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A non-interleaving semantics for CCS

based on proved transitions

Une sémantique du parallélisme dans CCS

basée sur les transitions prouvées

Gérard Boudol & Ilaria Castellani
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE

Résumé.

La sémantique des langages comme CCS ou TCSP est généralement donnée par un systéme de
transitions, ol les transitions sont celles qu’on peut déduire en utilisant un systéme de régles struc-
turelles. Nous proposons de raffiner cette sémantique opérationnelle, en étiquetant les transitions
par leur preuve — dans le systéme de régles considéré —, plutét que par une simple action. Nous
montrons que l’on peut utiliser cette notion de preuve pour définir une relation d’indépendance
et de résidu entre transitions étiquetées par leur preuve. Ceci nous permet de d’adapter la notion
d’équivalence par permutations de Berry et Lévy. Nous montrons que chaque classe de séquences
de transitions peut étre représentée par une transition étiquetée par un ordre partiel d’occurrences
d’actions.

Abstract.-

When using labelled transition systems to model languages like CCS or TCSP, one specifies tran-
sitions by a set of structural rules. We consider labelling transitions with their proofs — in the
given system of rules — instead of simple actions. Then the label of a transition identifies uniquely
that transition, and one may use this information to define a concurrency relation on (proved)
transitions, and a notion of residual of a (proved) transition by a concurrent one. We apply Berry
and Lévy’s notion of equivalence by permutations to sequences of proved transitions for CCS to
obtain a partial order semantics for this language.
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A non-interleaving semantics for CCS

based on proved transitions

Gérard Boudol & Ilaria Castellani
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE

Abstract.

When using labelled transition systems to model languages like CCS or TCSP, one specifies tran-
sitions by a set of structural rules. We consider labelling transitions with their proofs - in the
given system of rules — instead.of simple actions. Then the label of a transition identifies uniquely
that transition, and one may use this information to define a concurrency relation on (proved)
transitions, and a notion of residual of a (proved) transition by a concurrent one. We apply Berry
and Lévy’s notion of equivalence by permutations to sequences of proved transitions for CCS to
obtain a partial order semantics for this language.

1. Introduction.

A computational system evolves by elementary computations from one state to the other, in no-
tation s — s’. Examples of state changes are transitions of a machine, f-reductions of A-terms
and rewritings in a term rewriting system. To be able to reason about such computations — e.g.
to show a Church-Rosser property —, we often need to have some indication of what has been
performed and where it has happened. In other words, we have to deal with labelled transitions

w . . . .
s — s', where w denotes a specific occurrence of some action. Now consider two computations from

a same state, s Y, 50 and s % s;: we may have the intuition that these two moves are compatible,
or independent. In this case we should be able to define what remains of one move after the other,

in notation v/u and u/v, in such a way that v/u can still happen in state sg, that is so vy, s', and

similarly s; ulv, s". Moreover, if u and v are really independent, it should be possible to perform
them in any order without affecting the result, that is we should have s' = s”. This is known as
the diamornd property, or the parallel moves property. Then two sequences of transitions may be
regarded as equivalent if they are equal up to commutation of compatible moves, typically:

u v/u v u/v
§—8) —8§ ~ s—s5—s

This is the essence of Berry and Lévy’s equivalence by permutations for sequences of (elementary)
computations.

This equivalence was first elaborated by Lévy in his thesis (¢f. [15]) upon Church notion of
residual for the A-calculus, and then used for recursive program schemes in [2]. It was further ex-
tended to deterministic term rewriting systems by Huet and Lévy in [14], and to non-deterministic
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ones by Boudol in [4]. In any case, this equivalence allows one to associate with each “state” a
complete partial order of computations. These computations are equivalence classes of sequences
of elementary moves, ordered by the prefix ordering, up to permutations. The idea of associating
a poset of computations with a program is the basis of Winskel’s theory of event structures, where
an event structure determines an ordered domain of configurations [23].

