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A FINITE ELEMENT METHOD TO SOLVE THE
COMPRESSIBLE NAVIER-STOKES EQUATIONS
WITH TURBULENCE MODELLING.

Sylvain Boivin
(Dept. de mathématiques, Université Laval, Canada, G1K 7P4
and INRIA-Menusin, 78158 Le Chesnay, France )

Abstract :

A new computer code solving the compressible Navier-Stokes equations is described. The code solve
the two-dimensional (2-D), time-dependant equations using the finite element method. Filtering methods
are used on gradients of convection terms in order to ensure stability. Two turbulence models are integrated
into the code to compare, evaluate, and ultimately improve model performance.

The results of numerical experiments for the flow around a NACAO0012 airfoil and a simplified version
of the Hermes space shutle will be presented in order to show the possibilities of the methods used.

UNE METHODE NUMERIQUE DE TYPE ELEMENT FINIES
POUR RESOUDRE LES EQUATIONS DE NAVIER-STOKES
COMPRESSIBLE AVEC MODELISATION DE LA TURBULENCE.

Résumsé :

Ce rapport décrit les techniques utilisées pour la mise au point d’un code de calcul permettant de simuler
des écoulements compressibles. Les équations de Navier-Stokes compressibles, instationnaires, bidimension-
nelles sont résolues via une approche différences finies en temps et éléments finis en espace. Une méthode de
filtrage est utilisée sur les gradients des termes de convection pour assurer la stabilité du schéma numérique.
Deux modéles de turbulence sont intégrés pour comparer et éventuellement améliorer les performances du
modele.

On présente des résultats numériques pour les écoulements autour d’un NACAQ012 et d’une version
simplifiée de la navette spatiale Hermes.
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Notations :
Letters :

R! : incompressible Reynolds stress tensor

R : compressible Reynolds stress tensor

T : viscous and pressure stress tensor

o : viscous stress tensor

S : strain tensor

i : laminar viscosity

pt : turbulent viscosity

#e : reference viscosity

k : turbulent kinetic energy

g : square root of k

€ : turbulent dissipation rate

w : defined by ¢/k .
a

: inverse of the time step.

Non-letter symbols :

I, T, T, 'L : overall, body, downstream, upstream boundaries
Q : computational domain

~ : mass-weighted averaging operator

" : value at the preceeding time step.

® : tensor product [(u ® u)ij = u;u;)

Spaces :

L%(92) : space of square Lebesgue integrable function.

HY(R) : usual Sobolev space of functions of L2() whose first derivatives are also in L%(Q).
X(@Q)={ze€ HI(Q)I-"’W\F; = 0}

Y(Q) = {z € H' ()20, =0}

Remark: When needed, we use the classical tensor notation and the associated convention for repeated
indices and derivatives.



Introduction

Numerical simulations of flows around airplanes and space vehicules at high Mach and Reynolds numbers
are still a challenge to the numerical analyst. Most of the difficulties are taking their roots in the presence
at the same time in the flow of complex physical phenomena of very different scales, The most frequently
encountered are: shocks, boundary layers (both laminar and turbulent), wakes, and various interactions
between these phenomena.

Throughout this paper, we make the hypothesis that all these phenomena are adequately modelized
by the compressible Navier-Stokes equations. In particular, we suppose these equations valid for highly
turbulent flows.

Under this hypothesis, our main problem is: how to solve the Navier-Stokes equations without over-
damping some of these phenomena? The strategy of resolution presented is a step in that direction and is
based on the following key ideas:

o first, being unable to represent the smaller physical scales, we take account of them throught a viscosity
computed with appropriate turbulence models,

¢ second, unresolved frequencies following a shocks have to be damped by a numerical viscosity taking
into account the physical viscosity,

e third, no a priori information about the boundary layer being reliable, we seek to resolve it directly, -
or eventually, by the use of special elements.

Altough very appealing, no wall law is used because even if the region where viscous effects are important
is small, his influence is felt everywhere in the flow.

The formulation, schemes and method of solution where also chosen to meet some particular goals. In
fact, it is our opinion that a good 2D Navier-Stokes code should include the following features :

(i) to be directly generalizable to 3D case,

(ii) to include a turbulent closure model with transport equations,
(iii) to be independent from the mesh,

(iv) to enable control of the numerical diffusion,

(v) to have solid theoretical support.

In this report, we present a resolution algorithm which includes most of these features ; (i), (iii) and (v)
through a finite element approach, (ii) and (iv) through adequate use of classical methods.

The results of numerical experiments will be presented in order to show the possibilities of the methods
discussed in this report.

1. Formulation of the Navier-Stokes equations for high Reynolds flows.

It is well-known (Matsumara-Nishida [1]) that with small initial data, the Navier-Stokes equations
possess a unique solution. But in the usual case of large and stiff initial data, instabilities appear and
degenerate in turbulence. We make the usual assumption that these cahotic flows are within the range of ;
validity of the Navier-Stokes equations (albeit not within the capabilities of our numerical approximation of
these equations).

