNIX 4.2 BsD for a graphical
language-based environment generator. The architecture of the GIGAS system consists in:

GSL : The Specification Language used by a designer to define a graphic editor for a
language L (L-GE), translated into a standard attribute grammar L_AG.

GENERATOR : An attribute-based generator (currently the Synthesizer Generator)
which produces from an attribute grammar upon a concrete and an abstract syntax:

e an incremental syntactic analyser for L (L.SA),
e a tree-processor according to the given abstract syntax,

¢ an incremental attribute evaluator for L_.AG (L-AV).

LANGUAGE-BASED EDITOR : The graphical editor including the evaluator L_AV
and the analyser L_.SA generated for L, usable by an end-user via thee GAM.

GAM : The graphical abstract machine exchanges messages with the editor and executes
the physical requests for graphical logical operations. The current implementation
uses X-Window V10 [6].

The GAM’s architecture and functionalities are not dicussed in this paper. We only refer
to some features of our current system to illustrate the GSL potentiality.

2 Attribute Specifications for Graphics

We consider here AG as a low-level language for defining textual, graphic or semantic
properties. We use the box paradigm introduced by Knuth [19]. '

2.1 A box system

A box is a 2-D rectangular object caracterised by its height (h), depth (d), width (W) com-
puted from a given base-line accordingly to the following figure:

5

dy I
v ¢ $
9%, | ~ s:scale

h : height

H : total height

base line ’X

d : depth

W : width

figure 1

We define a vertical (dy) and an horizontal shift (dz) w.r.t. a normal position defined
by two reference axes (Ox,0y). We use also a scale (s) for the final drawing.

2.2 Some nested boxes

Here are two examples issued from a formulae editor generated by Gicas (annex D).

box 1 box 2 \e\%\
N ymbol
\
N\
\
N
EXPRESSION S
\
N

%

NN

figure 2

2.3 An attribute system for boxes

The reader may find more than 600 references on AG in [8], we only recall that an attribute
system consists in:

¢ A concrete syntax for the host language (in our case: defining the objects accepted
by the editor).

¢ An abstract syntax for this language, given by a set of sorts and a set of tree-
operators typed on these sorts.

o A set of rules to be computed (verified) on the objects in the language. These
rules are equations on attribute-values which can be computed either locally w.r.t.
an operator (local attributes), or bottom-up (synthesized attributes), or top-down
(inherited attributes) in the abstract syntax tree.

An attribute system for specifying the layout of boxes consists in (see figure 2.1):

1. a set of layout attributes used for placing and drawing a box:

H the total heigth of the box (local, H=h+4),

W the width of the box (syn),

X, Y the coordinates of the left-upper-corner relatively to the same corner of the
father-box (inh).

2. a set of auxiliary attributes used for computing the boxes:

s the scale (inh),
h, d the heigth and depth w.r.t. the base-line (syn),
dx, dy the horizontal and vertical shift w.r.t. a normal position (local by default).

As explained in the section 4.2, some of these attributes could be given default values
suchasdz = dy = 0 and h = d = 0.5 * s to obtain a standard display.

3. a set of equations defining the rules for computing locally every attribute- value
with two forms:

(form1) BOX0.A = {{(BOX0.Y, BOX1.B,...,BOXn.C)
(form2) BOXk.Y = g(BOX0.Y, BOX1.B,...,BOXn.C)
where

BOX0 — BOX1,...,BOXn is an operator in the abstract syntaz,
A,B,C are synthesized or local attributes, ‘

Y is an inherited or local attribute,

f,g are given fonctions well-typed with respect to attribute domains.

-1

Remark 1 The father-boz forces the position and the scale (X, Y, s) of its sons (top-
down rules) and its size (h, d, 1) results from its sons (bottom-up rules). The X and
Y attributes are values relative to the father-boz; this solution is more efficient than absolute
values for incremental re-evaluation and more convenient than relative to the previous boz
which implies an ordered layout.

2.4 An example: the Defined_Sum operator

We give below the unparsing rules for the defined_sum expressions extracted from a usual
mathematical formulae language.

1. a simplified concrete syntax is:

DEFINED.SUM ::= sum from EXP1 to EXP2 of EXP3 on VAR end sum
where

EXP ,VAR are non terminals described in the grammar,
EXP1, EXP?2 are limits of the sum,
EXP3 the operand and VAR the differential variable.

2. the operator abstract syntax is given by the following tree-operator:
defined_sum: EXP , EXP , EXP, VAR — EXP
where EXP, VAR are sorts (phyla in MENTOR terminology).