In this paper we introduce an equivalence by permutations for Milner’s calculus CCS. As we saw
earlier, we need to this purpose a notion of occurrence of action. The usual operational semantics
of CCS describes processes as performing transitions labelled by actions. These transitions are
inferred using a system of structural rules. What we shall take here as the occurrence of action
associated with a transition is the proof of that transition in the given system of rules. Each proof
identifies uniquely one transition, and we use this information to define a relation of independency
or concurrency on (proved) transitions, and a notion of residual of a (proved) transition by a
concurrent one. Since we have a diamond property, we are then able to define the equivalence
by permutations on sequences of proved transitions. Now each equivalence class of sequences may
be represented as a one step transition, labelled by a pomset (partially ordered multiset) [20] of
actions. Roughly speaking, two events (occurrences of actions) are ordered in this poset — that is
causally related — if one precedes the other in all the sequences of the class; conversely, they are
unordered if they may be permuted. We thus obtain a partial order semantics for CCS, which is
directly derived from its usual operational semantics.

As regards the semantics of concurrency, the idea of a computation as an equivalence class
of sequences was first formalised by Mazurkiewicz in his theory of traces [16]. Let us recall that
traces are equivalence classes of sequences of actions up to commutation of independent actions.
In this setting the notion of residual is simple: the residual of an action by an independent one is
the action itself (as we shall see later, this is not the case for our proved transitions).

The idea of abstracting from the ordering of concurrent transitions has been applied to Petri
nets by Nielsen, Plotkin and Winskel in [18]. More recently, Best and Devillers have established
the correspondence between the equivalence by permutations for firing sequences and processes of
Petri nets [3].

The semantical framework of computation sequences modulo permutations has been axiom-
atized by Stark in the notion of “concurrent transition system” [21]. A related model is that of
Bednarczyk’s “labelled asynchronous systems” [1]. In all these approaches the primitive notion is
that of concurrency, while causality arises from the fact that one deals with sequences. A similar
but somewhat dual approach consists in endowing execution sequences with an explicit causality
relation on their actions: this method has been used in [12] by Degano, De Nicola and Montanari,
who obtain a pomset transition from a sequence of enriched transitions that they call atomic con-
current histories. Similarly, van Glabbeek and Vaandrager define in [13] a partial order semantics
for (one-safe) Petri nets, using the structure of the net to associate a causality ordering with each
firing sequence.

The semantics we give here for CCS may be seen as an extension of our semantics for “true
concurrency” in [5,6], where communication (and restriction) were not considered. In that case
it was possible to define partial order transitions directly, by composing partial orders on top
of transitions according to the structure of terms. Unfortunately that approach could not be
generalised easily to the whole CCS, essentially because communication introduces conflicts: then
the composition of two partial order computations may yield a nondeterministic process — instead of
a simple partial order. Here, as in most of the works mentioned above, we take an indirect approach
and define the partial order semantics in two steps: we start with computational sequences, and
then extract partial orders from them.

We shall only be concerned in defining the partial order semantics, and not in abstracting from
it by defining a bisimulation equivalence (or other equivalence relations).
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2. Pure CCS: terms and transitions.

As in [17], we assume a fixed set A of names. We use &, J,... to stand for names. We assume a
set A of co-names (complementary names), disjoint from A and in bijection with it: the co-name
of a is &, while its name is nm(&) = nm(a) = a. Then A = AU A is the set of labels. We shall
use A to range over A, and extend the bijection so that A'= A. As usual the set A of CCS actions
is A= AU {r}, where r is a new symbol, not in A; by convention the name of r is 7. We use a, b,
¢,... to range over A. We presuppose a collection X (disjoint from A) of identifiers, and use z, y,
z,... to range over identifiers.

We use the notation a: p for the action construct of CCS and (p || ¢) for parallel composition.
We shall not consider the relabelling operator, although it would not introduce any difficulty. The
set T of (pure) CCS terms is given by the following grammar:

pua=nl|zla:p|(ellp) | (p+p) | (P\e)| pz.p

We shall use p, g, r,... to range over terms. Finite terms — built without fixpoint pz.p — may be
viewed as finite trees, with parallel composition and sum as binary node constructors, action and
restriction as unary ones (with a parameter in A and A respectively), and nil as a constant. For
instance the term r = ((a:nil || (&: nil + B: nil))\a) will be identified with the tree:

B
l

E_—_Q|

| nil

As is standard, the fixpoint construction binds the defined identifier, and substituting ¢ for z in
p may require renaming the bound variables of p in order to avoid captures; the result of such a
substitution is denoted p[g/z]. Terms involving fixpoint define infinite trees, obtained by unfolding
pz.p into pluz.p/z] ad infinitum. In fact the construct pz.p is just a device for defining infinite
trees, and will never appear in the syntactic tree of a term. As it is usual, we assume that there is
an empty tree , in order to interpret diverging terms such as pz.z for instance.

