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Sur la Stabilité et la Convergence des Méthodes d'Eléments Finis
Mixtes d'Ordre Elevé pour les Probléemes Elliptiques de Second Ordre

Manil SURI

INRIA-Rocquencourt
et
University of Maryland Baltimore County
Baltimore, MD 21228 -

Résumé

Nous étudions l'utilisation des méthodes mixtes d'ordre élevé pour les problemes
elliptiques de second ordre en établissant des résultats de stabilité et des estimations de
convergence, qui prennent en compte 2 la fois la taille du maillage h et le degré des
polynomes p. Nos estimations donnent des taux de convergence asymptotiques pour les
versions p et h-p de la méthode des éléments finis. Elles décrivent aussi, de fagon plus
précise que les estimations précédemment établies, I'augmentation du taux de convergence
attendu lorsque la version h est utilisée avec des polyndmes d'ordre élevé. Pour notre
analyse, nous choisissons les éléments Raviart-Thomas et Brezzi-Douglas-Marini, et
établissons des taux de convergence optimaux a la fois pour & etp (jusqu'a un ¢
quelconque > 0).

On the Stability and Convergence of Higher Order Mixed

Finite Element Methods for Second Order Elliptic Problems

Abstract

We investigate the use of higher-order mixed methods for second order elliptic
problems by establishing refined stability and convergence estimates which take into
account both the mesh size 4 and polynomial degree p . Our estimates yield asymptotic
convergence rates for the p and h-p versions of the finite element method. They also
describe more accurately than previously proved estimates the increased rate of
convergence expected when the h -version is used with higher order polynomials. For our
analysis, we choose the Raviart-Thomas and the Brezzi-Douglas-Marini elements and
establish optimal rates of convergence in both A and p (up to an arbitrary « > 0).



1. Introduction

There have been several variational mixed formulations proposed for the solution
of second order elliptic problems like the Poisson equation. One such formulation
involves writing the equation as a first-order system with both the displacement and
velocity as unknowns. The Raviart-Thomas (RT) elements introduced in [14] provide
a finite element discretization for this mixed variational principle and have been
defined for arbitrary polynomial degree p. Thesc elements, which are particularly
useful when the velocity is the main physical quantity of interest, have received much
attention in the literature, (see, for e.g., [12] and the references contained therein).
All analysis carried out so far in connection with these elements concentrates on the
h-version of the finite element method, where a fixed low degree p of elements is used
(nsually p=1 or 2) and accuracy is achieved by decreasing the mesh size h. Another
class_of elements for the same problem, the Brezzi-Douglas-Marini (BDM) clements
(employing fewer degrees of freedom), was introduced in [9]. Like the RT elements,
these, too, have been analysed in the context of keeping p fixed and decreasing h.
The error estimates that follow from such analysis usually yield a rate of convergence
for the relative error bounded by a terin of the form C'h?, where C is a constant
independent of A but not p and 4 depends upon p and the smoothness of the solution.

In recent times, there has been a large amount of interest, shown in the use of the
h-version with higher order elements (p > 3), due to the possible advantages of such
clements over lower order elements. For example, in 4], several methods have been
tested for the rhombic (Kirchoff) plate problem and one of the conclusions reached
is that higher order elements are more efficient. and more robust than lower order
elements. In {15}, it was shown that in the clasticity problem, the locking effect. (for
v = 0.5) is completely eliminated when p > 4. Other advantages of higher order
clements have been discussed in |2].

Usual estimates of the forin C'h" do not fully reflect the increase in order of
convergence that may be expected when higher order clements are used. This is
because when p is increased, in addition to the exponent of h being increased, the
constant C', which depends on p, also decreases. Consequently, more carefully derived
estimates are needed, with the exact dependence of ¢ on p being investigated.

The use of higher order elements and the dependence of C on p arc also important
in the context of the p and h—p versions of the finite element method. In the p-version,
a fixed mesh with constant h is used and accuracy is increased solely by increasing p.
In the h — p version, both & and p are changed. Basic approximation results for these
methods first appeared in 1981 {in [8] and [3] respectively). Since then, they have
become quite popular due to much higher rates of convergence than that possible with
the h-version. These methods have been implemented for two-dimensional problems



in the industrial code PROBE (Noctic Technologies, St. Louis). A survey of their
theoretical and computational properties may be found in |1].

From the above discussion, il is clear that several finite element methods that
have been analysed in the context of the h-version (with estimates of the form Ch?)
would profit from further analysis, determining exactly how this behaviour changes
when p is increased. In this paper, we are interested in carrying out this analysis for
some mixed methods, for which convergence depends upon two factors - the stability
of the subspaces used and their approzimation properties. Qur goal is to investigate
the rectangular RT and BDM elements and specifically answer the following two
questions.