3. a graphical display (shown in 2.2) is associated with a nested boxes system, which
implies a box abstract syntax, defined by the following box-operators:

Defined_Sum: SYMBOL, OPERANDS ~— DEFINED SUM
Symbol: — SYMBOL
Operands: UPPER, MIDDLE, LOWER — OPERANDS
Upper, Lower: EXP , — UPPER
Middle: EXP, DIFF, VAR — MIDDLE

Diff: — DIFF

Where

the full capitalized words are boz-phyla, the others are boz-operators,
Symbol, Diff stand for pure graphic bozes,

Defined_Sum refers to the initial defined.sum operator,

the Exp, Var boz-operators are omitted.

Remark 2 From the point of view of attribute evaluation, we do not need to check
the sorts of boz-operators and consequently the pure boz-operators are considered in

8

the underlying one-sorted algebra (i.e. the pure boz-operators have the same sort, say
BOX, see section 4.1 for more details).

4. applied to defined_sum, we have the following equations (partial):

(top-down rules)

Symbol.s = Operands.s = Exp.s = Var.s = Defined_Sum.s
Upper.s = Lower.s = Defined .Sum.s * 0.8

Symbol.X = Defined_Sum.X + Symbol.dx

Operands.X = Defined Sum.X + Symbol.W + Operands.dx

etc,

(bottom-up rules)

Defined -Sum.W = Symbol.W + Operands.W + Symbol.dx + Operands.dx
Defined-Sum.h = max(0,(Symbol.h-Symbol.dy),(Operands.h- Operands.dy))
Symbol.h = Operands.h - Upper.h

etc.

'

Remark 3 These equations can be seen as a set of directed linear constraints between neigh-
bouring bozes which express either general rules (horizontal and vertical nesting, alignment)
or specific rules (decreasing scale, shift,...). Many equations can be replaced by default equa-
tions leading to a standard layout. ’

Despite its numerous advantages (low-level declarative style, consistency decidability
results, and generated incremental evaluators), AG technique needs a real effort in the
case of full-sized development (for instance, more than 30,000 equations for an ADA source
pretty-printer syntactic editor [6]). In the next part, we use previous remarks to define a
high-level graphical language, fully compatible with AG to avoid redundancy of comparable
descriptions in AG and therefore to notably decrease the charge of the designer.

3 The Graphical Specification Language GSL

In the case of large applications, we suggest to encapsulate AG by a more convenient lan-
guage, GSL, a high-level specification language in the spirit of PPML [21]. GSL automati-
cally produces attribute systems from box pre-defined types. Such a philosophy is enforced
by AG methodoly: GSL is fully defined by semantic attributes and can be bootstrapped
from its AG semantics (see annex A). '

3.1 A first look at GSL

The GSL language is a first step towards a powerful specification language for graphics (see
possible extensions in section 5). A GSL specification (or program) is a set of production
rules according to a box abstract syntax and using typed boxes with a pre-defined layout.
This layout can be tailored by user-defined equations on pre-defined box-attributes.

A production rule associates an abstract syntax operator to a box definition:

PRODUCTION = LOCK phylum IDENTIFIER : BOX ;
LOCK := lock | unlock

where LOCK regules the selection process for this production.

A box definition refers to either an atomic or a composed box with a given type of
layout (horizontal, horizontal-centered, vertical, vertical-centered).In both
cases, equations may be provided to modify the standard layout:

BOX z= ATOMIC | COMPOSED
ATOMIC ::= box IDENTIFIER () EQUATIONS
| box IDENTIFIER (graphic string) EQUATIONS
| box IDENTIFIER (string) EQUATIONS
| box IDENTIFIER (LOCK phylum. IDENTIFIER) EQUATIONS

COMPOSED ::= box IDENTIFIER TYPE (BOX.LIST) EQUATIONS
TYPE u=h|he|v|ve

EQUATIONS := EQUATION_LIST |

EQUATION := ATTRIBUTE = expression ;

ATTRIBUTE s=dx|dy|hjd]|l]s

where BOX_LIST,EQUATION_LIST, ezpression, string are omitted,
dz, dy, h, d, I, s are the boz attributes introduced in section 2.3.