Let Q € RV, (N=2 or 3 in practice), be the flow domain and T be its boundary. The conservative form
of the equations is given below by :

3’: +V.(pu)=0 (1.1)
3(/;:1 +V - (pu®u) =V (1), ;=1 (1.2)
%L | G . (pEw =V [r-u-gq (1.3)

ot
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7ij = =pbij + ASer(u)dij + 2pSij(u) (14)
p=(y—1)pe (1.5)
where, Sij(u) = 4(uij +uji), E=e+3ul, e=C,T, 7= %f, g=—kVT, A= -4y,

In spite of all the recent advances in computer technology, turbulent flows cannot at present be computed
by the direct resolution of the Navier-Stokes equations. The reason is that the turbulent motion contains a
continuous range of scales in which the ratio of the larger to the smaller scale is about 0(Re®/4).

For this reason, and because one is generally not interested in complete details of the behavior of all the
instantaneous variables, we work with the mass-weighted averages of those quantities.

To make it clear, we recall the definition of the averaging operators. If p is the instantaneous density
and u the instantaneous velocity, then we define the average of p and the mass-average of u on a time interval
of length £, by

1 [t 1 [l
p=— dt , = — dt
p to Jo P Pto Jo -

and v’ by ' = u — 1.

In order to simplify the writing, we will conserve the same notation for the mean variables
and use the prime for the fluctuating part of mass-weighted variables. Consequently, for the
remaining of the paper we set

p,p - mean density and pressure

u,e, T - mass-weighted mean velocity, internal energy and temperature
u’, T - fluctuating part of the velocity and the temperature

” - mass-weighted averaging operator.

Now, neglecting buoyancy effects and neglecting all viscosity and thermal conductivity fluctuations, the
open equations for mass, momentum and total energy conservations are

% +V.(pu)=0 (1.6)
95’;.‘. + V.- (pu ® u) =V- [(T -— (pu’gu’)) (17)
Qgtg +V - (pEu) = V- [(r - (pv' ® ') - 4 = grot] (18)

where pE = pe + %,ou2 + 3pu? = pe + —12-pu2 + pk, k being the turbulent kinetic energy and g, the total
(laminar + turbulent) heat transfert.

The system (1.6)-(1.8) contains only second order moments as supplementary unknowns, higher order

moments being neglected and correlation between velocity and temperature modeled by gi ot = —,\-g;T: +
ufT’ = _’\tol%'
There are two ways to express the Reynolds stress tensor R = —pu'Eu' :

oTo assume that the Reynolds stresses are a local property of the mean flow and, by analogy with the
viscous stresses, express them by a constitutive law.

oTo assume that the Reynolds stresses are independant variable quantities and obtain their values
through the resolution of a set of transport equations.

In this report, we consider only the first approach, the second requiring too much empirism (Rodi [1]).
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The choice of a constitutive law relating R to mean quantities is very difficult. But, under certain
approximations, Chacon-Pironneau [1], make it clear that, in the incompressible case, R! and (Vu + Vu‘.)J
generate the same subspace of second-order tensors; hence in 2D

Rl = al 4+ B(Vu + Vu') (19)

where «, B are only functions of the nontrivial invariants of (Vu + Vu'), and possibly of the turbulent
kinetic energy and a mixing length. We suppose that this can be generalized to the compressible case in the
following way

R=-pu'@u = —-z-(plc + 5V - W) + p(Vu + Vub) (1.10)

More general hypotheses (Speziale [1]) seem to give more realistic approximations, but without any
proof that the Reynolds stress tensor still lies in the same space of tensors.

In a classical way, we completely decouple the resolution of the mean Navier-Stokes equations (1.6)-(1.8)

and the calculation of the Reynolds stresses.
The next section will be devoted to the resolution of the mean Navier-Stokes equations and section 3 to
the modelization and the resolution of the model giving the Reynolds stresses.

2. Resolution of the Navier-Stokes equations for the mean flow.

We now consider the following non-conservative non-dimensional form of the Navier-Stokes equations
(1.6)-(1.8). Details of the passage from the general equations to this system are included in the appendix 1.

3

at+u-Vp+pV-u=0 (21)

du 1 1 .\
E+(u-V)u+;Vﬂ—;V-(V o)=0 (2.2)
ar 0 v 1 N
= 4 u-VT+4+-V-u—Vu:(—0o)— =V - (s*'VT)=0 2.3
” : (o) -39+ (x"VT) (23)

in (2.1)-(2.3), we have normalized by the subscript r

(1) the density p by p. o

(ii) the velocity u by {u,|

(iii) the internal energy e by |u,|?

(iv) the pressure p by prju,|?

(v) the viscosities ¢ and pu, by p,

(vi) the kinetic turbulence energy k by |u. |

(vii) the temperature T by |u.|*/Cy >
which imply e = T

The pressure obeys the ideal gas law, the number v and the functions o, 8, v*, k* are defined by:
o0 = Vu+ Vu! — 3V -ul,
o0 =p+2pk, (p=(v-1)pT),
ey = C,/C, is the ratio of specific heats (y = 1.4 in air).

ov* = (s + ps)/ Re, is the total viscosity defined from the computed laminar and turbulent viscosities,
divided by the reference Reynolds number  Re, = p,u, L. /p,.
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ox* = y/Re,(u/ Pr+p:/ Pry) is the total conductivity coefficient, also define from laminar and turbulent
viscosities.
Remark: The field (v*)~! will be referenced as the total Reynolds number field.