First, we determine how the stability constants for these spaces behave when p is
increased. This is necessary to find out whether the p and the h — p versions would
be stable if these methods are used.

Second, we establish rates of convergence for these methods which are uniform in
both h and p (with the constant. C being independent of both h and p). This gives
a more complete picture for the convergence of the h-version with high p and also
establishes rates of convergence for the p and /i - p versions.

We know of one other reference [11] where the p-version of a mixed method (for
Stokes’ flow) has been analyzed (sce also the related [17]). In that paper, it was
found that the methods prop()qod had stability constants which, in general, behaved
like p~* as p increased (with 1 < a < 3 for a family of elements analyzed in detail).
Consequently, the error estnna.th lhat follow for the pressure are non-optimal in p.
In contrast, we show that for the RT clements, the stability constant is independent
of p (as well as k), while for BDM, the dependence is not worse than p~¢, ¢ arbitrarily
small. In Section 4 we show how this leads to optimal error estimates in both h and
p (up to arbitrary ¢ > 0 for p) for both the velocity and the displacement.

2. Preliminary Results

Let 22 be a bounded convex polygonal domain, £ C IR?, with hmmd'lry I'. We consider
the model elliptic second-order problem,

“Auw - f inQl, v -0on I (2.1)

To formulate our mixed method we introduce the gradient of u as a new variable o
to obtain

—dive=/f, o=graduinl, v=0onT. (2.2)

An equivalent variational formulation of (2.2) is then obtained by defining the spaces



V = L,y(0), §=H(div,1) = {r € (L,(N))? divr € Ly(N)}
and finding (u,0) € V x S satisfying

(oy7)a + (u,divr)g =0 Vr e s (2.3)

(dive,v)g + (f,v)n =0 YveV (2.4)

where (-,-)n denotes the usual (L(f2))" (n = 1,2) inner products. The boundary
condition is built into equation (2.3). We will use || - ||v and || - ||s to denote the
L,(01) and H(div, 1) norms respectively. Moreover, | - |,.q and || - ||,.n will be used to
denote the seminorm and norm on (H"())", n = 1,2 for any region 0.

(2.3)-(2.4) may be discretized by chooqlng, a pair of finite dimensional subspaces
Vv €V, Sy C S and finding (vn,on) € Vn v Sy such that,

(on,Ta)a b (un,divin)y =0 Viry ¢ Sy (2.5)

(divon,vn)i 4 (fyun)a =0 Vuy € Vy. (2.6)

(2.5)-(2.6) will only have a solution when certain compatibility conditions described
later between Vy and Sy are satisfied.

We assume that there is a family {Vy » Sy} of such spaces, with N being a
parameter related to the dimensions of Vy,Sy. The finite clement spaces to be
considered consist of piecewise polynomial spaces defined on grids on 12 with mesh size
h. N will depend on both h and the polynomial degree pused, sothat N = N(hy,py).
In order to increase accuracy, one employs an extension procedure, by which pairs of
spaces (Vn,Sny) with increasing dimension N are selected. In the usual extension
procedure, the degree of polynomials is kept fixed while hy is decreased. We will
be interested in analyzing the combined effect of changing both hy and PN - either
together or separately. We will require the following theoremn (sce {14]).

Theorem 2.1 let {Vn,Sn} be a family of spaces such that:
(1) For any 7y € Sy,

(vv, diviy)g =0 V oy ¢ Vy > divry = 0. (2.7)
(2) There exists a = a(N) > 0 such that for any vy € Vy,

v ,(hvr
sup VIV i (2.8)

mwesy  |ITwlls



Then the problem (2.5)-(2.6) has a unique solution and there ezists a constant C > 0
independent of N such that

e
llowlls + HUN.HV < ;UV_){HUHS + [luflv} (2.9)
< (inf o= rlls+ inf u-vllv). (210
||a‘-—oN||5+Hu—uNHv < EUV—)'{JE'}»‘N o= 7lls + inf llv - vllv}. .

Let us now define the RT spaces (denoted by {V}}, Sk }) and the BDM spaces ({V3,S%}).
Like in [11], our analysis will be restricted to the case of parallelogram elements. Let
@ denote the standard square, [-1,1] x |~ 1,1]. For 1 ¢ R' or R?, Pi(01) will denote
the set of all polynomials on 02 of total degree < k. When 02 = Q, we will use P, to
denote P(Q). By P, we will denote the sct of polynomials on Q with degree in
€ <l and degree in n < m. Then we define

Ve (Q) = Pra (2.11)

Si(Q) = Peyik # Prgay (2.12)

Va@Q) P (2.13)

SH(Q) = (Pe x P) @ span {(€*'", ~E)T, (en*, —n*) T (2.14)

