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IMPLEMENTATION OF THE
ATKIN-GOLDWASSER-KILIAN
PRIMALITY TESTING ALGORITHM

Francois MORAIN * 1

morain@inria.inria.fr, morain@frcicg71.bitnet

Abstract. We describe a primality testing algorithm, due essentially to Atkin, that uses elliptic
curves over finite fields and the theory of complex multiplication. In particular, we explain how
the use of class fields and genus fields can speed up certain phases of the algorithm. We sketch
the actual implementation of this test and its use on testing large primes, the records being two
numbers of more than 550 decimal digits. Finally, we give a precise answer to the question of the
reliability of our computations, providing a certificate of primality for a prime number. '

IMPLEMENTATION DU TEST DE PRIMALITE
D’ ATKIN, GOLDWASSER, ET KILIAN

Résumé. Nous décrivons un algorithme de primalité, principalement d# a Atkin, qui utilise les
propriétés des courbes elliptiques sur les corps finis et la théorie de la multiplication complexe. En
particulier, nous expliquons comment I’utilisation du corps de classe et du corps de genre permet
d’accélérer les calculs. Nous esquissons I'implémentation de l'algorithme et son utilisation pour
tester la primalité d’entiers trés grands, le record actuel étant la certification de deux nombres de
plus de 550 chiffres décimaux. Nous donnons une réponse précise & la question de fiabilité des
résultats, fournissant un certificat de primalité pour un nombre premier.
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Introduction

During the eighties, a lot of progress has been made in the fields of integer factorization and
primality testing.

Motivated by the introduction of public key cryptography ([43,85,109]) and accelerated by
some advances in technology, new algorithms appeared that are fast, powerful and using deeper
and deeper mathematical results. This is true for primality testing, in which were introduced Gauss
sums and elliptic curves.

In this report, we want to present the algorithms used for testing integers for primality, the
oldest as the most recent. After having recalled some elementary results (Fermat’s theorem), we
shall briefly present the work of Adleman, Pomerance, Rumely, Cohen and Lenstra, and we shall
explain why it did not solve all the problems. Then, in the remaining of part I, we shall explain
the use of elliptic curves in primality testing and this will lead us to the Gold wasser-Kilian-Atkin
algorithm. The second part gives some details on the implementation of the test and on some
results obtained with it. The most striking result is the certification of the largest factor of Fi;.

Our main goal is to present the results needed to understand the theory of Atkin’s test. We
give all theoretical results with that in mind. There are few proofs, but we give many references.
The practical implementation is not finished, so there are some incomplete chapters. All remarks
are welcomed.

Acknowledgments. I am indebted to many people. I want to thank J. L. Nicolas who
initiated me to elliptic curves and who has been supporting me ever since; H. Cohen for his advice;
D. Bernardi who read the first (French) version for his numerous critical remarks which were very
useful to me (he also helped me work out the computation of the j invariants of Euler numbers);
B. Serpette and J. Vuillemin for their work on the powerful arithmetic of Le-Lisp, and the latter
for his continuous support; P. Flajolet for his helping me with Maple, TEX and for some valuable
comments on my work; J. McKay for introducing me to [83] and for some remarks on the draft
version; F. Cossec for reading the first English version.
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Part I

Primality: past and present



Chapter 1

Elements of number theory

1.1 The ring Z/NZ

For N any integer greater than 1, let Z/NZ denote the set of residue classes modulo N. The
invertible residues modulo N form the group (Z/NZ)*.

Definition 1.1.1 The Euler-totient function ¢ is defined by
@(N) = Card(Z/NZ)*.
Proposition 1.1.1 The function @ salisfies

L o¢(1) =1;
2. ¢ is multiplicative that is

pgcd(N, M) =1 = ¢(NM) = ¢(N)p(M);
3. if p is prime and k a non-zero integer then o(pF) = p*~1(p - 1).

Theorem 1.1.1 ([54]) The group (Z/NZ)* is cyclic whenever N equals 2, 4, p* or 2pF, where p
is an odd prime and k a non-zero integer.

The following proposition gives a necessary and sufficient condition for N to be prime.

Proposition 1.1.2 Let N be an integer. Then:

N is prime <> ¢(N) =N —1.

1.2 Characters

We follow the presentation of Ireland and Rosen. The proofs can be found in [64].
In the sequel p always denotes a prime number, F, the field with p elements and g a generator
of F,*.

Definition 1.2.1 A4 character on F, is a homomorphism from ¥, in C. If x is such a character,
we have

Va, b € F,*, x(ab) = x(a) x(b). (1.1)

2



We extend x to F, by putting x(0) = 0 if x # € and ¢(0) = 1.,

The group F,* is cyclic. Let g be a generator. Let ¢ an element of F,*. There exists z such
that @ = ¢® mod p. Then x(a) = x(g)*. Moreover, x(g?~!) = x(1) = x(g)P~!. We deduce that
x(g) is a (p — 1)-th root of unity. One can show the following result.

Proposition 1.2.1 The set of all characters on F, is a cyclic group of order p — 1. The zero
element is €: a — 1.

Proposition 1.2.2 Let a in Fp,. Then
3 x(a) =0. (1.2)
X

Lemma 1.2.1 Let n be a divisor of p — 1. Then there are ezxactly n characters of order dividing
n.

Proof. If x is of order n, we have x(g)" = 1. Thus, there at most n characters of order dividing n.
Moreover, if x(g) = ez:‘_m’ then €, x, x%,...,x" ! are n different characters whose order divides n.
|

Theorem 1.2.1 Ifn|p— 1, we denote by N the number of solutions of z™ = a mod p. Then

N= > x(a). (1.3)

n=e

Application: the Legendre-Jacobi symbol

Definition 1.2.2 A character of order 2 is called a quadratic character.

' By lemma (1.2.1), there are two characters of order dividing 2. There is only one non trivial
character x defined by

s

x(g) = €% = -1,
We deduce immediately that
Vae Fp', x(a) = x(6°) = (-1)%.

In other words
x(a) = +1 <= a is a square modulo p.

Definition 1.2.3 This character x is called the Legendre symbol and it is written

x(@= (%)

Proposition 1.2.3 This symbol enjoies the following properties (Cf. [54]).

1.Va,1<a< p, (%) = ¢ mod p (Euler’s theorem);

2 v (#) = (3) ()



. (3) = (0%, (2) = 0%

4. quadratic reciprocity law: if q is prime, then we have

()= ow

It is convenient to extend the Legendre symbol to the case where n is not a prime. To do so,
weletn_Hp”‘t nd

(%) = 0 if pged(a,n) # 1,

() IH((2))" oo

Proposition 1.2.4 This new object is called the Jacobi symbol. It satisfies the folowing properties:
1. VG, b, (gné) o= (%) (i),

2 (%) = (0%, (3) = 07

3. quadratic reciprocity law: if m is an integer, we have

() (@)=
4 (&) = (252) = (2medm) ifn > m,

Properties 3 and 4 yield a fast algorithm for computing (Z) ([75)).



Chapter 2

From presumption to proof

Classically ([101]), one makes the distinction between non primality testing algorithms, which
almost always recognize composite numbers, and primality tests which give a proof that a number
is prime.