We consider external flows around 2D geometries; the domain of computation is described in figure la.
Let I'oo be a far-field boundary of the domain; we introduce

I% = {lz €T uwn <0}, T4 =Te\l%

where u., denotes the free stream velocity and n the unit vector of the outward normal to T'.
We assume the flow to be uniform at infinity, and the corresponding variables to be normalized by the
free stream values; then for example, we prescribe at infinity

_ (cosa
Uoo = (.n'na ’

17
Too = 1/[y(y - M),

« is the angle of attack,

u
p
T
where M., denotes the free stream mach number.

The boundary conditions on the computational boundary T, are:

only iu=tp, T =T, p=1,
andon T : VT -n=0, [n-(Vu+Vu' =2V .ul)-n)=0,[n - (Vu+ V' - 2V.ul)-1]=0,
where n, t, are the local normal and tangent on I'},.

On the rigid boundary I'g, we shall use the following conditions:

u = 0 (no-slip condition),
T =Tp = Teo(1 + (y ~ 1)/2M2)) (free stream total temperature).

Finally, since steady solutions are sought through time dependent equations, initial conditions have to
be added; we shall take

P(z,0) = po(z), u(z,0) = uo(z), T(z,0)=To(z).

Solving the compressible Navier-Stokes equations is a difficult task. Most of the existing numerical
solution methods are based on finite differences techniques, for both space and time discretizations. Following
the work of Bristeau et al. [1][2], we will consider a method based on finite element techniques for space
discretization while using finite differences in time.

Let the time derivatives be discretized using a classical implicit Euler finite differences formula, then at
each time step, we solve the following non-linear system of variational equations

alp—=p,N)+(u-Vp,N)+(pV -u,N) =0 (24)
o — i, M) + ((u- V)u, M) + (%VG,M) + (%a, M) =0 2.5)
a(T-T,K)+ (u-VT,K) + (%V-u,K)- (Vu: (%a),K) +(%VT,VK) =0 (2.6)

where the solution is looked forin V x W x Z,
Vv={pe€ HI(QNP[[‘; =1}
W= {u € (HI(Q))zlu'I\; = Uoo, U I'g = 0}
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Z={Te H1(9)|T|r*;, = Too, Tirs = T}

although there is no complete theoretical justification of this. We look for a triple (p,u,T)eVxWx2Z
such that (2.4)-(2.6) is verify for all triple of test functions (N, M, K) € Y(R) x (X(2))? x X(R). For the
definition of the spaces X(£2), Y(R) see the page about notation.

Remark 1.: (, ) denotes the scalar product in L?(Q).

Remark 2.: The natural boundary condition already defined, were introduced by setting the boundary
integrals appearing from the integration by part to zero.

Remark 3.: The 6§ term of equation (2.5) is integrated in the form

1 4 T 2¢?
~V0=(y-1)VT +=qVg+[v-1)=+L)v
> (v=1) 3IVe+((v )p 3p] P

We do not integrate by part the pressure term of the momentum equation because we cannot set p+ oy, = 0
on the boundary (doing so would perturbate the solution) and we prefer to avoid the computation of boundary
integrals.

To approximate (2.4)-(2.6), by the finite element method, we must divide Q into small elements (trian-
gles) and replace all the functions by their interpolate py,, up, T). Interpolates are defined inside the elements
from their values at the nodes of the elements by an interpolation formula.

The choice of the approximation spaces is a critical and still partly obscur point. But, we see that when
u is very small, for example near a solid boundary, equation (2.4) looks like a divergence free equation. This
is specially true after the change of variable: o = logp (see Bristeau et al. [1]). We may conjuncture that
to ensure stability, a necessary condition is that the element chosen should be stable for the incompressible
case. This seem to be confirmed by the various experiments made by Bristeau et al. [2].

A possible choice of such an element (and consequently spaces) is the P; — iso P, element (figure 1b).
If T}/, is the triangulation obtained from T} by dividing each triangle of T} into 4 equal triangles whose
vertices are the vertices {¢',9%,¢} of Ty and {3(q' + ¢%), 3(a®> + ¢%), 1(¢* + ¢°)}, we define

Vi = {pn € Vipy € C°(Q),VT € Tj,, pair € PX(T)}C V
Wh = {un € Wlun € (C°(Q))%,YT € Thjz, unr € PAT)} C W
Zn = {Ty € Z|T} € C°(Q),VT € Ty, Tyr € PN(T)} C Z
where P!(T) = { set of polynomials of degree < 1 on T'}.
Restricted to these finite dimensional spaces, equations (2.4)-(2.6) lead to the non-linear problem:
Find (pn, un, Th) in (Vi x Wi x Z,) solution of F(ps,un,Th) =0, ‘ 2.7
F), being the discrete version (see appendix 2) of the system (2.4)-(2.6).
We now consider iteration schemes for solving the nonlinear system Fj (s) = 0, where s = (pa, up,Ty).
Newton’s method applied to this system results in the iteration
1. Set s° an initial guess
2. For n = 0,1,2,... until convergence do:

2.1 Solve J(s™)6" = —F,(s™), ~ (2.8)
2.2 Set s"t! = 5™ + §°,




where J(s™) = F'(s") is the system Jacobian. For large problems, iterative methods are frequently used to
solve (2.8) only approximately, giving rise to methods which can be viewed as inexact Newton methods. The
particular method we use is the Generalized Minimum Residual Method (GMRES) due to Saad and Schultz
[1]. This method has the virtue of requiring virtually no matrix storage and requires only the action of the
Jacobian matrix J times a vector r, and not J explicitly. In the setting of nonlinear equations, this action
is approximated by a difference quotient of the form

F(s + br) — Fy(s)
b

J(s)r =

where s is the current approximation of a root of (2.7) and b is a scalar. For details of the algorithm, see
Saad-Schultz [1] and also Bristeau et al. [2] for a clear setting of this algorithm within the context of the
conjugate gradient methods.