Note that P, x P, C Si(Q), {=1,2.
Now let {Tv} be a quasiuniform family of meshes on {1, consisting of parallelo-
grams K. hy, pyx will denote the diameters of I and of the largest circle that can bhe
inscribed in I{, respectively. Let hy = maxyer, hi. We assume there exist constants

Ch,Cy independent of hy such that for all IX ¢ Tn, for all N,
h'N h’(

<: (l'l 3y

- < (] 2.15
hy P z (2.15)

Further, we assume that ecach pair Ky, I(; ¢ T’y has cither an entire side or a vertex
in common, or has cmpty intersection.
For I{ € Ty, let Fy be the afline invertible mapping such that I - Fy(Q),

(z,y) = Fu((&m)) - B(&m)T 1 by (2.16)

where I3, is a 2 x 2 matrix. With any scalar function o defined on @ (or Q) we
associate the function v defined on I (or OIC) by

v=vol,' (0 == vy (2.17)
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For vector-valued functions, the correspondence between # defined on Q and 7 defined
on K is given by

T = -jl—Bx,r' oFy! (7 =JxBy'r o Fy) (2.18)
K

where Jx = det(Bg). The one-to-one correspondences ¢ «+ v and 7 « 7 will be
understood in the, _sequgl_. -
The following lemmas follow from lemmas 2 and 3 respectively, of [14].

Lemma 2.1 For any function 7 € (H'(Q))?,

(div7,d)g = (divr,é)x V d€ Ly(Q) © (2.19)

,

Lemma 2.2 For any integer | > 0,

7-oéds = [a T vdds V¢ 1,(0Q) (2.20)

17l = Chilr fr.x (2.21)

ITlew < Chy)i g (2.22)

where the constant C depends on | bul is independent of 1, hy .

(We have used condition (2.15) in (2.21-2.22))

With I, we now associate the spaces (¢ = 1,2)

Sp(K) = {7 -V IR, 7 ¢ SHQ)} (2.23)
VE(I) = {v: K - IR € Vi (Q)) (2.24)
'l‘hcn, we set, fori = 1,2,
Sy={rcS, 1|k SelK) VY KeTy)es (2.25)
Vi ={vev, vy ¢ VIfN(I\') VEKCTy}oV (2.26)

Note that the inclusion 8§ ¢ § is cquivalent to the condition that the normal
component of 7 along any @I must be continuous.

Since the spaces V4 consist of piccewise polynomials on regular quasiuniform
meshes, the following inverse inequality will be true;



Lemma 2.3 There exists an ¢g > 0 such that for vy € Vi and 0 €<,

llvallen < Chy'pRllvnllon
where C is a constant independent of hy,py and vy.

Proof: The proof follows easily from the separate inverse inequalities in terms of hy
(see [10]) and in terms of py (see [8]). '
‘ O

It is easy to see that the above spaces satisfy
div(Sh) c Vi - (2.27)

so thatl condition (2.7) of Theorem 2.1 is automatically satisfied. Moreover, it has
been shown in [14], [9] that (2.8) is satisfied with a(N) :» 0 independent of hy (but
depending possibly on pn). In order to get our desired convergence rate, we must,
now estimate a(N) in terms of both Ay and py and also estimate the approximation
properties of our spaces, to be used in (2.9) (2.10). Our analysis will be facilitated
by families of projections

Iy : 8 -+ 8% and Py:V -V

defined for ¢ = 1in [14] and ¢ = 2 in |9] such that the following commutative property
holds:

divolly = I’y o div (2.28)

We now describe the above projections, which are constructod locally on each
K € Tn. Py will simply be the L, projection satislying

(v — I’;,v;wN),( =) Viy ¢ V,fN(l"), Kely (2.29)
The following theorem follows from the approximation theory of the h — p version.

Theorem 2.2 Let Py, : V — Vj be defined piccewise over cach K € Ty by (2.29).
Then for any v e HT(01), r > 0,

ljo -~ Pyvlly = Chgpy vl (2.30)

where y1; = min(py +1,r) and py = min.(nN.r) and where € is a conslant independent
of hy,pn and v.



Proof: Since Py is the L, projection, we know that over each I,

[lv Mo < wEJ,?N (K) Il wllo,x
< Chypy llvllex - (2.31)

by lemma 4.5 of [5]. (2.30) follows by squaring and suinming (2.31) over all K € Ty
a

Remark 2.1 The powers Hi, a2 are different due to the fact thal the polynomials
used to define V2 Q) are of one degree less than those for V) (Q).