In all that follows, n will always designate an odd integer greater than 2 and different from a
power of a prime. If n is prime, it will satisfy all the tests we are to describe. At each step, the
number of composite numbers that survive will decrease.

2.1 Non primality tests

2.1.1 Trial division

The most natural way of proving that n is composite is to exhibit a number m (m > 1) that divides
it. For this, we use the following theorem.

Theorem 2.1.1 Ifn is composite, then there exists a prime p < \/n, such that p| n.

The algorithm proceeds in dividing n by all primes less than y/n. If one of the remainders is
0, then we have a factor of n, else n is prime. This method is very expensive. If n is prime, the
algorithm will stop after O(y/n) or O(l—o‘ég’%) operations, whether we have or not a table of primes
less than /. ‘

From a practical point of view, we divide n by all primes less than a given B, e. g. 10000,
30030 ([134,133]), 106 ([34]), before we submit n to other tests in the case we do not get a factor.

We shall now suppose that n has no prime factors less than B.

2.1.2 Fermat’s (little) theorem

Theorem 2.1.2 If n is prime and a is an integer prime to n, then

a" 1=1 modn. (2.1)
If n does not satisfy (2.1), then n is composite. In practice, we choose a random a and check
whether n satisfies (2.1). This computation is very efficient on a computer ([67]), and this enables
us to quickly discard most composite numbers.

Unfortunately, the converse of this theorem is false. The smallest composite number satisfying
(2.1) with a = 2 is n = 341 = 11 x 13.



Definition 2.1.1 Let a be an integer. A composite number n for which (2.1) holds is called pseu-
doprime to base a, or psp(a). :

Moreover, there are composite numbers n which are psp(a) for all a. They are called Carmichiel
numbers. The smallest one is n = 561 = 3 x 11 x 17.
In {103}, we find the following results.

Theorem 2.1.3 Let Py(z) = Card{n < 2, n is psp(a)}. Then there exists zo(a) such that for all
T 2> zg:s

5 logzlogsz
exp {(loga:)u} < Py(z) < z exp (— _210_—52-50_- ,

where log;, n = loglog - - - log n.
D —
k times
Corollary 2.1.1 For all a, there are infinitely many psp(a).
Theorem 2.1.4 Let C(z) = Card{n < z, n is a Carmichiel number}. Then:

Ve >0, 3 zo(e),

Vz > z0(€), C(z) < z exp <—(1 —€) Eﬁg:.%ﬁ) . (2.2)
2

It is not known whether there is an infinite number of Cérmjchia'.el numbers.

2.1.3 Solovay and Strassen ideas

Theorem 2.1.5 (Euler)
If n is prime and if a is prime to n then

T = (%) mod n, : (2.3)
where (£) denotes the Legendre symbol.

The symbol (£) is evaluated following the method described in [75]. If n does not pass this test for
a given a, then 7 is composite. Once again, the converse is false. The smallest n satisfying (2.3)
fora =2 is n = 561.

Definition 2.1.2 A composite n for which (2.8) holds for an integer a is called an Euler pseudo-
prime to base a, or epsp(a).

Theorem 2.1.6 ([103]) For all a, there are infinitely many epsp(a).
Theorem 2.1.7 ([117]) Let n be a composite number. Then:
Card{a,1 < a < n, ged(a,n) = 1 and n is epsp(a)} < —g- (2.4)

- The test of Solovay and Stassen then consists in testing (2.3) with & values of a. If n is a epsp(a)
for all these numbers, then the probability that » is composite is considered to be less than 51;
We shall sup pose that n is a epsp(a) for some a.
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2.1.4 Miller’s algorithm

This algorithm is described in [86]. We write n = 1 + 2'ng, with no odd. We have then the
following factorization :

a™ 1 —1=(a™ - 1)(@a™ + 1)---(a¥ ™ +1). (2.5)

If n is prime, then it divides the left hand side of (2.5). Thus n divides one of the factors in the
right hand side: : 3
¢ = 1modnor3j0<j<ta’™ = —~1modn. (2.6)

If n does not satisfy (2.6), then it is composite. As for the preceding algorithms, the converse is
false. The smallest number satisfying (2.6) for a = 2 is 2047 = 23 x 89.

Definition 2.1.3 A composite n for which (2.6) holds for a given a is called a strong pseudoprime
to the base a, or spsp(a).

Theorem 2.1.8 ({103])
Let a be an integer greater than 1. We define S,(z) = Card{n < z, n ésspsp(a)}. Then,

logz

> 15a .
Yz > a'?, S.(z) > Ta loga

2.7)

Corollary 2.1.2 For all a, there are infinitely many spsp(a).

Theorem 2.1.9 ([88]) Let n be a composite number. Then:
Card{a, 1 < a < n,ged(a,n) =1and n spsp(a)} < —%—

The algorithm is then: test whether n satifies (2.6) for k bases. If n passes this test, then we
might consider that n is composite with a probability bounded by 4~F. For a more subtle treatment
of this idea, see [9]. '

We have just described some very fast algorithms that can decide whether a number n is
composite or has a probability to be prime which is close to 1. Numbers which have passed these
tests are called industrial by Henri Cohen. In all applications to cryptography, this is enough.

In certain cases, it is worthwhile to give a proof of the primality of a number. We are about to
describe algorithms which meet that requirement.

The number n we are interested in will now be supposed to be pprime, that is it is almost surely
prime. For example, he is spsp for 50 bases (say).



2.2 Primality tests

2.2.1 Converses of Fermat’s theorem

In order to prove that n is prime, it is enough, by proposition (1.1.2), to find an integer a, prime
to n, whose order is exactly n — 1. Precisely:

Theorem 2.2.1

a"!=1modn
=> n i8 prime.
n~1
Vpln—1,a7 #1modn

We can improve this result in many ways. Let us give some definitions.

Definition 2.2.1 Let m = [[* p;*, pi prime, o; > 1, an integer. For every integer B, we put:

=1

F(m,B) = H 75, R(m,B) = H p;-'j.
pi<B p;>B

Thus m = F(m,B)R(m, B), for all B.

If there is no possibility of confusion, we write F (resp. R) for F(.,.) (resp. R(.,.)).
We recall three theorems proved in [20] (see also [127,133}).

Theorem 2.2.2 Suppose we have found an integer B such that:

R(n—1,B)=1o0r BF(n—1,B) >+/n. (2.8)
Suppose also that:
1. for all prime factor p of F, there ezists ap such that: a:z;l = —1mod n and
gcd(a::% +1,n)=1;
2. there exists ap such that: a? = —1 mod n and gcd(a(};“lﬂ,n) =1.

Then n is prime.

Before going any further, we need some definitions. We are to work in the ring (Z/nZ){T)/(T? -
PT + Q), where P and Q are two integers. We put D(P,Q) = P% — 4Q. The Lucas sequence
{Va(P,Q)} is defined by:

Vo(P,Q) =2, i(P,Q) = P, Vi(P,Q) = PVi_1(P,Q) — QVia—2(P,Q), for k > 2. (2.9)
In the sequel, we suppose that D is fixed and that (—nD—) = ~1.
Theorem 2.2.3 Suppose that:
R(n+1,B)=1or BF(n+ 1,B) > v/, (2.10)

and:



1. for all prime factor q of F, there exist two integers P, and Q,, satisfying Pq2 —4Q, = D and
(%1) = —1, such that the sequence {Vi(P,,Q,)} satisfies: V%(Pq, ®@y) =0 mod n and
gcd(V%& +1,n)=1;

q

2. there exist Py and Qo, for which P¢ — 4Qo = D and (Qnﬁ) = —1, such that {Vi(Po,Q0)}

satisfies: V%(PO,QO) = 0 mod n and gcd(V%%x_,n) =1.