3.2 GSL source for the Defined_Sum expression

Let us comment a GSL source for defined_sum (we omit the meaning of the lock properties).

lock EXP:
defined.sum hc (
- - a horizontal-centered layout for the defined.sum boz == defined_sum’s base line is the horizontal
- - reference azis of Symbol and Operands bozes, which are spread from left 1o right
Symbol (graphic ”sum”)
{ h = Operands.h - Upper.h ;
d=h;
W=(h+d)/28;}
- - a boz for the sum sign with a specific height and width

10

Operandsv (
- - a vertical layout for the Operands bor ==> the Upper, Middle and Lower bozes are vertically gathered
- - in this order along Operands’s left border which is the vertical reference azis
Upper (unlock EXP){ s = Symbol.s * 0.8 ; }
- - a reduced scale for the Upper and Lower bozes
Middle he (
- - same base line for the Exp, Diff and Var bores
Exp (unlock EXP)
Diff (" d7)
Var (unlock VAR)

)
{dx=1.0;
dy = max (Upper.d + Middle.h, Lower.h + Middle.h) + 1.0 * Middle.s - Upper.d - Middle.h ;

}
Lower (unlock EXP)
{ s=Symbol.s * 0.8;
dy= max (Upper.d + Middle.h, Lower.h + Middle.h) + Middle.s - Middle.d - Lower.h;

- - a quite complez dy for the Lower boz !

)
{b=Upper.d + Upper.h + Nliddle.dy + Middle.h;}
- - a specific height for the Operands box

1)

Where DEFINED_SUM, EXP, VAR refer to the operator abstract syntaz,
Symbol, Operands, etc refer to box abstract syntaz,
defined_sum refer to both abstract syntazes,
?d” is string to be printed and "sum” is a pre-defined graphic.

4 The fheoretical framework of GSL

From a GSL specification on a box abstract syntax, a GSL compiler generates an AG
over the underlying operator abstract syntax. The question answered in this section is the
following: How can we know that the generated attribute system is or is not well-defined
(non circular)? More than that does it necessary belong to one of the well-know optimized
classes of AG (OAG, FNC,...) ? Beyond its theoretical interest, the answer to this question
is the foundation of a pragmatic usage of this kind of techniques, to avoid inspecting the
low-level generated AG for debugging GSL source.

4.1 From GSL to AG

Definition 1

Let P be a finite set of Phyla (Sorts); let O be a finite set of operators, defined as a
P-signature, where each operator o has a result-type (o) in P and an arity-type a(o) in
P* (the free monoid on P); An abstract syntax on O, noted ,A(O) is the initial many sorted

11

algebra [1] generated by O.

Definition 2
A GSL specification G consists in:

1. An operator abstract syntax, A(O).

2. A box abstract syntax, A(B), built on B, a finite set of terms in A(O U I),
where I denotes a set of Intermediate box-operators built on (P U {BOX}), verifying
for each iin I,
o(i) = BOX ;
In addition, for each b in B the condition (1) holds:

(1) b= 6 (L,...,In), with I; € A(I)
and for exactly one o in O:

name(6) = name(o),

o(6) = o(0),

a(6) = (BOX)*,

a(b) = a(o) = a(fy)...a(l,).

where a(I;) denotes the canonical extension of a from operators to trees.

3. A finite set of rules IT',, associated with O, defined as a set of equations on B, to
compute pre-defined attributes on .4(B) with the form:

bi.x = f (..., bi.y,.....) (pre-defined or user-defined equation)

where bi, bj are in B, z,y are in { dx, dy, h, 1, d, s} and the whole equation follows
the forms 1 or 2in 2.3

Property 1 A GSL program defines an isomorphism between the operator and boz abstract
syntazes.

proof. direct consequence of the condition (1) in the definition.D

We use this isomorphism in both senses: from .A(O) to .A(B) for computing the visual
display of objects as terms in .A(O) and conversely for evaluating in .A(Q), graphic editing
actions on A(B) such as selection, insertion, etc.

Remark 4 From a formal point of view, the generated equations are solved on terms in
A(B), i.e. on terms in A(O U I). In practice, for efficiency reasons, we use local aitributes,
as defined in SSL [24], to compute attributes on I, locally to the associated operator in O,
and so on terms in A(O) only. The GSL productions are primitive recursive schemes on

A(0) [3].

12

4.2 Equations generated by GSL

The set of equations generated from a GSL specification includes: default equations in-
dependant of the box type (general default equations), default equations associated with
this type (design default equations) and user-defined equations , which, when present, are
substituted to the default equations. '

¢ general default equations

for all boxes:

(g1] BOXi.H = BOXi.h 4+ BOXi.d
[g2] BOXk.s = BOX0.s

[g3] BOXi.dx = BOXi.dy = 0
fori> O0and k> 0;

and for atomic boxes:

(g4] BOX0.h = BOX0.d = 1/2 * BOX0.s

1:5) BOX0.l = BOXO0.d * length (BOX0)

where length is a pre-defined fonction on atomic bozes

e design default equations -

We give here the equations generated by the h layout type as shown below:

reference axis

z - —
b3.dy
b1
n < base2 . > :
b2 'b3.dx R
b3

X < base1
g < base3 Ip

Y

L L >
figure 3

13

Synthesized attributes of the father box:

(h1] BOX0.l = sum (BOXk.l + BOXk.dx)