Now let 7 be a function in S. The projections i, 7 are defined locally over each
K, in terms of a projection 11, 7 on the standard square Q (where 7 satisfies (2.18)).
Let for k > 1,

A’],‘l B I’k_|"- £ ]’k,k»lv Al: : I’k..2 - I’k_z (232)

where M} is understood to be cempty. Then Ti;,Nr is defined by the conditions
(i, 7 - 7))o = 0 forall ¢ M, (2.33)
/l.(ll;,Nr' ~ t)-Puds - 0 forall v ¢ Py (1) '(2.34)

where (2.34) holds for any side [ of Q and 7 is the onter normal to AQ. The unisolvence
of (2.33), (2.34) has been established in [11], [9). Note that (2.11), (2.13), (2.32)
imply that grad(V;(Q)) ¢ M} and also that. # e Vi (Q) = ) € (). Hence, for any
Ve V,,‘N (@), we obtain by (2.33), (2.34) ‘

(div(1l} 7 - 7)) ~ /'w(u'wf P)-ids (1, F 7 gradB)g =0 (2.35)

We now define Tl}, 7 on 1 such that,

(M) e - 11 7 (2.36)

rn

Then the following holds.

Theorem 2.3 For 1 € S, let Iliyr be defined by (2.33), (2.34), (2.96). Then 11i,r ¢
Sk and is uniquely defined. Moreover,

NMyr =71 forallr e S (2.37)

(div(ITyr ~ 7),0)y = 0 forallv e Vi (2.38)



Proof : Using (2.35) together with (2.19) and summing over K € Ty gives (2.38).
Moreover, by (2.20) and (2.34), I}, - v is continuous for any ! in the triangulation,
so that [T 7 € Si. Finally, (2.37) follows from the unisolvence of (2.33)-(2.34).

0

Note that (2.38) implies (2.28). In the next section, we derive error estimates for
[|Mf7 — 7||s that are uniform in both Ay and py.

3. Error estimates for the projections Il}y

Let I = |[-1,+1]. Then {L;(£€)},7 = 0,1,... will denote the Legendre polynomials
on I which are orthogonal in the following sensc :
+1 2 .
_/ Li(&)L;(&)dE = TN il 7=k, =0 otherwise (3.1)
-1

For any 7 € L,(Q), where Q is the standard square ] x I, we may expand 7 as

i i a;; Li(&§) L;(n) (3.2)

Then we have, using the orthogonallty properties of {L;(£)} and their derivatives,
(see [7])

2 2 L
Il = [ [, et = %" iy (5.9
ke = 3 [[o-er (1 o e
°9~ °°~ ali(1 4424 )
C?_‘,,‘l_,‘, (24 -1 1)(27 1 1) (3.4)

3.1. The Raviart Thomas elemonts

Let 7 = (7y,7;) € H(div,Q). Then, for the RT elements, the projection II} defined
in (2.33)-(2.34) may be written as II}7 = (r¥,7f) € S}(Q) where

// ~11)¢(E)s(n)dédn =0 ¢ € Pr_y(1),c € Pi(I) (3.5)



//Q(Tzk - Tz)¢(f)€(ﬂ)d£dr) =0 ¢¢e ()€ Py (1) (3.6)
/_:l(ﬁ" —r)(£1,n)<(n)dn =0 <€ P(]) (3.7)
/_:I(Tzk —n)(§, £1)$(EdE =0 p€ P(]) (3.8)

We areinterested in estimating ||7 — IT}7||oq. Since 7y € Ly(Q), we may assume
it has the asymptotic expansion (3.2). Moreover, the polynomial r} € Pri1x may be

expanded as
k k41

=22 by Li(€)L,(n) | (3.9)

J=0:¢=0

Let us calculate the coefficients bij. We first use the fact that the Legendre poly-
nomials form an orthogonal basis for P,,, with respect to the L;(Q) inner product.

Taking ¢(¢) = Li(€),<(n) = L;(n) in (3.5) yields
bij=a; 0<i<k-1,025<k (3.10)

To calculate by and byyy;, we use the boundary conditions (3.7). First, on the
side { = —1, taking <(n) = Li(n), 0 <1< k gives

+1 k k1l A1 s o
/_, (§;b;,l’;(-l)l’,-(n))l’,(:;)d:;: ,[‘ Q_;;au‘j”ﬁ("l)Pj('l))PI('l)dU

Since F3(=1) = (=1)*, this yields (using (3.1) and (3.10)),
bt = beyyy = Zﬂa(-“l)"k 01l <k
i k :

Similarly, the condition at £ = +1 gives

vy

b+ beyrg = Y ey Ol ik

i=k

so that, - o
by = Z""’Irh‘h by = Z'(lki-.‘l (3-”)
=0

=0

where 3" stands for summation over even integers and ¥ over odd.
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We will now use (3.9)-(3.11) to estimate ||r; — 7{|lo.g. By (3.3) we have