Then n is prime.
Eventually, one can combine these two theorems.

Theorem 2.2.4 Suppose that n satisfies (1.) and (2.) of the two preceding theorems and:
F(n - 1,B)F(n + 1,B) maz(F(n —1,B),F(n +1,B)) B3 > 2n. (2.11)
Then n is prime.

One can also use the prime factors of n? £n+1 or n2+n +1 ({130,131, 129 ,127}). Unfortunately,
these tests are much more difficult to use in practice.

Obviously, there remains a problem. Very often, n — 1 or n + 1 have simultaneously large prime
factors and it is very expensive to compute them. In some cases, though, we can carry on all the
computations.

Let F be theset: F = {f_y:n+ n—1, fi : n+ n+ 1}. We define on F a map 7 which
associates to a function f of F the primality testing algorithm using the factors of f(n). More
precisely, 7 f is a function which can take three possible values:

TRUE if nis prime,
Tf(n)y={ FALSE if niscomposite,
? otherwise.

Let us choose an integer B.

Definition 2.2.2 The integer m is said to be B-nicely factored if R(m,B) =1 or if R(m,B) is
pprime.

We can now explain what is a favorable situation for our theorems.

Proposition 2.2.1 Suppose we have found a sequence (fi)os i< of elements of F, together with
a sequence of integers (n;) such that:

1. ng =mny

2. for all i > 0, fi(n;) is B-nice factored and T fi(n;) = TRUE, with B = Bniy; and
niy1 = R(f(ni), B);

3. my is prime (e.g. m < B?).

Then n is prime.

Proof. For all i, we use the T'f* test with n; and B = Bn;;, which proves that n; is prime, whenever
ni+1 is prime, which is ensured by the next step. @&



Definition 2.2.3 The sequence (f*) is called a primality chain for n.

It is possible to find such chains for pretty large numbers (see [128]), but it is difficult to find
easily chains for all numbers of a given magnitude. '

One of the interest of Atkin’s test is to add more functions to F, which allows ‘to build these
chains for all numbers.

Remark on the generation of prime numbers

One possible way to build prime numbers is as follows ( [39,97]). One first select some small primes

P1,...,Pk, and then search for exponents «; such that:
=k
n=1+ H o (2.12)

=1

is prime, using (2.2.2).
The merit of the new primality tests is that you can build ordinary primes n not having the
property that n — 1 has small prime factors.

2.2.2 Adleman, Pomerance, Rumely; Cohen, Lenstra

In {3,80,31], the authors describe a primality testing algorithm using some ideas which are implicit
in [117]. They are able to prove that the running time of this algorithm is O((log n)¢ logloglogny for
some effectively computable constant ¢ > 0. This test, improved by H. Cohen and H. W. Lenstra
({33]), has been implemented by the first author and A. K. Lenstra ([34]). The results are very
impressive. We give below some typical times for their algorithm, on a CDC Cyber 170/750. The
time used for elementary operations on multiples, 16 words of 47 bits, and doubles, 32 words of 47
bits, are also given. These operations are coded in Compass and used in a FORTRAN program.

operation | temps en ms
M+M 0.019
. Mx M 0.210
D mod M 0.470

The following data denote seconds of CPU.

number of digits | mininum time | maximum time | mean value
100 26 75 . 50
120 51 147 100
140 77 211 150
160 112 298 200
180 259 439 350
200 259 614 400

This algorithm has two (minor) drawbacks. It is very difficult to code and the verification of

the results is impossible without rewriting all the program. In the sequel, we denote this algorithm
by CL.
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Chapter 3

Quadratic forms and quadratic fields

This chapter contains some elementary results on positive definite quadratic forms and some prop-
erties of quadratic fields. It is an introduction to the following two chapters.

3.1 Quadratic forms

Definition 3.1.1 We call binary quadratic form any function Q from Z x Z in Z which associates
to any pair (z, y) the value Q(z,y) = az® + bz y + cy?, where a, b and ¢ are in Z. We note
Q = (a,b,c). The discriminant of Q = (a,b,c) is 6(Q) = 6(a,b,c) = b? — 4ac.

Definition 3.1.2 The form Q = (a,b, ¢) represents the integer m if there exists two integers x and
y such that: Q(z,y) =

In what follows, we are interested in positive definite forms, i. e. the forms satisfying:

V(z,y) # (0,0), Q(z,y) > 0.

A necessary condition for @ = (a,b,¢) to be of this kind is §(Q) < 0. This implies that a and c are
of the same sign. We may thus suppose that they are both positive.

We now fix a positive integer d, and we suppose that if p is any of its odd prime factors, then
p* fd. We put £(—d) = {(a, b, ¢) | 6(e,b,c) = —d}. This set is not empty iff —d is a quadratic
residue modulo 4, that is d = 0 mod 4 or d = 3 mod 4. We remark that b and d are of the same
parity.

3.1.1 Equivalence relation on £(—d)

To the form (@, b, ¢), we associate the following matrix A:

. 2
2 .
b (3.1)
D) C

If X is the vector < ; ) then Q(z, y) = X A X.

11



We define:
SLy(Z) = {(: 5 )Ia,ﬂ, Y, 6inZand aé —ﬂ—y-_-1}

Let @ and Q' be two elements of £. We say that Q and Q’ are equivalent, which we denote by
Q ~ @', iff there is a matrix P of SL,(Z) such that A’ = tPAP.

Definition 3.1.3 A form (a,b,c¢) is said to be primitive if ged(a, b, ¢) = 1, and reduced if [b| <
a < candb> 0 whenever ¢ = a or |b] = a.

Theorem 3.1.1 This relation is an equivalence relation. Each equivalence class contains ezactly
one primitive reduced form.

It is easy to see that a primitive reduced form (a, b, c) satisfies:

b <a<c=>4a’<4ac=d+b* <d+ad° (3.2)

bl <ax< \/g- (3.3)

As a consequence, there is a finite number of reduced primitive forms of discriminant —d. We note
this number h(—d). This the cardinal of H(—d), the set of all equivalence classes for ~.

Hence:

Definition 3.1.4 —d is said to be a fundamental discriminant if

1. d has no odd prime factor to a power greater than 1;
2. d=3mod 4 ord=4mod 16, or d = 8 mod 16.

Proposition 3.1.1 If —-d is fundamental, then every reduced form is primitive.

We end this enumeration by the following definition. If ¢ is an odd prime, we put g = —l)g;_lq.
This implies that ¢* = 1 mod 4 for all g. We also put 4* = —4 and 8* = +8, as is explained in the
following lemma.