We recall now the standard transition system semantics of CCS. This is given by means of

inference rules, allowing one to prove transitions of the form p 4, p'. The transitions of a term p
are exactly those which can be proved in the following system of rules:

action Fa:pSp

parallel composition 1 pop b (plle) (2 ll9)

parallel composition 2 q LA g F (pllg) b, (rllg")

communication P —A-*p' y 4 A’ ¢ F (pll9) 5 (|l q)
sum 1 pSyp + (P+q)£'P'

sum 2 q—b*q’ F (P+Q)"Q'Q'

restriction P E*p' , nm(a) #a F (p\o) 4 (P’\a)
fixpoint pluz.p/z] Sp' + pz.p-Sp'
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This set of rules is usually regarded as defining an interleaving semantics for CCS. Indeed, if we
except the possibility of communication, the above rules for parallel composition describe || as an
interleaving operator, allowing the components to move in any order, but not together.

Note that the semantics ~ the set of transitions which can be inferred for processes - contains
no trace of the inference mechanism itself. We want to show that, if we keep track of the proofs
of transitions, we can extract much more information from the same set of rules. In particular, we
will be able to derive a non-interleaving semantics for the language, without having to depart from
its basic operational semantics.

Let us first formalise the idea of a proof in the inference system of CCS. In general, in an
inference system one has rules of the form:

to deduce an assertion from a finite set of assertions. Such rules generate proof trees of the form:

%

\A/

Here Ty, ...,T, are the proof trees for Ay, ..., A,, and the whole tree is a proof for A.

Alternatively, one may represent the structure of a proof as a tree § whose nodes are labelled
by the rules which have been used in the derivation. It is not difficult to see that such a tree has
the same shape as the proof tree itself. For example, if 6;,... , 4, represent the (rule labelled) trees
for A;,..., A, and the last step of derivation consists in applying rule r, the whole proof may be
represented by the tree:

6, ... 0,
r
Since each rule has an arity, that is a fixed finite number of premisses, a tree of this kind may

be denoted by a term r(4,,... »0n), what we shall call a proof term — or simply a proof - in the
following. This is the kind of notation we will use for proofs of transitions in CCS.

Our next step will be to associate proofs with assertions, and consider proved assertions like

§: A, where § is a proof of A. To manipulate proved assertions, we will use enriched rules of the
kind:

T1:Ay,... yTnt A,
r(z1,...,z,): A

which build up proofs of assertions as the inference process goes on. Whenever a rule is applied,
the name r of the rule is recorded in the resulting proof term.
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We start by giving the symbols for rules, which will serve as constructors for our proof terms §:

a for action (note that there is a separate rule for each action a)
llo to prove a transition at the left of a parallel composition

Iy to prove a transition at the right of a parallel composition

K for communication )

+o to prove a transition at the left of a sum

+1 to prove a transition at the right of a sum

Pa for restriction on the name o

Note that these proof constructors are just short names for the inference rules of CCS. Each
constructor takes as many parameters as are the hypotheses of the corresponding rule. For example
the constructor a takes no parameters, while x takes two. We need not have a name for the
fixpoint rule, since this is essentially a metarule, saying that a recursive term is to be interpreted as
an infinite tree. For instance the terms a: nil and pz.(a: nil) give rise to the same syntactic tree,

and it would be odd to distinguish them by giving different proofs to their transitions -% . In fact,
as we shall see later in more detail, proof terms are closely related to paths in a syntactic tree.

. The syntax for proofs of CCS transitions is thus given by the grammar, where a € Act and o € A:

6 = al [lo(0)] [1,(8) | =(6,6") | +0(6) | +1(8) | pa

Note that although we call them proof terms, the 8’s will not always represent proper proofs; for
instance po(a) and k(c, ) do not correspond to any CCS transition. We give now the rules for
building proper proof terms. Since any proper proof will contain the label of the corresponding
transition, we define simultaneously the set of proper proof terms 8 and their label £(8).