XX 4(0.," b, ; )2 . .
— k2 = 2 where b, =0forj> kori>k+1 3.12
”1’1 1 ”0,0 12; (21 + 1)(2] + 1) ( J ) ( )
o+ ST 5l
= 4 +5 4
j=k4+1 =0 =k i=k+t2 (2' + l)(z] + 1)

= 4

0
© k1 (g ) kol e
RN ST IR TR ISP Z)(21+1)(2J+1)}

j=
. Jj=k+tiz=0 J=0i=k+2 jy=k+li=k42

J

Now for r > 0,

1A

al; (1 44+ 54
43 > CEN I > L (21+1)(2] T (T + K2+ k)

J=k+1i= k+2 J=ktt i=k+2
C & ah(1+ %4 50)

i 22 (2 (27 +1)

J=04=0

A

ké;”’l”f,q (3.13)

using (3.4). Similarly,

SRS al; (1 + 2+ g2)
%‘ }k‘ 2i+1 (211 1) : ,}‘,..2;,2(2: + l) 2; 1) (1 42y

2}

(. " .
el lleg (3.14) t

TN ~o0 "I R T P ) ) v lirs
I'he term 43572, 1, PN (211 iz 1) is similarly bounded. We now bound the lirst
term. Let ¢ = k. Then using (3.11), we have

N () S O "u,,,,,) y
]Z:‘“ (2k - 1)(27 l) Jz‘" ?.k l (25 + 1)

Now for r; > 1/2,

(A Y]

(x"ak-i-l'j)z -, Z: "»?,‘(' | l.'z IJ.'I)N 2: (I | l-2 | ]2) ry
t=2

i=k42 i=ki2
<k tren L al (110 g7
kit2

a(1 i )t

< (/vk~(2'|—|)
CT (27 1 I)
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so that -
. A S , 4 . -vzauu)z
(2k + 1),_0 (21 + 1)

a,(1+4%+ J’)""'
< Cﬂ 2'. .
- ;,,2_“1, (2!+l)(2] 1)
< Ck—2rl“1'|"'” Il
?._-Cki?"'g’llrnllf,q, (3.15)

provided r =7, + § > 1. (3.13-3.15) show that for r > 1,
lin = 7tllog < Ck™=iin]lq
" A similar argument may be used to bound ||7; — 7§||o.q. We have thereflore proven

Lemma 3.1 Let 7 € (H7(@))%, r > 1. Let 11} = (rf,1§) € S}(Q) be defined by
(3.5)-(3.8). Then B L .
IF = g < €& Dl , (3.16)

where C s a constant independent of k,7 but depending on r.

In order to prove a corresponding estimate for 11} (in both hy and py}, we need
the following lemma

- Lemina 3.2 Let 7 € (fl'(Q))i and 7 ¢ (11" (K))?, r ~ O be related by (2.18). Then

inf |17 — @llo = r';"“""‘*"’||r||,,,f (3.17)

wC Py >y

where C depends on r but is independent of hy,k and u.

Proof: The above lemma is simply a vec tor form of Lemma 4. A, proved in [5]. The
proof follows identically, using the eralmg rmull (2.21) and Theorem 3.1.2 of [10].
i

We now prove our main estimates for 11}.
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Theorem 3.1 Let v € (H'(N))?, r > 1. Let TI}, : S — S}, be as defined in Section

2. Then 1 1)
- pepmin{py e} —{r--3g
llr = Mprllog = CRy ™ 2 e a (3.18)

where C s a constant independent of éhﬁ,p)v and 7 bul depends upon r.
Moreover, if divr € H"(R), then

lIr = Mprlls < Chp (il + N divrlla) (3.19)
where yu; = min(py + 1, r) and gy = r — }
‘Proof : Let K C Tn. Then we have by (2.37) for any & € A x P,

”‘F - ";,Nf”o'q = ”(f - d’) - ":-N(’: - Q)”O.Q
< Cpy gt ) - (3:20)

where we have used Lemmas 3.1 and 3.2. Using (3.20) with (2.22) then gives

-(r-1! mi K3
lr = Miyrllos < Cpy" ™ nintews ooy o (3.21)

Squaring (3.21), summing over all K € Ty and noting that hg < hy yields (3.18).
To obtain (3.19), we note that by (2.28),

[[divr ~ div(TI1y7)llog = ||divs — PL(div )on (3.22)
Using Theorem 2.2 gives
[ divr — «liv(ll:vr)“...,, L ChipylHdivr)leq - (3.23)

Combining (3.23) with (3.18) gives (3.19)

0
3.2. The Brezzi Douglas Marini Elements
Let 7 = (r, ,rz) € H(div,Q) be given by
2 ' '
T = Za;‘jl,,-(f)ll,-(n), n=1,2 (3.24)