To conclude this section we present and discuss two strategies to add some numerical diffusion in the
approximation of the convective part of the equations.

It is well known that when the Reynolds number is high, boundary layers and shocks become hard to
resolve and centered approximation of first derivatives are dangerous. In fact, it is necessary to add some
numerical diffusion where the meshsize h is such that the local Peclet number satisfies the condition

h
Pe = Ee__ >2, a=p m&x(lullaluzl)!

in order to damp unresolved frequencies. There are many different ways to do that, upwinding, addition of
an artificial viscosity,... but the problem is to control the numerical diffusion to be sure it does not degenerate
the approximation of gradients.

Our approach is to filter the discrete gradients in the following way: as the discrete gradients are constant
by element, we define the gradients at a node or on an element by an upwinded combination of the gradients
on the nearby elements.

The first method can be viewed as a projection followed by a combination with the upwinded gradients.
That is, if a node s is surrounded by elements 1 to n, with respective area a; which sum to A. Then we
define the gradient of a function ¢ at s by the combination of a centered gradient and an upwinded gradient

Vé, = (1-P)Vé; +BVY, , (29

where the centered and upwinded gradients at s are respectively defined by

n

1
Vs = 1 arVer , Vo5 =Vore) ,
k=1

where T'(s) is the upwind element at node s. The choice of 8 will be discussed below.
The second method is a pure filtering and can also be written as a combination of a centered and an
upwinded gradient. More precisely on an element e we define the gradient by

Vée = (1-B)Vé; + BV, , (2.10)
where the centered and upwinded gradients on e are respectively defined by
138
Vg =Vé, VoL =3 Vér, -
i=1

A fondamental difference between these two upwinding methods (for elements where gradients are constant
by element) is that in the second there is no need for projection.
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We now describe the computation of 3. The method, based on the analysis of the scalar steady convec-
tion diffusion equation, is to relate the coefficient to a local Peclet number by:

Pe 2
B = COth(—Z—) - 'FE ,

where the Peclet number is an estimation of the importance of convection compared to diffusion. Although
the definition of this number is obvious in the scalar case, the generalization to multi dimensional cases is
not immadiate. But in general we may define it by

Pe = Repha |

where h is an estimation of the characteristic length and & an estimation of the convection speed.
A possible choice for h , dis

h=|h-ul/lu], &=y . (2.11)

But some computational experiments demonstrated that the following choices, inspired from the work of
Hughes et al. [1], give better results,

h=|(h-V9)/IV4l, a=I(u-Ve)I/IV4| . (212)

In fact, with these definitions, § is more closely related to discontinuities.

Note also that the coefficient 8 can be multiplied by a tuning coeflicient for further control of the
diffusion and more specifically to weight the diffusion added in each equation. The equation for p being the
only equation without any physical diffusion it is fair to believe that more numerical diffusion should be
added to this equation.

Altough less robust, the second method, the filtering method (2.9)-(2.12), proved to be very efficient
and precise, provided that the mesh is adequately refined.

Remark: The value of h = (hz, hy) at a given point of the mesh is deduced from the computed value on each
element using the relations

(1—9)

rel = 2, 1g2.0] = ) lg2e| = = lgve] + 2] + lase] = =
91z} = k.’ 92,z| = B’ 92,z| = hy q1,x 92,z 3,z = hy

where ¢; are the P; basis functions on a given triangle.

3. Closure model of turbulent flow.

The basic goal in developing turbulence models is to specify closure conditions in which the unknown
Reynolds stresses of turbulence are related, either algebraically or through differential relations, to known
mean-flow variables. The fundamental problem is to deduce a suitable mathematical model which should be
a good compromise between mathematical simplicity and the complex exact transport equations of Reynolds
stresses.

Our starting point will be the classical k¥ — ¢ model of Jones-Launder [1]. A reason for it is that this
model can be deduced rigorously in the incompressible case (Chacon- Pironneau [1]) and also because there
is some efficient (but not trivial) ways to solve it.

It is well known (Huttar et al. [1]) that the choice of the scheme to solve the k — ¢ equations is very
important. Thus, in order to ensure numerical stability we make a change of variable inspired by Coakley

(1.
The basic closure turbulence model as described in the appendix 3 is given by

3(”“)+u V(pq)+ pqv - u——-—R Vu+;pwq Vlu+E )Vql (3.1)
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6(%2+u-V(pw)+pwV-u—(cx—l)%R:Vu-{-(cz—l)pwz—V'[(#+£i)Vw]=0 (3.2)

where ¢? = k, w = ¢/k, pe = cupg’/w and R is the Reynolds stress tensor.

In the construction of two equations closure model it is assumed that the flow is fully turbulent, and
that the Reynolds number is everywhere high. Thus, in order to provide predictions of the flow within the
viscous layer adjacent to the wall, the above model must be extended in three ways. These are :

(i) prescribe the turbulent/non-turbulent interface,

(ii) the terms containing the ¢; and ¢, will become dependent upon the Reynolds number of turbulence,

(iii) if possible, correct values using empirical formulas.