The set II of proper proofs and the labelling £: IT — Act are given by:

a€Act = a€ll and {fa)=a

Pell = [[6)el and £(L() = £6)

fell = +;(0)ell and £(+:(0)) = £(6)

6,0' €I, £(8) = £(6) = x(0,8) €T and £(x(6,6"))=r
eI, nm(€(8)) #a = p.(0) €Tl and £(p.(0)) = £(9)

We may now bring together proofs and transitions. Usually one denotes by 8: A the fact that 8 is
a proof of the assertion A. In the inference system of CCS, assertions are transitions of the form

. . . . ) a,b
p 2, p'. Since we shall deal with sequences of transitions, we will prefer the notation p —— p' to

6:p 2, p’'. Note moreover that for such transitions we will always have a = £(6) and thus we may
omit the action a. We will then use the simpler notation p 9, p’, to be interpreted as: # is a proof

of the fact that p performs the action £(f) and becomes p' in doing so. We will call each p 9, pa
proved transition.



The rules for proved transitions are the following:

action Fa:ipSp

llo(8),
100,

parallel composition 1 p LA P F (pllg) —

(# Il )
¢y ol 50l e)

'
communication p-g-*p' , q-g-'q’, £0)= 5(9') F(p]l g —

parallel composition 2
fc(ﬁ 0"
(v' Il ¢')

sum 1 P—o"P F (p+q) — 0( )

sum 2 ‘1‘0"1' + (P'*“I)'l_(t')"ql

restriction p-e-’p , nm(z(ﬁ)) #a F (p\a) —> Pa( ) (p'\a)
fixpoint pluz.p/z] ——»p H lw-P-a-'P

It should be clear that if we drop the proof terms - and retain their labels — we obtain exactly
the rules.of CCS. Note also that the proofs actually hold for the (infinite) trees that we get by
unfolding the pz.p’s, since the rule for fixpoint does not introduce any special proof constructor.

Let us see an example. Take again the term r = ({a: nil || (&: nil + B:nil))\a). We give
below the proved transition corresponding to the communication on a, & (where to illustrate our
technique we picture the proof tree as well):

&: nil S nil

+o(@)

(a:nil+ g:nil) —>nll

x(e, +0(a))

o
a: nil = nil

(aznit]| (a: nil 4+ B: nit)) (nit || nit)

pa(r(a, +o(&)))

(aznit]| (@:nit+ B2 nl))\a » (ni1 ]} )\

Decorating the transitions with their proofs provides us with a “maximal” concrete information.
As a matter of fact, our proof terms are closely related to syntactic trees. If we look back at the
syntactic tree for the term r, we may notice that the proof of a transition specifies a path in the
tree. In the simplest case, this path leads to a subterm a: ¢, the one which performs the action a.
However, if the action is a communication as in the example above, the proof is a path to a pair of
complementary subterms A: ¢ and X: ¢'.

To sum up, the proof of a transition % for a process p is an indication of how we get the
action a from p. As it were, the proof of a transition identifies uniquely that transition: the new
transition system of proved transitions is deterministic, that is to say, the transition relation is a
(partial) function f: (T x IT) — T.

Now this concrete information can be weakened in various ways to obtain more abstract se-
mantics. For instance we can extract from the proof # of a transition the local residual associated
with this proof, as defined by Castellani and Hennessy [8,9]. This will be given by a second func-

. a,p"”
tion g: (T x TI) — T. Then one may consider decorated transitions of the form p —>— p’ where

p" is the local residual, and devise a notion of distributed bisimulation.

) 6

a8 .
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Here we shall use the information contained in proofs to define a relation of concurrency on tran-
sitions. This will enable us to define an equivalence by permutations on sequences of transitions,
and thereby retrieve a partial order semantics for CCS.

3. Permutation of transitions.

We now introduce a notion of concurrency on proved transitions. Roughly speaking, two transitions
are concurrent if they occur on different sides of a parallel composition, whereas they are in conflict
(not concurrent) if they occur on different sides of a sum. However some complications arise
from communication, which may introduce new conflicts. Typically, two communications will be
in conflict if they share one component. Conversely, they will be concurrent if they are pairwise
concurrent ~ i.e. they have concurrent (corresponding) components.