Jz0i-0

Then TI}7 = (rf,7§) € S3(Q) ( defined by (2.14)) may be written in the form
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Z }:o(.““ L (f)L ('7) + bkuoLHI(E)Lo('l) Ckbczx b+|Ll(€,)Lt('1) (3.25)

= Y sl O Li(n) = by alel @)L (n) + B3y Lol€) Lasr(n)  (3:26)

leadmg covﬂicnent of L,,“ _ 2k+ !

where ¢, = salisfies 1 <ep <2,

leading “coefficient of L., T k41
Usmg (2.33)- (2 34) we see that (”1 . ) sal.lslies

//(f r.)¢(£,n)d€dn~0 ¢ € Pi_2(Q) | (3.27)

together with conditions (3.7) (3.8). Ily the orthogonality of Legendre polynomials,
we obtain from (3.27) .

by=ah, 0Si+j<k-2,n=1.2 (3.28)

Next, taking ¢(n) = L,(n); the coiulitiom’s‘(.'l','l') on the sides § = 1 give

©™~

Lb,‘,b,(il) =3 al Lk 1) forl = 1,2, k— 1 (3.29)
=0 : [ |
. k ] oy .
R Z.b:ul;.'(ilf_]) -4 .l)'k”",qg |(| |) - X(l:,,’;.'('l'l) f()l" = f) (3.3())
i=0 [Tal}]
o Lo(:£1) - a*l;,?,;_, dLi( 1) = Y al Li( 1) forl =k (3.31)

Rl i}

Using (3.28) with n = 1, and the fact that Li(1) ~ L Li(-1) = (-1)*, (3.29)-
(3.31) give respectively

betort = D" i Db 2 ehp 1 020k~ (3.32)
i=0 Camn
bk 10 + bk+| 0= }_,"ﬂg 145 00 "m = L"“u.n (3.33)
B Sl 1] S B 1
ol [
. bi'nr "".'h "uul " ":l (3.34)

B ENT] L
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Similarly, the conditions on the sides n = %1 give

b?k-x 1 Z"a,,, 1145 O - c-Z “u i 1=012,...,k-1 (3.35)
2 2 — 2 _ N=~n2
I D DAL R D Dl Y (3.36)
j=0 j=0 -
1 o "2
" —
kO = L "lm b&+|o = T 2‘ Qyy (3.37)
j=0 k ;=1

The only unknowns not explicitly solved in the above equations are b}_, o and b3, _,.
These are given by

0

T, 00 . l
b};-ln = Z”a;c-nio" L “h,- ”nk [ }_,""nk 1+ + cx ! f .‘& (3.38)

i=0 -0 ‘R i=]

We now use (3.28), (3.32)-(3.38) to estimate the error ||ry — tfllo.g. Let b; =
for those not explicitly specified above. Then we have

o 4((1 )3 .
A = |l -1y ”nQ ,2:."'27' (21 | l)(l] | l) (where "lk = —exby p41)
4("’:‘)’ 4(“0 - b‘ )2

- Zznbhl-(z,‘ \ |)(2,’ | |) r Z:Xb »l«.’nj-:lu(g.‘ '8 |)(2] 4 |)
< A (a'l C (bl!j )2 (
= C{Zzsru‘ak- (204 1)(2 ¢ |) 242-4& irgoiked (204 1)(25 |53‘3‘))

Now for r > 0,

39D Ll eyys (o) (2 S
R (G Bttt G AR

nille = ki;llrll,,q (3.40)

in

!

Also, we know from (3.32)-(3.38) that for i 4+ j > k ~ I,

bl < 3 lafb € ) lagd (3.41)
[ [ ]
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where o ‘

Ci; = 1for (i,j) =(k—1,0)or(k+ 1,0)
= 0 otherwisc

Now for ry.>.1/2, (since i +7 2 k-1)

Slabl)t < So(ah P+ S

i=¢ I=1

(o)P(1 + 2+ )+
< kir- lz ' (21 + l) (342)
Similarly, ' !
2 k? 2yt 3 )
(Z lagil)? < kf,, Z (k) (l(,; - :')l ) (3.43)
Hence, we see that by (3.41)—(3.43),
. _(b;)*
_Zz'ﬂ =k-1(2{ + l)(2_7 + l)
= = (b ‘1“jj)2 = (bk )1)2
- Z TR e ,Z,"(#T.‘;‘
= (af;)?(1 + 2+ 57 ()2 (1 + k2 + 1)t
..-<- k2ri- 1{,2_7,,}7, ‘(zu VRN ,2,1 M(zl+ 1)(2k +1) }
< ety (3.44)

where r =ry + % > 1.
(bi;)?