Lemma 3.1.1 Let —D be a fundamental discriminant. There are four cases:

D= 3mod 4: D=¢ ¢ --- g: and then — D = i q7;
D= 4mod 16: D=4 ¢ ---q andthen — D = (-4) ITi.
D= 8mod 32: D=8 ¢ ---qandthen — D = (-8) TTi,qf;
D= 24mod 32: D=8 ¢, ---qandthen — D = (+8) T, qr.

Proof. Let us prove the case D = 3 mod 4. Suppose that the first ! factors of D are congruent to 3
modulo 4. Then —D = (-1) i1}, where g} is congruent to 1 modulo 4. But —D is congruent
to 1 modulo 4, and we deduce that [ is even and then —D = i, .

We can do the same for the other cases. m

12



3.1.2 Redu.ction of forms

It is possible to give an algorithm that computes the reduced form associated to a given form. This
has been introduced by Gauss ([47]).

Let @ = (a,b,¢c) be a quadratic form of discriminant —d. Each step of the algorithm associates
to Q a form Q' = (a’,¥',c’) equivalent to Q that satisfies: —a < b’ < a and o' < ¢/. We may choose:

a'=a, b =b+2ak, ¢! =k¥a+kb+ec,

with k = l%‘a—’l_l If o' < ¢/, then Q' is reduced, else we replace Q with (c’,~b’,a’) and we go on the
reduction process. It is possible to show that the algorithm terminates and that the final form is
indeed reduced.

Let us look at one step of the algorithm. Let A’ be the matrix associated to @’. This matrix is
deduced from A by: '

A= Y(T*) ATF, (3.4)

Tz(;;).

Then, we possibly have to modify the result as:

where:

A:='SA'S, (3.5)

s=(_°1(1)).

Let use note that S and T are elements of SL3(Z), and thus Q' ~ Q.
We make the following change of variables:

X = ( v ) = (T"S)( Y ) = (T*S) X'. (3.6)

with:

Then:
tX A X = X' {(TFS) (T*S) A'{(T*S) (TF8) X' = X' A' X',

which means that: Q(z,y) = Q'(z’,¥'), if X and X’ are related by (3.6).
The reduction process transforms a matrix A into a matrix A’ that is equivalent to A, providing
us with the matrix N such that:

A'=*N AN and N € 5L(2Z).

We summarize the algorithm and insist on the matricial point of view, that we shall need in
chapter 3.

procedure GAUSSRED;

10
e (30)

2. if ¢ < a then @ :=(¢,—b,a), N:= N §;
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a—2b
3. 1.k.=[ 5a J,

2. b:= b+ 2ak;

b? +d
3. ¢:= T,
4, N := N T*;

4. if ¢ < @ then go to 2; ,
5. ifb< O0and ((c =a) or (—b=a)) then b:= —b; N := N §;

6. (a,d,c) is reduced end.

3.1.3 An algorithm which determines all reduced forms

* This algorithm is described in [15]. Let ~ D be a fundamental discriminant.
procedure QFLIST;

A

2. b:= D mod 2;
3. whileb < r

1. m:= b2+D'
. .———4—,
2. for a | m and a < |V/m]

1. ¢c:=——

a
2. if b < a then
ifb = a or ¢ = a then store (a,b,¢) else store (a,+b,c);

3. b:=b+2;
4. end.

3.1.4 Composition of forms

It is possible to endow £(—d) with a group law which is compatible with ~. The zero ‘element of
this law is called the principal form. Its value is given by: ‘

(1,0,—“f—) if d = 0 mod 4,
(1,1, d 1- ! ) otherwise.

The algorithm used to compute Q x Q' is to be found in [115]). We need only the following result.
Definition 3.1.5 A4 form is said to be ambiguous iff its order is 2.

Proposition 3.1.2 The ambiguous forms are of the types: (a,0, c), (a,a,c) or (a,b,a).

14



3.2 Quadratic fields

A quadratic field K is a field extension of degree 2 over Q. There exists an integer (positive or
negative) § without square factors such that K = Ks;. We note this field Ks. The discriminant of
K is:
d-—{ 4§ if 6 = 2 or 3 mod 4,
T 16 iféd=1modd.

In all that follows, we refer to case (i) (resp. (ii)) to designate the case § = 2 or 3 mod 4 (resp.
6 = 1 mod 4).
The conjugate of an element £ = r + sv6 of K5 is &' = r — svV/8. Its norm is defined by:

Né(E) = 66' = ,'.2 - 682,

the trace of £ is:
Ty(¢) = £+ € = 2r.

The element 8 of K; is said to be an integer iff Ns(8) and T5(6) are integers of Z. To distinguish
between elements of Z and integers of K¢, we call the first ones rational integers.
One shows that: '

Proposition 3.2.1 The set of all integers of K5, noted Og, is a subring of Ks. More precisely,
Os is the set {a + bw, a and b in Z} with:

Ve in case (1),
w=4q 1+V8
2

in case (it).

Definition 3.2.1 We say that an element ¢ of K; is a unit iff:
€€ Osande! € O;.
Proposition 3.2.2 The units of K5 are precisely the elements'e such that:
Ns(e) = 1.

Theorem 3.2.1 Let d be the discriminant of a quadratic field. Let w(d) be the number of units in
Ks. Then:

+o0 if d > 0,

) 6 if d = -3
wd)=9{ 4 if 4 = -4
2 if d < -4

Theorem 3.2.2 ([35, Ch. VI, §4]) The group of unity of K;s is a cyclic group. There ezists a
n > 1 that generates this group. Is is called the fundamental unit of K.

There is an algorithm that computes the fundamental unit of Ks([35, Ch. VI, §5]). One can
find tables of such elements in [15] and [63].

15



3.2.1 Modules, orders, ideals
The proofs we do not give are to be found in [15].

Definition 3.2.2 Let a,...,a, be elements of K;. We define a module of Ks to be the set
M = {0!111 +...+al., ;€ Z}

We write:
M = [Ql,.. . ,ar].

Definition 3.2.3 An order of K5 is a subring of Oy, containing 1.

Proposition 3.2.3 The orders of Ks are precisely the modules of K5 that are of the form O(f) = [1, fw),
with f a rational integer.

Proposition 3.2.4 Let M = [a, 8] be a module of K; and let S = {y € K5, YM C M}. Then S
is an order of Kg, called the stabilizer of M.

Definition 3.2.4 Let M = [oy,...,,] be a module of K5. We say that M is an ideal of K; iff:
Vi, a; € Os and wa; € M.

Proposition 3.2.5 An ideal [a1,...,a,] can be written as [a,b + cw], with a, b, ¢ in Z.

Proof. Since a; is in K, it can be written as b;+ ¢;w, with b; and ¢iin Z. We put ¢ = ged(cy, ..., ;).
By Bezout’s theorem, we can find rational integers k1, ..., k, such that:
ki + -+ ke, =c. (3.7

We then build the following rational integer b:

kiay + -+ kra, = b+ cw =€ (3.8)
We deduce: |
a; = a;——%';-;f:b;+c;w——-cci—(b+cw)
= b -G
and a; is a rational integer. We put a = ged(ay, ..., ar). With the help of (3.8) and of the equation

a; = a; + &£, we see that:
[o1, ... 0] = [a,b + cw].