The relation of concurrency on proved transitions is induced from a relation of concurrency
between proof terms, in notation § -— 8, which we define now.

The relation -— on proof terms is the least symmetric relation compatible with the proof constructors
which satisfies the following clauses (for any 6,6, 8" € II):

(A1) [Io(8) < 1,(6")
(A2) 09— ¢ = { ll0(6) — (6",8")

1(6) — (6", 6")
As regards communication, compatibility with the constructor x amounts to requiring:
00— 0 and 0, — 0] = x(0g,0,) — x(85,6})

For instance, the two communications in the term (a: nil || 8: nit) || (&: nit || B: nlt) are concurrent,
since: &(]|o(e), llo(@)) — &(]|;(B), |;(B)). Note that (A2) also expresses a kind of compatibility
of — w.r.t. the constructors ||;, since a proof x(¢’,6") stands for the co-occurrence of ||,(¢’) and
|;(8"). We could have used the notation (||,(6),]l,(6")) in place of x(¢’,8").

We give next the definition of concurrency on proved transitions.

0 0
DEFINITION (CONCURRENT TRANSITIONS). Let to = p—> po and t; = p—> p; be two proved
transitions for the same CCS term p. The transitions are concurrent, in notation to — ty, if and
only if §g — 6.

By definition the concurrency relation between transitions is symmetric and irreflexive: it is easy
to check that 6 — 8’ = 8 # ¢'.

To illustrate the application of clauses (A1) and (A2), we examine the relations between some
" of the transitions of the term p = ((a:nil || a: nil) || @: nil). The two a-transitions are concurrent
because ||o(|lo()) ~ |lo(ll1(a)), by (A1) and compatibility of — with the constructor ||o. The first
a-transition and the communication on &, & of the remaining two components are also concurrent,
because |[|o(/lo(a)) — «(||;(a), &) is an instance of (A2), with § = ||o(a) and §' = ||;(). On the
other hand ||,(||,(@)) ¥ %(|lo(a), &), since ||o(a) ¥ |lo(e) and thus (A2) does not apply. We also
have a conflict between the two communications, since the two transitions

P M aznil || nll) || nit)

(s o), pUaleh 8,

share the same “sub-transition” ||,(&).



Another case of conflict occurs in the term r = (a: nil [|(&: nil + 8 nil))\« considered earlier. Here
the two transitions:

 2allls(+1(8),

L H

p Lalelo Ho(@) e

are not concurrent since they made two different choices at the subterm (a: nit + 8: nlt).

We define now the residual /6’ of a proof term by a concurrent one, namely what is left of
the proof  after ¢'. This residual may differ from the proof term itself because of nondeterministic
choices. When a parallel composition is put in a sum-context, the choice may be made by any of
the parallel components, and does not have to be solved again by the other components. This point
will be made clearer by an example below.

(eeznll ni)\a ,

¢

For any concurrent proofs 8, 8’, the residual 8/6' is defined by:

i#5 = [;(0)/1l; (6") = |I;(6)
l10(8) /%(¢",8") = |10(8/6') and «(8',8")/ ||, (6) = x(6'/8,6")
111(6) /x(6",6") = 1|,(8/6") and x(6",6")/ ||, (6) = x(8",6'/6)
11:(8)/ 1l; (8") = ll:(6/¢")
-6 = +,(0)/ +; (9') = 9/0'

pa(0)/pa(8") = pa(8/0')
0o — 0, and 6, — 6] = x(00,01)/x(85,6%) = k(60/85,01/67)

6 —0 = {

Let us look at an example, which shows in which way residuals are affected by choices. The term
P = ((aznil || 5:nll) + c: nil) may do the proved transitions:

+o(ll:(8))
p —

+ a)
pM(nu || 2 nii), (a: nit]| nit)
So the proof of the b-transition is +o(||;(b)). On the other hand, once the a-transition has hap- °
pened, the proof of the b-transition becomes ||, (b) = +o(||,(3))/ +o (llo(a)), and we have:

(1. (8))