[h2] BOX0.h = max (0 , max (BOXk.h - BOXk.dy))

[h3] BOX0.d = max (BOXk.h + BOXk.d + BOXk.dy) - BOX0.h
fork>o0;

Inherited attributes of the n sub-boxes:

{h4] BOX1.x = BOXl.dx + BOX0.x

” BOXj.x = BOXj-1.x + BOXj-1.1 + BOXj.dx
[h5] BOXk.y = BOXk.dy + BOX0.y

forj> 1tand k> 0;

4.3 Fundamental properties

We use, without formal definiton, the following classic notations on AGs [28,8]:
¢ a<0>, a<k> for the values of an attribute a on a production p: Xo — Xi1..X:
e D(p), D(S) the direct attribute depency graph over a production p or a sort S.
¢ D*(p), D*(S) the induced dependency graph over a ﬁroduction p or a sort S.

e ordered partitioned AG which determines two proper subclasses of non circular AG,
the FNC (ANC) [17,7] and OAG [16] clasges.

These classes are very relevant here: in addition to be tested by polynomial algorithms
(instead of exponential ones in the general case [13]), they support incremental attribute
evaluation [10] and value storage optimisations [22].

" Let us analyse the direct dependencies between the attributes of the previous case on
the assumption that there is no user-defined equation

from [gl]: D(atomic.box) = (h<0>, H<0>), (d<0>, H<0>)
from {g2]: D(atomic_box) = (s<0>, s<k>) , for k>0

from [g4] and [g5]: D(atomic.box) = (s<0>, h<0>), (s<0>, d<0>), (s<0>, 1<0>)
from [gl]: D(h-box) = (h<0>, H<0>), (d<0>,H<0>)

from {g2]: D(h-box) = (s<0>, s<k>) , for k>0

from [h1): D(h.box) = (I<k>, 1<0>), (dx<k>, 1<0>) , for k>0

from [h2]: D(h-box) = (h<k>, h<0>), (dy<k>, h<0>) , for k>0

from [h3]: D(h.box) = (d<k>, d<0>), (dy<k>, d<0>), (h<k>, d<0>), (h<0>, d<0>) , for k>0

from [h4]: D(h-box) = (x<0>, x<1>), (dx<1>, x<1>), (x<j-1>, x<j>), (dx<j>, x<5>), (1<j-1>, x<j>) ,
for j >1

from [h5]: D(h.box) = (y<0>, y<k>), (dy<k>, y<k>) , for k>0

)
)
)

From the D graph, the OAG algorithm compute the induced dependencies graph D*

14

Lemma 1 The AG generated from a set of GSL productions without user-defined equations
including atomic and horizontal boz specifications is OAG.

Proof: This result is reached by computing D* (BOX) and deducing an ordered parti-
tion of the set of attributes. We give here the partial order (—) resulting from D* (h_box)
and D* (atomic_box).

figure 4

An ordered partition of the attributes can be deduced from this diagram. From this
partition, we deduce a total ordering of the attributes on a node BOX:
(hBOX.ordering:) dx<dy<Y<s<l<h<d<X<H
which ends the proof of this lemma.D

We get the result which enforces security, efficency and convenience in our system.

Theorem 1 The AG generated by a GSL program without user-equations is an OAG.

Proof (sketch): we have three similar lemmas for the other cases: hc, v, vc which lead
to four partial order H, HC, V, VC, for covering all GSL programs. We construct from
these graphs a new partial order HVC compatible with the four previous ones. This partial

15

order does exist for GSL and supports the following total order
(BOX_ ordering:) dx<dy<s<. 1<h<d<H<X<YDO

This order gives an upper bound on the complexity for evaluating a GSL specification.

Corollary 1 The evaluation of any GSL specification, without user-defined equations, costs
at the most two tree-traversals.

proof: as visible on the BOX ordering, we need to enter a BOX-node twice at the most;
the first visit computes attributes from dx to H and the second visit, the attributes X,)Y O

In the case where GSL specifications includes user-defined equations, the previous the-
orem is no longer true. In the general case, the designer must use well-know algorithms to
test if the generated AG is circular, FNC or OAG. Deciding how extra equations modify
the induced attribute dependencies sets the problem of incremental test for AG; it is out
of the scope of this paper. However, we know an easy sufficient condition for keeping the
OAG property of the generated system.

Corollary 2 Let G be a GSL program with a set E of user-defined equations. If the direct
dependencies issued from E are in the graph HVC from the previous theorem, then the
generated AG from G is OAG.

The proof is a consequence of the construction of the HVC graph.O

This result allows the designer to change the values and the functions on box attributes
without any risk of circularity.