Proposition 3.2.86 The module M = [a,b+cw] is an ideal iff the following conditions are satisfied:

¢=b=0modc, (3.9)
b? — 6c% = 0 mod ae, in case (i), (3.10)
b(b+c) - 0-le_ 0 mod ac, in case (ii). (3.11)

16



Proof. Let us write that aw and (b + cw)w are in M:
aw = Aa + B(b + cw),

w(b+ cw) = Ca + D(b + cw),

with A, B, C and D in Z. From the first equation, we get a = B¢ and Aa + Bb = 0, what we
summarize by: ¢ = b = 0 mod c.
In case (i), we have w? = §, and we get

b = De,
c¢é = Ca + Db,

that is to say: b2 — ¢2é6 = 0 mod ac.
In case (ii), w? = 5% + w, hence:

-1

b(b+¢) — ¢?=0mod ac. m

From now on, we write an ideal as (a,b + cw), and we note (p) the principal ideal pO;. We
define the product of two ideals i and j as the ideal generated by all the products of an element of
i by an element of j. We say that an ideal { divides an ideal j if there exists an ideal ¥ such that

j=1ift.

Corollary 3.2.1 If (a,b + cw) is an ideal, then: a = ca’ and b = cb’, by (3.9). We then get:
(a,b+ cw) = (e,c + w)(a', b + w).

Definition 3.2.5 Ifi= (a,b+ cw) is an ideal, with a > 0 and ¢ > 0, its norm i3 NV (i) = ac.

Definition 3.2.6 An ideal p (p # Os) is said to be prime if for all pair of ideals (i,{'), we have:
plitt=pliorp|i.

Theorem 3.2.3 ([35, Ch. VII, §10]) A prime ideal p in K5 may be written as p = (p,7) where

p is a prime rational integer satisfying p | (p) and Ns(r) = 0 mod p.

3.2.2 Decomposition of rational primes in K;

Theorem 3.2.4 ([35, Ch. VIII, §1]) Let p be a rational prime number greater than 2.

1 If (%) = 1, then (p) may be written as pp’, where p and p’ are two different prime ideals in
Ks and N(p) = N(¥') = p. We say that p splits in K. '

2. If (%) =0, then (p) = p%, with p a prime ideal in K5 and N(p) = p. We say that p ramifies
in Ks.

3. If (%) = —1, then (p) is a prime ideal in Ks. We say that p is inert in K.

This theorem is effective. The results are summarized below. We denote by r the solution of the
system:

r?2 = dmod p,
r = dmod 2.

Then:
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(2) = 1: p = (p, =30);
(%) =0: p=(p, \/3) in case (i) and p = (p, 2"'—2\@) in case (ii);
(4) = -1: 5 = (p).

3.2.3 Equivalence classes

Theorem 3.2.5 ([35, Ch. VII, §6]) Leti be a non zero ideal in K;s. There ezists an ideal i* and
an integer a such that:
= (a).

Definition 3.2.7 Two ideals i and ' are said to be equivalents iff there ezxist « and § in Os such
that:

i(a)=1(B).
We note: i ~ i’
Proposition 3.2.7 The relation ~ verifies the following properties:

1. it is an equivalence relation;
2. if @ € Os, then: (a) ~ (1);
3. the inverse of the class of i is the class of i*, since it* = (a) ~ (1);

4. the product of the class of i and the class of j is the class of the product ij.

Theorem 3.2.6 ([35, Ch. VIII, §2]) In any ideal i we can find an element a such that:

0 < [Ns(a)| < N(i)y/ld]. (3.12)
Corollary 8.2.2 Any class of ideals contains an ideal i such that: N(i) < /Id].
Corollary 3.2.3 The number of classes of ideals, denoted by h(d), is finite.

Theorem 3.2.7 The set of ideal classes Jroms a group for the multiplication of the classes.

3.2.4 Correspondance between ideals and quadratic forms

Let i = (a,b + cw) an ideal of K;. We associate to i the form Qi defined by:

Ns(az + (b+ w)y)
l( ’y) - N(l)

Proposition 3.2.8 The form Q has all its coefficients in Z.

(3.13)

Proof. Let us examine case (ii). We get:

2,2
(az + by + $y)? — d=}r
ac

Qi(a‘" y) =

b(b + c) - d_l 23/2

a 4 b
= < 22 ;
e’ +(c+1).zy ac
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Using (3.9) and (3.11), we see that the coefficients of @; are rational integers.

In case (i), we find: , )
(2,9) = %a? + 220y 4 L0 2
Qi(z,y) = —2" + 2=y + ———,

and we conclude with the help of (3.10).

Conversely, let @ = (a,b,c) be a primitive quadratic form. We associate to it the ideal

i=(a, b—2_d)

Remark on the imaginary case

We have seen how to connect ideals and forms. When the field K is imaginary, there is a one-to-one
correspondance between classes of form and ideal classes by the virtue of (3.13). As an immediate
consequence, the class numbers on each side are the same. The analogue of the multiplication of
ideal classes is the composition of forms.
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Chapter 4

Close encounter of class field theory

This chapter is divided in four parts. The first one presents the problem of the representability of
numbers by quadratic forms. The second briefly explains the role of class field theory. The third
studies the problem when seen from the quadratic form point of view. Finally, the last one collects
the algorithms we use in practice.

4.1 Representation of primes by the principal form

4.1.1 Presentation of the problem

In all that follows, p denotes an odd prime number and —D a fundamental discriminant. The field
K_p, identified to K_ p/a When 4 | D, is noted K, the ring of integers of K is noted © and the
norm of an element 7 is Np(w). We are looking for an element 7 of @ such that N p(m) = p (this
will be the heart of Atkin’s test). Writing 7 = a + bw, with a and b in Z, we get:

z? 4+ L v?, in case (i),
Np(r)=p= Y
2 +zy+ 1 y?, in case (ii).

Thus, we want to represent p by the principal form. We remark that:

Proposition 4.1.1 If p can be represented by the principal form, then the equation N p(t) =p
has ezactly w(—~D) solutions.

Proof. Let 7 be a solution of Np(7) = p. Then:

Np(§)=p<=3Jecunitof K suchthat =cr. @

We now give some general results on the representation of integers.

Proposition 4.1.2 Let m be a number represented by a quadratic form. Then, for all prime divisor

l of m, we have:
-D
(—7—) =0or 1.
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Proof. Suppose that m = az? + bzy + cy?. Then: 4am = (2az + by)? + Dy?. Let | be a prime factor
of m. We have:
(2az + by)? = —Dy* mod 1.

Thus if ~D # 0 mod !, —D must be a square modulo /. ®

Proposition 4.1.3 A prime p can be represented by a quadratic form of —D iff (—_pl_)_) # —1.
Proof. Necessity was proved above. If (%) = 0 or 1, the ideal (p) has a divisor p = (p, ), with
Np(7) = 0 mod p, by theorem (3.2.3). Let us consider the associated quadratic form:

Qp(z,y) = ————ND(jZ\)/?(; wy)-

Since M(p) = p, we deduce:
2

Q})(LO) = p’; =D

which completes the proof. m

Corollary 4.1.1 When (=2) = 1, p is represented by p,-—r,ﬁg , with the notations of the
4 P 4p
preceding chapter.