The complex problem of the interface between a turbulent region and a non-turbulent region will not

be discussed here.
The corrected values for the constants, proposed by Coakley [1], are given by replacing c, by ¢, D and
(1 = ¢;) by (0,405D + 0,045), where D is a damping factor given by

_ar], r= ﬂi

D=[1-exp p

where the value of the constant is a = 0.0018.

Initial profiles for ¢ and w and corrected values are deduced from an estimation of the turbulent viscosity
provided by an algebraic model, namely the Baldwin-Lomax [1] model, through the empirical relations

s

k= %70) mS12 (Bradshaw hypothesis).

w= -1:}6312 (Hypothesis : production = dissipation).

As in the case of the mean Navier-Stokes equations we work with the non-conservative (see appendix
4) and non-dimensional form of these equations. That is,

1 q . 11 _
5 U Vg - EqV ‘u-— 2—wc,,D(6 :Vu) + 5we — pV [CyVg]=0 (3.3)

%u +u-Vw+ %(cl 1wV u - (e — 1)e,D(o : Vu) + (c2 — Nw? - %V - [CuVw] =0 (34)

in (3.3)-(3.4), we have normalized by the subscript r

(i) p,u, T as in section 2

(ii) the viscosities p and p; by p,

(iii) the kinetic turbulence energy ¢? by |u,|?

(iv) the specific dissipation rate of ¢, w by |u,]/L,.
The functions D, o, C,, C,, are defined by:
oD =1~ exp(~apg® Re, /),

o0 = Vu+ Vu! — 2V . ul,

oCy = (p + pe/og)/Re, ,

*Co = (n+ pe/ow)/Re,
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The values of the constants c,, ¢, c2, 0, = o} are taken from the original paper of Launder-Spalding
(1], for the value of o,, see the appendix 3.

The boundary condition on smooth wall boundaries are ¢ = 0 and Vw - n = 0. At the computational
boundary I, small values are prescribed; ¢ = g0, W = Woo. More exactly, g is set to the known free stream
value of the kinetic turbulent energy and we, is defined by setting

o = BerCuPoole _
t Woo

We now describe the resolution strategy.

As already noted, the overall resolution is split in two parts; first we solve the mean Navier-Stokes
equations then we solve the turbulence closure equations. At each step the resolution of (3.3)-(3.4) is done
with p = p,u = 4, u = i, that is with known values from the preceeding Navier-Stokes step.

The technique used to solve (3.3)-(3.4) is very similar to that used, in section 2, to solve the mean
Navier-Stokes equations and is based on the following weak formulation.

Let the time derivative be discretized using a classical implicit Euler finite differences formula, then at
each step, we solve the following non-linear system of variational equations

R R 1 X R 1 ’
o(g = 4, N) + (& Vg, N) = 36V - & N) = (L c,D5 : Vi, N) + 5(wa, N) + (%Vq, VN)=0 (35)

a(w—LD,K)+(ﬁ«Vw,K)+§-(cl -1)(wV-i,K)—(e;—1)(c, D5 : Vﬁ,K)+(c2—1)(w2,K)+(93'-Vw,VK) =0
(3.6)
where the solution is looked for in Q x S,
Q= {9€ H'(D)lgreo = go0, qre = 0}
S={we HI(Q)'werO = Woo}

Here again, we obtain an approximation of the solution using the inexact Newton-GMRES method on the
non-linear system (3.5)-(3.6) considered on the following finite dimensional approximation spaces,

Qn = {an € Qlan € C°(Q),VT € Th/2,amr € PH(T)} CQ
Sh = {wa € Slwy € C°(Q),VT € Thy2,wnr € PY{(T)}c S

where P!(T) = { set of polynomial of degree < 1 on T} and Ty, is the fine grid of the p; — iso p; grids
system discussed in section 2.

To make our scheme stable, we replace the convection terms (4 - V¢, N) and (@ - Vw, K) by filtered
terms, (see section 2 for the filtering technique).

The second model of turbulence we use is an algebraic model derived from the Baldwin-Lomax [1] model.
We include this model as a basis for comparison an eventually to decrease the cost of computation. (Another
reason was to try to combine both models but preliminary computations lead us to the conclusion that the
two equations model gives better results.)

In this model, the turbulent viscosity is computed using a two layer approach

— Mii, ifY SYC;
= o, IY >V

where Y is the normal distance from the surface and Y, is the least value of Y at which uy; = uy,.
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In the inner layer :
wi = K2plw|Y?[1 - ezp(~Y* /26)°

where w is the vorticity, and Y+ = Y (p,|oy|/u2)}/? with the subscript o referring to the value of the
parameter at the nearest solid boundary and o is the local shear stress in the direction of the flow.

In the outer layer
Ko = KCcpPFmameakaleb ’

where Frnex = max(Y |w|[1—exp(=Y */26)]), and Ypay is the value of Y at which Finax occurs. The Klebanoff
intermittency correction is given by Fien = [t + 5,5(Cyiep Y/ Ymax)?] 1.

The model constants and functions are K = 0,40, k = 0,0168,

C. = 0,2933Mo0 + 1,2, if M <3;
P? 712,08, if Moo 23,

Cup = { ~04118M +0,85, if Mo < 0,85 ;
Kleb=10,3, if Moo > 0,85 .