5 Conclusion and topics for future research

The design of the GIGAS system, as well as the different generated editors, point out two
main advantages of our methodology:

1. Due to AG technology, we notabily decrease the time for producing a new editor and
the designer is not asked to have any knowledge on graphical primitives;

2. The incremental evaluation gives the best performances during most editing actions.
The GSL specification can be improved in several ways:

e more standard features to decrease the role of user-defined equations,

® specifications over non-primitive abstract operators [21],

e extended attributes [11,23] for non strictly tree-structured graphics,

°® non determistic features as multi-choice rules with conditional failure and logical

crashic comatrninte oy deann o -,v-»f«;vﬂb‘.nr 27
Brapiil CONBLIRINnG O Gomain-vanavies .

16

Annex A: Implementation schema of GSL
We have used the generating power of the AG compiler-compiler technique (here SGEN:
the Synthesizer Generator) to bootstrap the GSL translator from a definition of GSL by
SSL.The next figure gives the detailed architecture of the GiGAs system [6].

QR

NS

\

A
BOOTSTRAPPING PHASE
v
y % N
Nsed)
AR -
DESIGN
PHASE
Generator
) 4
END-USER

|@raphie

Edlior

Langamge-based

figure 5

17

Annex B: Equations generated by GSL
We give here the equations generated by the he,v,ve layout types as shown below:

1. Horizontal-centered layout: type "hc”

¢ Normal layout
The box components of such box are placed (w.r.t. their order in the GSL source)
from left to right, centered on the reference axis which is the box base-line.

4
reference axis
box1 :
h
<&39%,,
base?2 \ box3
< X base1 > >
' b3.dy
box2 base3 J
d T
\
< W >
figure 6

o Synthesized attributes of the father box

[hel]
[he2]
[he3]

BOX0.1 = sum (BOXk.l + BOXk.dx)

BOX0.h = max (0, max (BOXk.h - BOXk.dy))

BOX0.d = max (BOXk.h + BOXk.d + BOXk.dy) - BOX0.h
fork>o0;

o Inherited attributes of the n sub-boxes

[hcd]

[he5)

BOX1.x = BOX1.dx + BOX0.x

BOXj.x = BOXj-1.x + BOXj-1. + BOXj.dx
BOXk.y = BOX0.h - BOXk.h + BOXk.dy + BOXO0.y
fork>0andj> 1;

18

2. Vertical layout: type ?v”

¢ Normal layout
The box components of such box are placed (w.r.t. their order in the GSL
source) top to downn, along the reference axis which is the left border of the

box.
r'\
box1
base1 '
+ _ >
h
IbZ.dy
box2
base?2 . v
<——6 - ‘$
b3.dx box3 d
base3 -
: - >
Reference 4
Axis z _ W
. -
figure 7

o Synthesized attributes of the father box

[vl] = BOX0. = max (BOXk. + BOXk.dy)
[v2) BOX0.h = sum (BOXk.h + BOXk.d + BOXk.dx)/2
[v3] BOX0.d = BOX0.h

fork> 0;

e Inherited attributes of the n sub-boxes

 [v4] BOXk.x = BOXk.dx + BOX0.x
[v3] BOX1l.y = BOX1.dy + BOX0.y
[v5] BOXj.y = BOXj-1.y + BOXj-1.h + BOXj-1.d + BOXj.dy
: fork> Gandj> 1;

19

3. Vertical-centered layout: type "vc”

e Normal layout
The box components of such box are placed (w.r.t. their order in the GSL source)
top to down, centered on the reference axis which is the vertical middle-line of

the box.
A
DOX'1
base1 -
h
Ibz.dy Reference
Axis
box2
< b2.dx > v
- ‘#
box3 |
b3.dx d
base3
-
v
W
< -
figure 8

o Synthesized attributes of the father box
[vel] BOX0.l = max(BOXk.1/2 - BOXk.dx) + max(BOXk.l/2 + BOXk.dx)
[ve2] as[v2)
[ve3] as [v3]
fork>0;

o Inherited attributes of the n sub-boxes

[veq] BOXk.x = max(BOXk.l/2 - BOXk.dx)-BOXk.l/2+BOXk.dx + BOX0.x
[ve5] as [v5)
for k> 0;

20

Annex C: SSL generated for the defined_sum operator

/*

*

* Abstract syntax.

* Attributes declarations.
* Attribution rules.

* Unparsing schemes.