Proof. Apply proposition (3.2.8). =

We give now some conditions for P to be represented by the principal form.

4.1.2 Formulation of the problem in terms of ideals

In this section, we insist on the role of principal ideals.
Proposition 4.1.4 Leti an ideal of K, i # O. Then:

iis principal <= 3 a € O, Np(a) = N(i).

Proof. Suppose that i is principal. There exists a in O such that i = (). Let us compute the norm
of i. First, suppose that a is a rational integer. Then i = (@) = (@, aw) and the norm of i is:

N(i) = o® = Np(a).
If o is no longer a rational integer, we see that AM(a) = AM(a’). Then:
N((@)* = N((e)N () = N((a)(a)) = M((aa)) = N((ND())) = Np(a)?.

Since N(i) > 0, we deduce: N (i) = Np(a).
Suppose now that i is not principal. We show that:

VO ei, Np(8) > N(i).
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Let 6 be an element of i. We have (8) C i but (6) # i, since i is not principal. This relation implies
the existence of an ideal j such that () = ij (to contain is to divide). Since i is not principal, j is
different from O and so M(j) > 1. Hence: '

N(@8) = Np(8) > N(i). m

Proposition 4.1.5 Let i be a principal ideal and £ a solution of the problem

Min Np(6)

P (4.1)

Then: i = (§).

Proof. We have just seen that i can be written (x), with Np(7) = A/(i). Since £ is in i, we can find
A in O such that £ = Ar. Computing the norms, we get:

Np(€) = Np(r)Np(X) > Np(E)Np(N),
which implies that A is a unit and thus: i = (7) = (£). m

Back to the original problem

Let p be a rational prime that splits in K as p@ = p p’ and N (») = p. If we summarize the
preceding results, we obtain:

Theorem 4.1.1 The equation Np(r) = p has a solution iff p is principal.

To test whether this property is satisfied, we compute an element & of p which minimizes Np on p.
If Np(&) = p, we win, else p is not principal and the equation has no solution (Cf. section 4.4).

The problem now is to have conditions for an ideal of K to be principal. This is a very important
theoretical problem, which we attempt to describe in the following section.

4.2 Class field theory

We follow the excellent book by H. Cohn ([37]). We begin by studying the general case, before
going to the results concerning the quadratic fields.

4.2.1 A simple example

Consider the case where we want to represent a rational prime p by the principal form of discri-
minant —4. The corresponding field is Q(~4) = Q(i). This field is known to be euclidean (Ct.
[118]), and therefore O is a principal ideal domain. So all ideals are principal. Hence, if p splits in
Q(%) as pp’, the ideal p is principal and the equation we are interested in has a solution.

Unfortunately, there are few imaginary quadratic fields for which the ring of integers O is
principal ([118]). The solution to our problem implies to search for other conditions satisfied by p.
As a matter of fact, this solution will be to find a field AC that has the following property:

p = Np(7) <= p splits in K.

This field is called the class field and the search for it will not be completed before the next chapter
with the introduction of the function 7.
Before giving the essential results of class field theory, we introduce a particular isomorphism.
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4.2,2 The Artin isomorphism

Let L|K be an extension of Galois group G = Gal(L|K). Let Op and Ok be their respective ring
of integers. Let p be a prime ideal of K, P a prime ideal of L above p.

L 3

|

K p
Theorem 4.2.1 35€ G, VA€ O, AS = AV®) mod .

Definition 4.2.1 This element S is called the Frobenius symbol. We note:
LK
Tl
Proposition 4.2.1 If P is replaced by a conjugate PV (U € G), then:
L[ Lk LK
U | ——|U = |—7—] -
[ ¥ } [ ¥ ]

Corollary 4.2.1 If L|K is abelian, the Frobenius symbol does not depend on B, but only on p. It
is then called the Artin symbol and is denoted by:

()

VAegOp, AS = AY® mod p.

We deduce that:

Examples

Quadratic fields
Let K = Q, L = Q(Vd). It is easy to see that L|I is an abelian extension of Galois group
G = {1,U}, where U is defined by:

- Vi’ = _Va.

If A= # is an integer of L and p a rational prime, we can compute AP mod p with the help of
Fermat’s theorem:

P
AP = ii—_é'\/_(_l_ mod p.
2
On the other hand, we have:
—1
Vd* = 47Vl
= (%) vd mod p,

by Euler’s theorem. We deduce that AP = A or AU whether (%) equals +1 or —1. We thus identify
the Artin symbol with the Jacobi symbol.
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Genus field
If —-D = [Ii.; ¢} is a fundamental discriminant, we put K = Q(v—D) and we define the genus

]

field of K to be K¢ = Q(\/4], - .. ,/q). One shows ([37, Ch. 18]) that:

(545)-(®)(8)

4.2.3 Algebraic results

Let L|K be a field extension of degree n, O, and O their ring of integers. A prime ideal p of K
splits in L iff:
))=‘pl...‘]3n inL

where all the PB; are disctinct prime ideals of L.

Definition 4.2.2 The Hilbert class field of K is the marimal abelian unramified extension of K.
It is noted K.

Theorem 4.2.2 For every field K, the class field K g verifies
Gal(Kg|K) ~ CI(K),
the class group of K.
Corollary 4.2.2 [Kg : K] = h.
Theorem 4.2.3 The prime ideals of K that split in K are precisely the principal ideals of K.

Consequence: this theorem gives a solution to our original problem. An ideal p of K is principal
iff it splits in Ky, the class field of K. Hence P can be represented by the principal form iff psplits .
in K,i. e. p= pp’ and p splits in Ky.

It remains to find the class field of an imaginary quadratic field.

4.3 Partial solution: genus of forms and Euler numbers

4.3.1 Genus of forms

This theory is due to Gauss [47]. Alternatively, one can read [35, Ch. XIII, §3] and [15, Ch. III,
§8, 3]. We limit ourself to the treatment of the case of forms of negative discriminant.

Generic characters

Let us write the factorization of a fundamental discriminant D:

D = ¢1 ¢ -+ ¢=3mod4,
or D = 4 g5 .-+ ¢ =4mod 16,
or D = 8 ¢q; .-+ ¢ =8mod 16,

where the g; are disctinct prime numbers.
Let m be a positive integer, prime to 2D. For all odd ¢i we define the following character:

o= (2).
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In the case where D is odd, we can write:
. .
m m=13i~1 [ q;
Txitm) =TT (2) = IT-0 7 (£),
=1 i m
using the quadratic reciprocity law. With the help of lemma (3.1.1), we then have:
1 *
=TT (L) = i)
;I=]1:Xl(m)— H<m) - ( m )’
When D is even, we define x; by:
’ t
-D
xa(m) [T xi(m) = (—T;r) :
=2
Let us prove:

Proposition 4.3.1 Let m be an integer prime to 2D, represented by the form @ = (a,b,c) of
discriminant —D. Then:

: =D __ (=D _ (=DY _
1 (2)=(2)=()=1
2. Vi, xi(m) = xi(a) = xi(c).
Proof. We write: m = Q(z, y) = az? + bzy + cy®. Therefore:

, 4am = (2az + by)? + Dy?,

which shows 1. Moreover, if ¢; divides D, am must be a quadratic residue modulo ¢;, which gives:
xi(am) = 1 &= xi(m) = x:(a).
In the case where D is even, we have:
t t
-D -D
xatm) [Dxatm) = (32) =1= (22) = u(@ I x(a)
i=2 m a i=2

so x1(m) = xa(a).