(nit]] &2 nit) =——=5 (nil || nN) 0

This shows a difference between our framework and Mazurkiewicz theory of traces. In a trace, o
two independent actions may always be commuted as they stand, since the residual of one action

after the other is the action itself. Our formalism is somehow more concrete, as we need to record

choices in our proof terms. Note that without the constructors +; we would not be able to define

the concurrency relation on our proofs. For consider the term:

(aznut]|d:nil) + (a:znil] c:nil)

If we did not record the +; in our proofs, we would not be able to distinguish the two a-transitions
and thus we would not know which is concurrent with the b-transition and which is concurrent with
the c-transition. -

We turn now to the main property of our concurrency relation. The following result, also known
as the parallel moves lemma, states a “conditional Church-Rosser property”, namely that any two
concurrent transitions are confluent. This result is much simpler in CCS than in A-calculus or term
rewriting systems, since a proof of a transition cannot be duplicated or deleted by a concurrent
one; it can only be consumed (by a communication), or left unchanged - up to the resolution of
choices — when the two proofs are concurrent.



: 0o 01
LEMMA (THE DIAMOND LEMMA). Let to = p——» po and t; = p——» p1 be two proved transi-

6:/00 00/8y .
tions. If they are concurrent then there exists a unique term p such that pg ——-11-—-* p and py —o/—iv p.
This property is'in fact much stronger than confluence: it says that a (proved) transition survives
any concurrent one. We can then adopt the standard terminology of ([2,4,14,15]): the transition

61/60

t} = po ——— p (with the notations of the diamond lemma) is the residual of t; by to, denoted

0o/601

t1/to and similarly ¢o/t; = py ——— p is the residual of to by ;.

This allows us to define the equivalence by permutations on sequences of transitions of CCS
terms. Each CCS term p determines a set T (p) of finite sequences of proved transitions of the form

0, 0n

p—pP1 " Pn-1"Pn

which may equivalently be presented as sequences of steps:

9; .
ti--+t, where t;=p¢_1-—'*p;, 1<1<n (3ﬂdP0=P)

We give next the definition of permutation equivalence on T (p): intuitively two sequences of proved
transitions are equivalent if they are the same up to permutations of concurrent steps.

Let ss’ denote the concatenation of s € T (p) and s’ € T (g), which is only defined if s ends at g.

DEFINITION (PERMUTATION EQUIVALENCE). Let p be a CCS term. The equivalence by per-
mutations on T (p) is the least equivalence =~ such that

SQto(tl/to)Sl o~ Sotl(to/t1)61
(provided that t; ~— t; and that concatenation is defined).

An example of equivalent sequences of transitions is:

. Folllofa) 1),

(a:pllb:q)+ (pllb:q) === (o]l )

+o(ll; (%) llo(a)

(a:pllbzg)+e:r (a:pllq) (rllq)
Here one can commute the two steps. There is another kind of sequences of transitions where this
is not possible, because a step is caused, or created, by a previous one. The typical example is
obviously:

a:b:nil—a-vb:nll—é»nll

We may finally proceed to the definition of the partial order semantics. The equivalence class of a
sequence

may be represented as a one step transition p P,y p' where P is a pomset (partially ordered multiset
[20]) of actions of A, — ‘that is an isomorphism class of posets labelled in A. Such pomset transﬂ:mns
were introduced in [5] for a subset of CCS. Let us formalize this idea: we shall write s ~ s’ if s’

9



results from s by the transposition of the steps ¢ and 141, and ¢ is the corresponding transposition of
{1,...,n}, where n is the length of s (obviously =~ preserves the length of sequences). So ¢(i) =i+1
and ¢(f + 1) = 1. It should be clear that s’ ~ s if and only if there is a sequence ¢, ..., ¢ of such
transpositions from s to s'. Let us denote this fact by s ~;, .. s'. Then the equivalence class

of s=p ﬁ» ces fl» p' determines a transition p L, p, where P = (E,l,<) is the labelled poset
defined by

E= {61, .. .,e,.}
I{es) = £(85)

eiSej & Vs's'~g o8 = (i) <n(j) wheren=gio-:0g

Note that P is defined up to isomorphism, since the events e; are taken arbitrarily. This construction
is close to that of dependency graph corresponding to a trace — as defined by Mazurkiewicz in [16].
A similar definition is given in [13] for Petri nets.