*

* Source generated by PREProcessor.
*

*/

/* Attributes declarations */

EXP {
synthesized REAL h;
synthesized REAL 4;
synthesized REAL 1;
synthesized REAL H;

};

/* Abstract Syntax */
EXP:
defined_sum(EXP EXP VAR EXP);

/* Equations x/
EXP:
defined_sum{

local REAL Lower_dx;
local REAL Var_dx;
local REAL Diff_dx;
local REAL Exp_dx;
local REAL Middle_dx;
local REAL Upper_dx;
local REAL Operands._dx;
local REAL Symbol_dx;
local REAL defined_sum_dx;
local REAL Diff_h;
local REAL Diff_1;

T el DEAY 1es
iogal REAL T —r e §

local REAL Diff_y;
local REAL Middle_h;

21

inherited
inherited
inherited

local
local
local
local
local
local
local
local
local
local
local
local

local

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

REAL

REAL s;
REAL x;
REAL y;

Lower_dy;
Var_dy;
Diff_dy;
Exp_dy;
Middle_dy;
Upper_dy;
Operands_dy;
Symbol_dy;
defined_sum_dy;
Diff_d;
Diff_H;
Diff_x;

Middle_d;

local REAL Middle_l; local REAL Middle_H;

local REAL Middle_s; local REAL Middle_.x;
local REAL Middle.y;

local REAL Operands_h; local REAL Operands_d;
local REAL Operands_l; local REAL Operands_H;
local REAL Operands.s; local REAL Operands_x;
local REAL Operands.y;

local REAL Symbol_h; local REAL Symbol_d;
local REAL Symbol.l; local REAL Symbol_H;
local REAL Symbol_s; local REAL Symbol_x;

local REAL Symbol_y;

defined_sum_dx = 0.0;

defined_sum_dy = 0.0;

EXP$1.H = EXP$1.h+EXP$1.4;

EXP$1.h = MaxReal(0.0, MaxReal(Symbol_h-(Symbol_dy),
Operands_h-(Operands_dy)));

EXP$1.d = MaxReal(Symbol_d+Symbol_dy, Operands_d+Operands_dy);

Symbol_x = 0.0+Symbol_dx;

Operands_x = Symbol_x+Symbol_l+Operands_dx;

Symbol_y = EXP$1.h+0.0-(Symbol_h)+Symbol_dy;

Operands_y = EXP$1.h+0.0-(0Operands_h)+Operands_dy;

EXP$1.1 = Symbol_l+Symbol_dx+Operands_l+Operands_dx;

Symbol_dx = 0.0;

Symbol_dy = 0.0;

Symbol_s = EXP$1.s;

Symbol_H = Symbol_h+Symbol_d;

Symbol_h = Operands_h-(EXP$2.h);
Symbel_d = Symbol_h;

Symbol_l = ((Symbol_h+Symbol_d))/(2.8);

Operands_dx = 0.0;

Operands_dy = 0.0;

Operands_s = EXP$1.s;

Operands_H = Operands_h+0Operands_d;

Operands_h = EXP$2.d+EXP$2.h+Middle_dy+Middle_h;

Operands_d = EXP$2.h+EXP$2.d+Upper_dy+Middle_h+Middle_d+
Middle_dy+EXP$4.h+EXP$4.d+Lower_dy-(Operands_h);

EXP$2.x = Operands_x+Upper_dx;

Middle_x = Operands_x+Middle_dx;

EXP$4.x = Operands_x+Lower_dx;

EXP$2.y = Operands_y+Upper_dy;

Middle_y = EXP$2.y+EXP$2.h+EXP$2.d+Middle_dy;

ZXP$4.y = Hiddle_ y+Middle _h+Middle_d+Lower_dy;

Operands_l = MaxReal (EXP$2.1+Upper_dx,
MaxReal(Middle_l+Middle_dx, EXP$4.1+Lower_dx));

22

Upper.dx = 0.0;
Upper_dy = 0.0;
EXP$2.s = (Symbol_s)*(0.8);
Middle_dx = 1.0;

Middle_dy = MaxReal (EXP$2.d+Middle_h, EXP$4.h+Middle.d)+
(1.0)*(Middle_s)~(EXP$2.d)-(Middle_h);

Middle_s = Operands._s;

Middle_H = Middle_h+Middle_d;

Middle_h = MaxReal(0.0, MaxReal(EXP$3.h-(Exp.dy),
MaxReal (Diff_h-(Diff_dy), VAR$1.h-(Var_dy))));

Middle_d = MaxReal (EXP$3.d+Exp_dy,
MaxReal (Diff_d+Diff_dy, VAR$1.d+Var_dy));

EXP$3.x = Middle_x+Exp_dx;

Diff_x = EXP$3.x+EXP$3.1+Diff_dx;

VAR$1.x = Diff_x+Diff_l+Var_dx;

EXP$3.y = Middle_h+Middle_y-(EXP$3.h)+Exp_dy;

Diff_y = Middle_h+Middle_y-(Diff_h)+Diff_dy;