The same can be done withc. ®

Toaform @ = (a,b,c), of discriminant — D, we can associate the generic characters x1(Q), .. ., x:(Q),
defined by x:(Q) = x:(a). :

Genera

Let e1,...,e; be rational integers such that:

t
e; = *x1, Heg: 1.
=1
We consider the set G(ey,...,es) = {C € H(—D), xi(C) = e;}. We recall that each class contains
exactly one reduced form. So we idenfity a class with its reduced form.
" To'each of the 2'~1 possible values of t-uples (ey,...,et), we associate the genus G(ey,...,e;).
I'he principal genus is Gy = G(1,...,1).
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Theorem 4.3.1 Fach genus contains at least one class of forms.

Proof. Let G = G(ey,...,e;) be a genus. We prove that there exists at least one rational prime
that is represented by a class of G. The rational prime p is represented by a form of G iff:
Vi, xi(p) = e;i. This determines for each ¢; at least one residue class modulo ¢;. Using the
Chinese remainder theorem, we build a residu class modulo D which must contain p. We then
use the theorem of Dirichlet ([45]), which says that there exists an infinity of primes in this class.

Eventually, we have ( =2 ) = 1, because of the formula [Txi(p) = [[ei=1. =
3

Let C and C’ be two (classes of) forms contained respectively in the genera G and G’. The
product of these two genera is the genus G = GG’ = G(x1(C"),. .., x:(C")), where C" = CC’. Of
course, this definition is independent of the choice of C and C’.

Proposition 4.3.2 The principal genus is a subgroup of H(—D).

Proof. 1t is enough to show that the product of two forms of Gy is in G;. And this is clear, since
xi(CC') = xi(C)xi(C)=1. =

Corollary 4.8.1 Let C be a class of forms. Put CGy = {CC;, C1 € G1}. Then the genera are
ezacily the sets CGy where C runs through H(—D).

Proof. Actually, we have:
C'e€CGL == xi(C)=x:i(C). m

Since the genera are mutually distinct, we deduce:
H(-D) = U G;,
He;:l
and thus A(-D) = 27! Card(G,). We proved:

Theorem 4.3.2 The class number of =D is a multiple of 2'=! and the classes of forms fill 2t—1
genera containing hz,—(::?l ‘forms each.

We finish this section with the following theorem:

Theorem 4.3.3 (Gauss) The principal genus Gy is e:caétly the set of all squares of forms of
H(-D).

4.3.2 Comeback to Np(7) = p: Euler numbers

The principal form ((1,0, -?—) or (1,1, Q—;ﬂ)) is obviously in the principal genus. By the preceding
section, the rational prime p is represented by a form of this genus iff x;(p) = 1 for all 4.

But there are v = b—é;:?-)— forms in this genus. If v = 1, then the form that represents p is the
principal one and we win. Else, we are not sure.

One knows 65 discriminants, called Euler numbers, for which v = 1. They are listed in the
table below ([15]).
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D |a(D)] D |h(-D)] D [W(-D)] D |h(-D)| D [h(-D)
3] 1 52| 2 |195| 4 |435| 4 [|1012| 4
4| 1 67| 1 |228| 4 |483]| 4 |1092| 8
7] 1 84| 4 |232| 2 |s520] 4 [1155] 8
8| 1 88| 2 |235| 2 |s32| 4 |1320] 8

11| 1 91| 2 |267| 2 |s555| 4 1380 8

150 2 |115( 2 |280| 4 |595]| 4 |1428] 8

190 1 |120] 4 |[312] 4 |e62r| 4 |1435] 4

20| 2 |123] 2 [340| 4 |e60] 8 |1540| 8

24| 2 |132]| 4 |372] 4 |708| 4 |1848| 8

35| 2 |148| 2 |408| 2 |715| 4 |1995| 8

40| 2 163} 1 |408| 4 |760| 4 {3003 8

43| 1 |168] 4 |420| 8 |795| 4 |3315] 8

51| 2 |87 2 |427] 2 |840| 8 |5460| 16

Let —D = []., ¢} be a fundamental discriminant. The genus field of K, whichis Kg = Q VRV, AR

=1
was introduced in 4.2.2. One can show the following result:

Theorem 4.3.4 Let p be a rational prime. Then:
p splits in Kg <= Vi, p splits in Q (1/a7) +=> Vi, xi(p) = +1.

For Euler numbers, the quest for the class field is finished. For such a number, we have seen
that:
p= Np(r) <= Vi, xi(p) = +1.
Comparing to the preceding theorem, we get:
Theorem 4.3.5 if D is an Euler number, then Ky= K.

It remains to find the class field of an ordinary imaginary quadratic field. This will be done with
the modular invariant described in the following chapter.

We conclude this chapter by describing some algorithms used to solve numericaly the problem
of the representation problem.

4.4 Algorithms of resolution

4.4.1 Ideals and lattices

Let p be a rational prime that splits as pp’ in K. We want a solution of Np(w) = p. We saw that
this problem is equivalent to search for an element of p that minimizes Np on p.
We may view p as a lattice of C. Looking for an £ of minimal norm is the same thing as to
" find a shortest vector of this lattice for the euclidean metric. It is convenient to associate with an
integer a of O (a = = + yw) a vector of C, of coordinates X(a) and Y () in the basis:

oo

_ ) 2 in case (i),
X(e) = { 2z +y in case (i), (42)

More precisely, we put:
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CR E 9

Ifa= ( })f ), we then have:

. X(e)? + DY (a)?
7P = Np(a) = XlL+ DY(a]
in all cases. An ideal i = (a,b+ cw) is generated by: ( 200 and ( ‘;f((;:iccs; ) We have to find

a shortest vector of i for the norm associated to the scalar product;

'
'E:(if) 17:(§,)=>5.17=XX'+DYY',

forgetting the 4 of the denominator. The final algorithm is:
procedure RED(p, D);
(* looks for # = & + yw such that Np(r) = p *)

2
r
2. we build Z = ( 20p ) and ¥ = ( _Tl ), which generate p = (p, —7:—2—_1)—),

1. 1. let » be the solution of:
—D mod p,
D mod 2;

2. reduction of p ([121]):
(9, ) - .
1 p:= W’ m = [p| (this is the nearest integer of p), € := sgn(p —~ m);
2. 7:= (Vv — mi);
3. if ||8]| > ||@]| then goto 3 else exchange @ and 7, goto 2.1;
3. @ is a shortest vector; we come back to O with the formula (4.2) and (4.3).