In the wake region, the following non classical formulation is used
He = per(jwl/lwe])

with the subscript r referring to a reference profile, usually the last profile before the trailing edge. This
unusual wake formulation enable us to simulate the characteristic transport-diffusion behavior of the turbu-
lence in the wake, keeping the emphasis on the evolution of the vorticity. This scheme avoids the appearence
of steep gradients when moving from the wall model to the wake model of the usual algebraic models.

Some details about the implementation of this model for unstructured meshes are given in the appendix
5.

4. Resolution scheme.

We summarize here the overall resolution scheme as described in the previous sections. This reads :

Step 1: read initial values of u°, p°, T° or let p° = 1 and solve Au® = 0, AT° = 0 with appropriate
boundary conditions.

Step 2: let ¢° = g0, w° = Weo, (ql"rB =0).
Step 3: u”, p",T™, u?,¢",w" being known from the previous time step
Step 3.1: update the laminar viscosity (4"*!) using the Sutherland formula,
Step 3.2: compute the algebraic viscosity (p;‘:,;) using the Baldwin-Lomax model,

Step 3.3: make a correction to ¢” and w"
qn+1/2 = max[q", geo] , w2 = max[w”, we)
or
10/‘;':11 ST2

n+1/2 _ 1/2 n
q max[(—'—’-——3p"Rer )44 400)

w2 — max[1—3oS;‘2,w",woo]
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Step. 3.4: solve the ¢ — w equations Fy,(¢"t!,w"*+!) = 0 (see section 3),

. ‘Step 3.5: update the turbulent viscosity (this step may include a projection of ¢ and w to

eliminate negative values)
p;ﬂ-l — C#D(q”"’l)z/w"”'l

or

#;H’l = max[c”D(qn+l)2/Un+l ’ l‘:.:l.lg]

Step 3.6: solve the N-S equations Fys(u”+!,pn+1 T™+1) = 0 (see section 2),

Step 4: if |s"*! — 5" aq) <€, s" = (p",u”,T") ,then stop, else go to step 3.

5. Numerical experiments

Before the exposition of the results of the numerical experiments let us recall that as v* is defined from
the laminar and the turbulent viscosities, it is not a fluid property. This field is of first interest, more exactly
we are interested in the field 1/v* called the total Reynolds number.

Computations were performed for some flow condition around a NACA0012 airfoil and a simplified
version of the Hermés space shuttle. In each case, the steady state solution was reached after 80 to 120
‘time steps depending on whether the initial flow field was uniform or a known flow field from a previous
computation. Two test cases were chosen here for the computations, each case involving complex flow with
shock waves.

The first series of numerical experiments concern a compressible viscous and turbulent flow around a
NACA0012 airfoil. A part of the coarse mesh used is shown in figure 2a. We took here M., = 0.85, Re = 10°,
v=14, Pr=0.72, Pr; = 0.9 and a zero angle of attack.

We have shown on figure 3 the isomach contours (figure 3a) for a Navier-Stokes computation with the
total Reynolds number field deduced from the Sutherland formula (figure 3b). The same problem was solved
a second time but using the two-equations turbulence model, discussed in section 3, for the computation of
the total Reynolds number field. See figure 4 for the isomach contours and the total Reynolds number field
and figure 5 for the iso-k and iso-w contours. Despite the problems caused by the coarse mesh in the wake,
we note the presence of vortices in both computation. In the turbulent one, the boundary layer thicken
abruptly but did not damp out the time-dependant nature of the schocks and the wake vortices.

It is clear that this flow is under the capabilities of the mesh we use. But it is interesting to see that
most of the physical phenomena we attend to see are present. The obvious way to obtain better results is
to refine the mesh in regions where steep gradients are present. This is only a matter of computer facilities,
but we are now developing a strategy to obtain better results via the use of enriched finite elements is the
corresponding areas.

The second series of numerical experiments concern a compressible viscous and turbulent flow around
a simplified version of the Hermés space shuttle. A part of the coarse mesh used is shown in figure 2b. We
took here My, = 2.0, Re = 10%, v = 1.4, Pr = 0.72, Pr; = 0.9 and a zero angle of attack. Note that the
length of the body is approximatively 0.14 of characteristic length.

We have shown on figure 6 the isomach contours (figure 6a) for a Navier-Stokes computation with the
total Reynolds number field given by the Sutherland formula (figure 6b). The same problem was solved a
second time using the two-equations turbulence model, see figure 7 for the iso-k and iso-w contours, but all
the characteristics of the flow remainded similar (see for example the comparison of the friction coefficients
for the turbulent and non-turbulent computation shown on figure 9b). This is encouraging because at this
low Reynolds number the flow should be mainly lJaminar. We have conducted a sensibility experiment on the
values of the constant o, of the w equation. The new iso-k and iso-w contours for the last ¢ —w computation
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with o, = 13. instead of 1.3 are shown in figure 8. Altough satisfactory for a very wide range of flow
condition (Coakley [2]) preliminary results on simple nearly incompressible cases tend to indicate that this
choice for g, leads to overdiffused values for k¥ = ¢2 and w. That is, the constant o, is not universal.