The ter Sk<iti<kd . .
m ZLk_. bi<kt1 (21‘ + |)(2] 1 l)
by (3.39), (3.40), (3.44) we obtain for r > 1,

may be bounded similarly to (3.44). llence,

I 7l o k?r llflqu (3.45)

The term |1 — 75 ||(2,Q can be treated the same way, leading to the following lemma.

Lemma 3.3 Let 7 € (H7(Q))?, r > 1. Let W}# = (rf,17) « S}Q) be defined by
(3.27),(3.7)-(3.8). Then -

17 - 13 {log = CE™MiF|leg (3.16)

where ¢ is a constanl independent of k,i
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Lemma 3.3 then yields the following theorem, which can be proved the same way
as Theorem 3.1.

Theorem 3.2 Let 7 € (H"(N))%, r > 1. Let T} : S — S% be as defined in Section
2. Then ' _
llr =Tt o < CRY™ 1l r]l, (3.47)

where C 15 a constant independent of hy,py and 1 but depends upon r.
Moreover, if divr € H"(R), then
lir = Ty 7lls < CRR PR (7l + |1 div 7]l ) - (3.48)

where p; = min(py,r) and By =r - 1. |

4. Stability and Convergence Results

In this section, we examine the dependence of the stability constant a(N) = a(hy,pn)
in (2.8) on hy and py, when the RT and the BDM spaces arc used. We also use
Theorems 2.1, 3.1 and 3.2 to derive error estimates for the mixed method defined by
(2.5)-(2.6). ,

We first examine the question of stability.

Theorem 4.1 The spaces { Vi,Sh} t = 1.2 satisfy condition (2.8) of Theorem 2.1
with the stability constant a;(N) = a;(hn,pn) being given by

a (N) - ) for RT spaces (1.1)

(/'_1 ’

a2 (N) . for BDM spaces. (4.2)

| +‘ (J'th’,'N
where C;, 1 =1,2,3 are constants idependent of hy,py and ¢ > 0 may be chosen Lo
be arbitrarily small.

Proof: Let vy € Vi In order to establish (2.8), it is sufficient to find 7y ¢ S) such
that

diviy oy (1.3)

1
¢ ) . 4.
“TN”.s m(N)”'NH\ . (4.4)



17

We first solve the following elliptic problem on : . .
Au—-vN mﬂ u—Oonaﬂ

Letr = grad . Then we have

divr = vy (4.5)

. . . 1 . .
Moreover, since {1 is convex, there exists an 0 < ¢y < 5 such that the following shift

theorem holds:

”T”l-Hﬂ < C||v~||< 1) fOI" all 0 < € < ¢ (46)
(Note that UN € VN c H*(Q) for any 0 < s < 1/2). We now take
TN = an ) V . ’ ’ (4.7)

Then since divr € V}, (4.3) follows by (2.38). Moreover,
| Nl7lloa + It = Axtlloga
Irllia + Chy PR NI llsen

where :"7‘, = ;,'yz =1land 0 <e < €, by (3.18), (3.47). This gives by (4.6)

‘”TN ”o.n

AN AN

A

lrnlloa < llrllua + CRN PR " Njonllea

s (/'(l 4+ C hlhpN(lH 'h)h ‘I’N)HUN”OO . ' (48)

where. we have used Lemma 2.3 (with ¢ small enough). Since |] div 7nlo,n = 1{lvwllo.a,
(1.8) shows that (4.4) holds with :

1 N - TX] N
—_—— < (] 4 Cah : < RT
o) S (1 4+ Cohnpy ) < ¢! for R
1 . ‘
e < C(1 4 Coha - «
wa(V) © C(1.++ Crhnpy) for BDM

(4.1)-(4.2) follow immedialely. _
' (]

We sce therefore that the RT spaces are stable. For the BDM spaces, (4.2) guar-
antees stability up to an arbitrarily small power py'. (Obviously, if hypyy remains
bounded, then in (4.2). we obtain ay(N) > ). We may now apply Theorem 2.1
and obtain the followmg rates of convergence, using the approximation estimates in
Theorems 2.2, 3.1 and 3.2.
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Corollary 4.1 Let u be the solution of (2.1), witho = grad u, so that (u,0) € V x S
satisfy (2.8)-(2.4). Let (u},o0)) € VI x Sk be the finite element solutions corre-
sponding to the RT spaces. Then there exists a constant C independent of hy,pn,u
such that for r > 1,

llewlls + llunlly < C{llello + llollo + || div o]lo} (4.9)

. - I .
llo - onlls -+ [le = uplly < CAR™ "2 jull, + o), + lldivell.}  (4.10)

Corollary 4.2 Let (u,0) be as in Corollary 4.1 and (u};,0}) € V2 x S} be the finite
element solutions corresponding to the BDM spaces. Then there ezists a constant C
independent of hy,py and u such that for any ¢ > 0, for r > 1,

llowlls + lfunllv < Cpiv{llnllo+ llollo + || div allo} (4.11)
llo = oxlls + 1w — uilly < CAY™"™pp N lull, + loll, 4 Hdivell,}  (1.12)

The above estimates are optimal in Ay but not in py. We now show how they
can be improved in terms of py to give optimal estimates (up to an arbitrary ¢ > 0).
The argument used was first introduced in [8]. '

We first require the following interpolation result.