VAR$1.y = Middle_h+Middle_y-(VAR$1.h)+Var_dy;

Middle.l = EXP$3.1+Exp_dx+Diff_l+Diff_dx+VAR$1.1+Var_dx;
Exp.dx = 0.0;
Exp.dy = 0.0;

EXP$3.s = Middle_s;
Diff_dx = 0.0;

Diff_dy = 0.0;

Diff_s = Middle_s;

Diff_H = Diff_h+Diff_d;

Diff_h = (0.5)*(Diff_s);

Diff_d = (0.5)=(Diff_s);

Diff_1 = (2.000000e+00)*(Diff_s);
Var_dx = 0.0;

Var_dy = 0.0;

VAR$1.s = Middle_s;

Lower_dx = 0.0;

Lower_dy = MaxReal(EXP$2.d+Middle_h,EXP$4.h+Midd1e_d)+(1.0)*(Middle_s)-
(Middle_d)-(EXP$4.h);

EXP$4.s = (Symbol_s)*(0.8);

};

/* Unparsing scheme to communicate with GAM */

EXP: defined_sum[~::="\ncomp "EXP$1.x" "EXP$1.y" "EXP$1.1"
"EXP$1.H"\t""\ngraph

"Symbol_x" "Symbol_y" "Symbol_1" "Symbol_H" \"EXP\""@@"\ntext
npiff_x" "Diff_y" "Diff_1" "Diff_H" 1 0 0 *" d\""ee"\b"];

23

Annex D: Generated environments
The view below shows a joint session under 4 editors automatically generated by GIGAs:
a Pascal editor, a LIsp tree editor, a DITJKSTRA guarded language editor and a mathe-
matical formulae editor. The system provides facilities for cutting, pasting, syntax-oriented
menus, transformation menus, zooming, font choosing, etc.

B nain
i= program CGdentifier
begin

(em assion dentifier> s lond
> ~ Cden 2] . exprassion

abort

. sideeffect.pas .’., R R | L% sratement,

I side effect demo

Brogran sideeffect (oubput >
var

a by i I integersp
T computes product of x by y by successive additions 3
function smul (Varx,y : integer): integer;

var

contenu

: lnteger;

i t= 2 dounto 1 do
writeln(’2 » 3 = *, smul(a, b D)5)

The bozes selected by the mouse are visible; the current Phylum is shown in the right
upper corner

24

+00
,-‘::.-;_", : ;,’»‘.’ ""‘." ‘» 3 : :
1/t dt f side effect demo 3
progran sideeffect (output D}
var
i ar by 1 2 integer}
€ computez product of x by y by succeszive additions 3
guncrion smul {(Varx,y 2 integer)¢ integer}

uar
z & integer}

begin
z

whii
i
smul
end?
hegin
a iz 2}
b = 3)
g , Size Font Hoves ditio
aL = delete-selectlon)]
o
p ¥ - ; :
& - . copy-from-cl ipped |
o0 1/ t dt paste-fron-clipped |

Lim

e

{Line>

Selection of the sigma-operand; cut the subtree using the edition menu

25

- source:nath

o0

+00 = 1/t dt

B sideeffect.pas

€ side effect demo 3

progran sideeffect {output D3
var

ap br 4 § integer}
£ computes product of x by 4y by successive additions 3
fFunction smul (Varx,y @ integer)i integer;
n var
Z 1 integer}

l atement_se
gl st m q

insert_before

L=l

statement_seq

9 W source.nath Lo variabie

1

iJkstra’s language

" s

Selection of the PASCAL while; choice of the while-repeat transform in the menu

26

expression
defined_asigna
+

x /3 -
defined som: S
subsoript k
urdef ined_sux
0 /

square oot
[4]

supersoript

[+]

undef ined_signe

divide
expression

{axp

ideefectipa
side effect demo)
pgrarsideeffact Coutput 33
var
a, b, | 1 integery
¢ computes product of x by y by succeasive additions 3
function smul (Van,y 3 integer)2 integer}
var
z 32 Integers
basin
x = O3

Saxped

{axpr) d<var>

{oxped

1/t dt

1 (y >=0) then
repeaf

untll not ((y >o0);
smul im

{expr> d{var>

{expr>

{expr> d<var)

A menu for ezpressions and how decreases the size of the nested bozes!

27

Acknowledgment

We are particularly indebted to X. Ceugniet, B. Chabrier, L. Chauvin, J. M. Deniau,
T. Graf, and V. Lextrait for their work on the first implementation of the GIGas system.
Special thanks to I. Attali for helpful comments.