Finally, a numerical experiment was conducted to compare the diffusion associated with the turbulence
model used. The test case was the transonic flow around a NACA0012 airfoil at My, = 0.85, Re = 10%,
v =14, Pr =072, Pr; = 0.9 and a zero angle of attack. Computed values of the friction coefficient are
displayed on figure 9a. The navier-Stokes computation (inner curves) show a large separation zone while the
use of the algebraic turbulence model gives no separation at all (outer curves). It is clear that the diffusion
caused by this turbulence model is over estimated. The estimation given by the two-equations model (see
middle curves on figure 9a) is more realistic.

Other aspects of these computation can be seen on figures 10, 11 and 12.

Figure 10 display the mach contours and details of the tail flow for the Navier-Stokes computation
without any turbulence model.

Figure 11 and 12 displays the mach contours and eddy viscosity for the Navier-Stokes computation with
the algebraic turbulence model and the two-equations turbulence model, respectively.

The choices made in step 3.3 and step 3.6 of the resolution scheme (see section 4) were proved to be less
important than expected. In fact, the solution process described to solve the turbulence transport equations
with the given boundary and flow condition converge without the need of the algebraic turbulence model.
The latter may be used to start the ¢ — w computation from a given state, causing the steady state to be
reached faster.

We present here some statistics in order to give an idea of the time used for these computations on
~ a SUN3 workstation with a floating point accelerator (0.4 Mflops). For a computation on the 1883 nodes
simplified Hermes space shuttle, it takes at each time step:

110 seconds to compute the turbulent viscosity with the algebraic model,

2300 seconds to compute the turbulent viscosity with the two-equations model, (complete
resolution at each time step),

1100 to 2000 seconds to solve the Navier-Stokes equations.

6. Concluding remarks.

We have presented a numerical scheme to solve the compressible Navier-Stokes equations written in non
conservative form with emphasis on the turbulence modeling. We have obtained good results for moderate
Reynolds numbers using an approximation satisfying some ”inf-sup” condition and using a filtering of the
gradients of the convective terms. This filtering is dependent of the local direction of the fluid flow and of the
local amount of physical viscosity. A particuliar form of the k — e model was solved with standard boundary
condition to obtain an estimation of the turbulent viscosity using the same techniques.

Further developement are needed to obtain accurate solution for higher Mach and Reynolds numbers
where special care have to be taken to dont introduce too much numerical dissipation. In a recent future
we have planed to compare computations on finer grids with experimental tests and make emphasis on
filtering-upwinding methods and also on the resolution of the boundary layers.
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Appendix 1 to 5

Appendix 1: Non-conservative mean Navier-Stokes equations.

We present here the passage from the conservative system (1.6)-(1.8) to the non-conservative system

(2.1)-(2.3). Actually, only the dimensional form will be derived.
First we substitute (1.10) in (1.6)-(1.8) to find,

9p

5 TV ()=

aa’;“+v (pu®u)—V.0=0
OpE
ot

where ¢ = 61 — (u + p4;)S with S, 0 defined by:

+V. - (pEu)+V - -(u-0)+V-¢=0

oS =Vu+ Vi,

o0 =p+2pk+(p+pm)ivV-u,

To put the equations (1)-(2) in non-conservative form, we use the identities:
V- (pu) = pV - u+u-Vp,

V. (pu®u)= (u®u) -Vp+ puV - -u+ pu- Vu,
i}
—;Tu= -g—lt‘—puVm—(u@u)-Vp,
from which we deduce 9
3t+u Vp+pV.-u=0
du
P T AU V)ut+ V0=V ((u+p)5)=0

For the energy equation (3) we proceed as follow: first expand the left hand side,

SpE dpe  18pw? \
a TV B =t Y (("”2”“ ),

splitting all these terms and using the mass equation we find

dpE

5 TV (pBu)= @+pu-Ve+u-(p%t3+p(u-V)u)

ot
then using the momentum equation,

9pE
ot

But the RHS of the energy equation can by writen,
V- (u-0)-V-g==-V-(0u)+V((g+ p)u-S)—V -q.
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Combining this with equation (6), we find,

p—g%+pu-Vc=u-V0—V-0u+V((p+p,)u-S)

~u-V.-((p+p)S)-V-q.

But using the following identities
V(aw)=aV-w+w:Va,

Viiw-M)=Vw:M+w-V-M,
with @ =0, w = u, and M = (p + p:)S, we find,

d
p-a—: +pu-Ve+0V -u—Vu:((u+p)S)+V-q=0
The usual non-conservative form follows from this by the use of the relation: V - ¢ = —y((#: + $%)Ve).

Note that, for convenience, the functions @, ¢ and S were redefined.

Appendix 2: Integration.

The nonlinear discrete system of equations to be solved follows from the consideration of the variational
system (2.4)-(2.6) on proper finite dimensional spaces. Exact definitions of these spaces and the corresponding
test spaces follow from the choice of the finite element. Now remains the problem of the evaluation of the
various term, that is, the choice of an integration strategy. Exact integration wtll be use for first order terms
but approximation will be made for hlgher order terms.