Let us see an example. The equivalence class of the sequence

llo(a) [11(%) [l (c)
(a:pllbie:g) === (plb:ic:q) == (p]lc:q) =25 (p]lq)
may be represented as a transition whose label is a pomset consisting of events €1, ez and ez labelled
a, b and c respectively, where e; precedes eg and e; is incomparable with e, and e, that is:

a b

(a:p[lb:b:q) ~—— s (p ]| q)

We shall conclude this section with a short digression about fairness. It is well-known that to
talk about fairness one needs a notion of occurrence of action. Thus our framework may be well-
suited to deal with this issue. Moreover one must be able to reason about infinite sequences. The
equivalence by permutations may be easily generalised to infinite sequences of proved transitions.
In this case the equivalence is defined in terms of a preorder, which is just the prefix order up to
permutations.

Let T>°(p) be the set of (finite and infinite) sequences of proved transitions of p, and < be
the usual prefix order:

s s ©ge s=8 orIs" s =4

where the concatenation ss” is only defined if s is a finite sequence. The preorder < on T°(p) is
then defined by:

S0 X 81 Vdet Vo € T(p) 8 K so = s}, s{€T(p) st. sh<s! =5 <5y

It is easy to show that for finite sequences of transitions s and s’ of the same term:

ss'esgsd&s<s
Therefore we shall keep the notation = for the equivalence on T °(p) induced by the preorder <.

We define the set of (partial order) computations of p to be the quotient ¢ = T>(p)/=~. Thisis
a partially ordered set - the ordering on equivalence classes will be denoted C. In a forthcoming
paper we show that C is the domain of configurations of an event structure. This result is already
delineated in [7]. -
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In [4], the maximal computations (w.r.t. C) were called terminating since, roughly speaking,
it does not remain anything to do after a maximal computation. More precisely, if an action is
possible at some point of a maximal computation, then after a finite amount of time, this possibility
disappears — either because the action has been done or because it is no longer enabled.

Then for CCS the maximal computations set up a notion of fairness: these are the computations
satisfying a finite delay property. For instance, if (a* || 3*) = (uz.a: z || pz.b: ), the sequence:

s=(0w||bw)_||_9£‘i)_,(aw||bW) .ll_"_(fl

is not maximal since the proved transition

o = (18 1O (o )

has a residual along the whole computation. Indeed we have s < s's and s % s's, since — denoting
by p the term (a“ || 8*), and writing for simplicity only the actions on top of transitions - we have:

p£) ene —9+p <K Pi’ cee —a'-;-ip ~ p—br—a-) “re gvp

On the other hand if (a+ 3)* = pz.(a: z + b: z), the sequence:

(a+b)‘"_-_i-_9_@.,(a+b)” “es i‘iﬂ.

"is a maximal computation. Not too surprisingly, our proof terms are similar to the labels used
by Costa and Stirling in [10] to define various notions of fairness. We should point out however
that a maximal computation is not what is usually called (weakly or strongly) fair computa-
tion. This is so because our notion of proved transition is rather discriminating. For instance in
r = pz.(a: z + F: nll), the action B has infinitely many distinct proofs (this is apparent in the in-
finite tree of this term): informally, at each point of choice in r, a “new” occurrence B is available.

Then
13 lo(+o(a)) .\ 2 llo(+o(e))
(rllB:n\g == (r | Bz ni\S -0 =
is a maximal computation: at each step the potential communication is different, and at each step
it is discarded. There is no proved transition which is “infinitely often” or “almost always” enabled
along this computation. Similarly if ¢ = pz.c: (a:z + f: nll) then

oCrol®), (g g mipy -

(g1l B: ni)\B 5

llo(+o(x))

1s a maximal computation.

4. Conclusion.

The technique presented here is very general and may be applied to any language whose semantics
is given by a system of structural rules. Concerning CCS, further work has been undertaken in
showing the relation between the semantics by permutations and the event structure [23] and Petri
net semantics for this language. For Petri nets, we use a construction of nets from the operational
semantics which is directly inspired from the work of Degano et al. [11]-and of Olderog [19]. The
relation with the behaviour structures of Trakhtenbrot et al. [22] seems also worth investigation.
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