References

[1] Goguen & al. “Initial algebra semantics and continuous algebras” JACM 24, 68-95,
1977 '

[2] Attali I. & Franchi-Zannettacci P. “Prolog-like schemes for Ada static semantics”
Ada UK news, 6, 2, 1985

[3] L Attali & P. Franchi-Zannettacci,“ Unification-free execution of TYPOL programs
by semantic attribute evaluation” Proc of the 5th Conf on Logic Programming,
Seattle, 160-177, 1988

[4] Borras P., Clément D., Despeyroux T., Incerpi J., Kahn G., Lang B., & Pascual
V. “CENTAUR: the system” INRIA research report 777, 1987

[5] B. Chabrier, P. Franchi-Zannettacci, V. Lextrait "The GIGAS graphic programming

environment generator” Software engineering and its applications, Toulouse, dec
1988

[6] X. Ceugniet, B. Chabrier, L. Chauvin, J.M. Deniau, T. Graf, V. Lextrait, “Pro-

totypage d’un Générateur d’Editeurs Syntaxiques Graphiques, Rapport DESS-IS],
1987.

[7] Courcelle B. & Franchi-Zannettacci P. “Attribute Grammars and Recursive Pro-
gram Schemes” TCS 17, vol 1 & 2, 1982

[8] Deransart P., Jourdan M., & Lorho B. “Attribute Grammars: definitions, systems,
bibliography” LNCS 323, 1988, Springer Verlag

[9] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang,“ Programming environnments
based on structured editors: The Mentor experience ” Rapport INRIA 26, 1980.

(10] A. Demers, T.Reps, T.Teitelbaum, “Incremental evaluation for attribute grammars
with application to syntax-directed editors ” Conf. Record of 8th ACM Symp.on
Principles of Programming Languages, Williamsburg, 105-116.1981

[11] A. Demers, A. Rogers, F.K. Zadeck “Attribute propagation by message passing”

ACM Sigplan Symp. on Language issues in programming environements, Seattle,
43-58,1985

[12] A.N.Habermann & D. Notkin “The gandalf Sotware Development Environment”
Proc. of the 2nd Symp. on Computation and Information, Monterey, 1983.

28

[13] M. Jazayeri “ A Simpler construction for showing the intrinsically exponential
complexity of the circularity problem for attribute grammars” JACM, 28 ,715-720,
1981

(14] G.F. Johnson & C. N. Fischer “A meta-language and system for non local incre-
mental attribute evaluation in language-based editors” Conf. Record of the 12th
ACM Symp. on Principles of Programming Languages, New Orleans, 141-151,
1985

[15] M. Jourdan & D. Parigot * The FNC-2 System User’s Guide and Reference Man-
ual” version 3.0, INRIA, 1988

(16] Kastens U. “Ordered Attribute Grammars” Acta Informatica 13, 1980

[17} Kennedy K. & Warren S. K. “Automatic generation of efficient evaluators for At-
tribute Grammars” Proc. of the 3" ACM Conf on Principle of Programming
Languages, Atlanta, 1976

[18] Knuth D. E. “Semantics of Context-Free Languages” Math. Syst. Theory 2, 1968

[19] D.E. Knuth, “TeX et Metafont New directions in Typesetting” Digital Press and
the American Society, 1979.

[20] W. R. Mallgreen “ Formal specification of interactive graphics programming lan-
guages ” ACM Distinguished dissertation series, MIT Press, 1983

[21] E. Morcos-Chounet & A. Conchon “ PPML: A general formalism to specify pretty-
printing ” Proceedings of IFIP Congress, North-Holland, 1986

[22] D. Parigot “Transformations,évaluation incrémentale et optimisations des gram-
maires attribuées: le systéme FNC-2 ” Thése Univ. PARIS XI, 1988

[23] T. Reps, C. Marceau T. Teitelbaum “ Remote attribute updéting for language-
based editors ” Conf. Record of thel3th ACM Symp. on Principles of Programming
Languages,St Petersburg, 1-13, 1986

[24] T. Reps & T. Teitelbaum “The Synthesizer Generator Reference Manual” Depart-
ment of, Compter Science, Cornell University ,1985.

[25] T. Teitelbaum & T. Reps “The Cornell Program Synthesizer: a syntax directed
programming environnment” Communications of the ACM, Volume 24 n. 9, 563-
573, 1981.

[26] Uhl J., Drossopoulou S., Persch G., Goos G., Dausmann M., & Winterstein G. “An
Attribute Grammar for the semantic analysis of Ada” LNCS 149, 1982

[27] P. Van Hentenryck & M Dincbas,* Domains in logic programming” AAAI 86,
Philadelphia, 1986

(28] W. Waite & G. Goos “ Compiler Construction” Springer Verlag 1984

Imprimé en France
. . par .]
I'Institut National de Recherche en Informatique et en Automatique

n