The basic formula for the integration is the Simpson’s formula

meas(T) 3
/ wdzr = ——3— Zw(m,-q»), Vw € Py,
T i=1

where m;r are the midnodes of the triangle . Thus, the integral of the product of f € P; by the basis
function A; on the same triangle will be given by

/ fAjdz = 2222 T) (2 f(Mir) + f(MJT)) VfeR,

where M;T are the nodes of the triangle T. The same formula is used for the integration of the product of a
function define on the isoP, grid times the basis function A; of the P, grid. In this case, the formula reads

3 3
/Tf/\,-dz = -Tf%(T—) (Z F(Miz) +5f(MT) +10)_ f(mir) — 6f(ij)) y VS €isoP,,
i=1 i=1

where m;7 are midnodes and M;r are the nodes of the triangle T. For simplicity, these formulas are also
used for higher order terms.

Appendix 3: Two equations closure model.

We give here some details about the two equations closure model (3.1)-(3.2) we used.

Let us recall the simplest and certainly the most popular closure model, namely, the k — € model where
k is the turbulence energy and ¢ is its rate of dissipation. According to this prescription

pe = cupk?[e
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Q8 | (o) = —pkV-u+ B: Vut V- [(u+ L 4)VE - (v

ag:) +uV(pe) = —peV - u 4+ ¢; ER Vu +V.[(p+ —)Vf] - c2/’k 2

where ¢, 0%, 0¢,¢1,c2 are model constants, usually set to the recommended standard values 0.09, 1.0, 1.3,
1.44 and 1.92 respectively.

It is well known that near a solid boundary (at the boundary we suppose k = € = 0) this model needs a
low-Reynolds number dissipation term to balance molecular diffusion in the sublayer. In fact, letting y tend
to 0, equation (1) becomes

" pkyy =0

which is incompatible with the experimental fact that k ~ y? in the sublayer.

Instead of adding empirical terms to correct it, we assume k to be constant in the diffusion term and
make the followmg change of variable k = ¢2, from which we deduce directly equatlon (3.1). Note that if we
assume ¢2 = k ~ y? we obtain the correct behavior of ¢ when y — 0.

Finally, in order to reduce the problems of numerical instabilities, we reduce the truncation errors due
to quotients, using the change of variable w = ¢/k. But this has to be paid by supplementary hypotheses.

If we put w = ¢/k in equation (2) and use the identity

k(pw)’ = ep’ + (pe) — w(pk)’

we find the equation

6(5:}) 8t P4 wu- Vp—u-V(pw) + (q—z)wR :Vu+ D~ (e3 — 1)pw? . (3)

where the diffusion term reads
D=V [(u+ )Vfl =WV [(p+ )Vk] (4)
Thus we need to assume (p; + pe /o) = (4 + pe/ox) = cte in order to write it in the simpler form

D=V- [(#+ )Vw} (5)

where the recommended value for o, (Coakley {1]) is 1.3. But, altough satisfactory for a very wide range of
flow condition (Coakley [2]) preliminary results on simple nearly incompressible cases tend to indicate that
this choice for o,, leads to overdiffused values for k = ¢2 and w.

The standard form for this equation follows from the use of the non-conservative mass balance equation.

Appendix 4: Non-conservative closure equations.

We begin by developing the production terms. As R : Vu = ¢?G(w, u) with G independant of ¢, the
production terms are of the form (respectively)

( -R:V4,N) = ([c,,Dp—-(Vu+VuT - %V ul) — qu] Vu, N),

( R Vi, K) = ([ea Dp(Vu + Vur — EV ul) — pr] Vu, K).
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Note that the equation for w is a nonlinear equation independent of ¢. Replacing the relations in equa-
tion (3.1) and (3.2) respectively, and using the same standard tricks as in appendix 1 we obtain the non-
conservative form for these equations.

Appendix 5: Implementation of the algebraic turbulence model.

The fact that this kind of model is one of the most widely used takes its roots in the ease of its
implementation in finite differences codes. The basic property appearing here is the orthogonality between
the meshes lines and the walls. This important property will have to be replaced by an abstract structure
for general finite elements meshes.

The most obvious way is to compute all the model ‘parameters on a second mesh ensuring the orthogo-
nality property and to use an interpolation operator between the two meshes. This procedure can be difficult
to implement for complex (2-D) geometries and inadequate in 3-D.

Another way to implement algebraic turbulence models for general meshes is to consider independantly
each node. That is, keeping some simple geometric characteristics of each node in a table, for example
the nearest point of each walls, the normal lines passing trougthout this node can be found and so all the
model parameters evaluated. But as usual, the simplicity of this method has to be paid; the maximization
of functionals along the normal lines can be very costly. Consequently, the complexity of the process have to
be diminished by the use of approximate maximization techniques and eventually by restricting the process
to adequately chosen nodes. These simplifications makes the overall process interesting.
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Figure 1: a) Computational domain,

b) Pl - iso. P2 element: (X) velocity, density, temperature, q and w d.o.f,,

QO velocity, q and w d.o.f,,

¢) Upwind finite element T(s), to node s,

d) Upwind finite elements T(s, ), to nodes s; of a given element.
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Figure 2: Partial view of the principal meshes.
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Figure 3: Mach contours and total Re number, laminar computation at M=.85, Re=10e5.
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Figure 4: Mach contours and total Re number, q-w computation at M=.85, Re=10e5."
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Figure 6: Mach contours and Re number, g-w computation at M=2., Re=10e4. .
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Figure 7: k and w from a g-w computation at M=2.0, Re=10e4.
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Figure 8; Same as 7 but with a different constant of diffusion in the w eduatio'n'. .
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