Lemma 4.1 For anyr >0, let X" = H"() = V" where V" denotes the completion
of (CX(81))? functions under the following norm:

llollie loll? 1 |l divall?

Let forq=r1+0(r;—11), 1227, >0, 0<0<1, X? denote the interpolation
space | X, X"2s using the IC-method of interpolation (sce [13]). Then

o~

X~ X1 (4.13)

Proof : We first show that

Vi (4.14)

where Y9 = [Y"',Y"],. We note that for i = 1,2, ¥" may be defined as

{ola € (1" ())?, Do . 1™ (Q)}
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where @ = div € L((H"(N))?,H""'(0)) for any r > 0. Moreover, as shown below,
there exists an operator § which belongs to L(I{"~!(0), (I{"(€1))?) for all r > 0 such
that

dGx=x VYxeHd (). | (4.15)

Hence theorem 14.3 of [13] allows us to interpolate between spaces ¥ and obtain
(4.14). Then (4.13) follows easily by a standard result on the interpolation of products
of spaces (Eqn (6.42), Chapter 2 of [13])

To define the operator G, we first let ¥ denote an extension of x € H™™!(01) (r > 0)
to IR? such that

”)2”,,,,..(";2) < ClIxllne-va) (4.16)

(The details of this extension may be found, for example in [16]). Next, let w satisfy
A = ¥ on IR? such that the shift theorem holds. Taking

Gx = grad g

we see that (4.15) holds and

”gra‘d II)“("r(IRz))z S Clli“l’r-—l(lR2) E C“XH”",’(Q)

by (4.16) and

[19x1l(-(ayz = llgrad wlalln-(ap= < |lgrad W e R

for any r > 0, so that G € ((H (£2))%, H™ 1(N1)) as required.

We now prove the following theorem.

Theorem 4.2 Let u be the solution of (2.1) with 0 = grad u, so that (u,0) €V x §
satisfy (2.9)-(2.4). lLet (up,0}) € V) x Sk be the finite element solutions corre-
sponding to the RT spaces. Then given any ¢ > 0, k > O there erists a constant C
independent of hy,pn,u but depending upon ¢ and k such that

llo —onlls + llu — uplly < Chy it 14 e el + llolle + [ divoll}  (4.17)
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Proof: We first use (4.9) to obtain the estimatc

o — ohlle + [l — ulllv < CRN™ENFI0 11 (4, 0)][xo (4.18)

where X' is as defined in Lemma 4.1. Next, given ¢ > 0, k > 0, choose r in Corollary

k
4.1 such that r > 7 Then (4.10) states that
€

: —(r-1
llo = oklls + llu - ublly < CAR™* " p" 3w, 0)|lx.. (4.19)

k 0 .
We now interpolate between (4.18) and (4.19) with 6 = _ SO that 0 < g <€ This

gives

. - r_'l
Chy™ " 2 )l g

Chy™ | (w,0) s

llo = onlls +|lu —uplly <

1A

where we have used Lemma 4.1. This proves the theorem.

Remnark 4.1 Although the constant C in (4.17) depends on ¢, Theorem 4.2 asserts
that if one chooses any positive ¢, no matter how small and fires it, then one can find
a constanl ¢ such that (4.17) holds. lHence the rate of convergence in py 13 optimal
up to any arbitrarily small ¢ > ().

We can obtain a theorem similar to this for the BDM spaces. The proof is essen-

tially the same, except that r must now satisfy r
4

Theorem 4.3 Let (u,0) be as in Theorem 4.2. Lel (v}, 0%) « VE x S} be the finite
element solutions corresponding to the BDM spaces. Then given any ¢ > 0, k > 0
there exists a constant (' independent hy,py,u but depending upon ¢ and k such that

llo — onlls + llu ~ ukllv < CRE" P =V u)ly + [lolle + || divolle}.  (1.20)

Remark 4.2 Theorems {.2 and 4.9 can.now be used to give an eslimate for the
asymplolic rate of convergence when h and p are changed either separately or together.
It may be observed for ezample that using the h-version with pn > 1 changes not only
the ezponent of hy but can also lead to a substantial decrease in the “constant” which
decays asymptotically like Cp;,(k—‘).
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