4. end.
4.4.2 Shanks’ algorithm
We recall an algorithm by Shanks [114], whose goal was to find the solution of the equation:
mp = z? + Dy"", (4.4)

with p a rational prime and m minimal for a given D.
Here, we consider a rational prime p for which we know that it is representable by a form of a

given genus. This algorithm allows us to find it.
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We start with a form that trivially represents p (Cf. Corollary (4.1.1)). Let this form be
@ =(p,b,c). We reduce Q, obtaining a form Q' = (d,¥’,c') and a matrix N such that: N =
a f
Y €

. We write:
VY (z,y), pz® + bay + cy® = a'z”? + V'z'y’ + 'y, (4.5)

()-7(3)

We plug it in (4.5) and find: ,
p=d'e —bey+ 'y : (4.6)

where

Finally, we are sure that a’ is minimal in this equation, because of the reduction process. When
P can be represented by the principal form, we are sure to find it.

4.4.3 To finish with the numerical methqu

Suppose we are in case (i). Finding a 7w in O such that Np(r) = p is equivalent to solve:
z? + %yz =p. '

There is an algorithm, due to Cornacchia ([38]), which solves this problem. It can be interesting
to compare this article with those of [19] and [132].

procedure CORNACCHIA(q, m);
(* solution of u? + gv? = m *)
1. let zo be a solution of 2? = —¢ mod m that satisfies m > zg > 3.

2. we develop Z* as a continued fraction:

m = qoZo + L1
Zo =q121+ 22
Ty = ¢r41%r41 + Tr42

and we stop when z2 < m < z2_;;

3. if the equation has a solution, it is:

m—z2
q

u=z,andv =
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Chapter 5

Primality testing using elliptic curves

5.1 Introduction to elliptic curves

5.1.1 Definition and first properties

In all that follows, k is a field of characteristic different from 2 and 3. An elliptic curve defined over
k is a non singular projective algebraic curve of genus 1. One shows ([119]) that E is isomorphic
to a curve with an homogeneous equation of the form:

P~ gaz 2 — g3d? (5.1)

v z=4z
with g2 and g3 in k. This type of equation is called a Weierstrass model. We identify E to this
curve. In the sequel, every elliptic curve is supposed to be defined by such an equation.

The affine part of E is the set of points of k that satisfie (5.1) and for which a system of
homogeneous coordinates is (z : y : 1). The point at infinity, of coordinates (0 :1:0) is noted Og.
The affine equation of E is: '

v =423 gz - gs. (5.2)

We note E(k) the set of points (z, ) of k satisfying (5.1), together with Og.

Definition 5.1.1 Classically ([119]), we define the following quantities:

A=g3-27 g3 : this is the discriminant of the curve; (5.3)
g3
J=1728 —Al : this is the modular invariant of E. (5.4)

Proposition 5.1.1 E is singular iff A = 0.

Proposition 5.1.2 Every element of k appears as the modular invariant of an elliptic curve E
over k.

Proof. We give an effective proof.

e if 7 =0, we may take the curve of equation

y? = 42 — g3, g3 # 0 (5.5)
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o if j = 1728, we take: A
y? =423 — gox, g2 #0; (5.6)

o if j#0 et j# 1728, weput h = ..117-712_8 and the curve of equation:
y? = 4z° - h(z + 1), (5.7)

has j for invariant. ®m

Theorem 5.1.1 ([55, Th. IV.4.1]) Suppose that k is algebraically closed. Then E and E’ are
isomorphic iff j(E) = j(E').

Corollary 5.1.1 ([119]) Ifk is algebraically closed, E and E' are isomorphic iff there exists u in
k such that:
g2 = u'g;. (5.8)

g3 = ub g}, (5.9)

As a consequence, if ¢ is an element of k that is not q square, the curves corresponding to
(92, 93) and (c?g;, c3g3) are not isomorphic.

5.1.2 Group law on an elliptic curve

We define on a curve E over k an abelian law that we note additively. In the sequel, we use the
same notation for the group a.nd for the curve. To simplify things a little, we place ourself in the
case where k = R.

In R, we consider the curve of equation:

¥ =42 - g2 - gs. (5.10)

If it is not singular, its discriminant is non zero. The shape of this curve is shown in figure 1. Let -
M; and M; be two points on the curve. We want to compute the point M3 which is the sum of M;
and M. We call D the line My M, (if My = M,, D is the tangent line to E in M;). We see that D
meets E in a third point P. We then take for M3 the point which is the reflexion of P about the
the z-axes. We add also the followmg rules:
.Op+0g = OE

.M+ O =

. the opposite of M of coordinates (z, y, 1) is (z, —y, 1).
We now work out explicit formulas giving the coordinates of M3.
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Figure 5.1: An elliptic curve over R.
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Effective computation of the law

Let M; and M; be two points on the curve of respective coordinates (z1 : y1 :1) and (z2 : y2 : 1).
The point M3, which is the sum of M) and M, has coordinates (z3 : y3 : z3). The equation of D is
¥y = Az + u, with

A= (v2 - n)(z2 — 31)if @1 # 73,

A= (122} - ¢2)(21n) 7! otherwise.
We intersect the line D with E and we find:

42° - N2e? — 2Ap+ g2)z ~ g3 — p? = 0.

Since z1, 2, and z3 are the three roots of this equation, we find: z; + 25 + z3 = ’\f:-. We deduce:

A2 . ~
Ig= —/——I) — X2, (511)
4
¥3 = AMz1 —23) — 1. (5.12)

 These formulas are valid in the case where k is any field (with characteristic different from 2
and 3).
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5.2 Lattices and elliptic curves

The aim of this section is to describe the relationship between elliptic curves over C and lattices.
This will enable us to find an expression of the invariant j well suited for computation.
In the two following sections, we take k = C.

5.2.1 Weierstrass’s function

We first follow [23], in which the proofs of the following results can be found.

Definition 5.2.1 A lattice L in C is e discrete subgroup of C generated by two vectors w; and
ws, that we can take to satisfy Im(‘:—;;-) >0. Welet: L = 2wy + Zws.

2

\ 4

Figure 5.2: A lattice.

Proposition 5.2.1 The series defined by:
1 1 1
Y (_____ - ._) (5.13)
2 €L, 1#0 (z -2 12

is normally convergent on every compact included in C — L.

Deﬁnition 3.2.2 The sum of this series is called the Weierstrass function associated with the
latiice L. It is denoted by pr(2).
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The proof of this proposition requires the following lemma, that we shall need later on.
Lemma 5.2.1 Let k be an integer. Then, the series
1
2 E
leL,i#0

is absolutely canvergent‘for k> 2. Its sum is denoted by Gr(L).

Proposition 5.2.2 The function pj, satisfies the following properties:

1. p1 is meromorphic and its poles are ezactly the points of L. All the poles are double and the
residus at these points are zero;

2. p1 is even on L.

Theorem 5.2.1 The function pyr, is differentiable and:

p'L(z) = =2 Z G——_];l—)g

leL

Proposition 5.2.3 The function p), is periodic on L.

Corollary 5.2.1 The function py, is periodic on L.

5.2.2 Expansion of p near the origin

We follow [69]. We write: :
1 1

(z—0Z  PP(1-3)
1 2z k251

Hence, we deduce: .
pr(z)= 5 +22Gs(L) + - + k2P 1 Grpa (L) + -

This formula is valid by lemma (5.2.1). We see that Got+1 = 0 because p(—1) = —p(I) on L.
We have proven:

Theorem 5.2.2

1 .
pL(z) = ;—2- +322 G4(L)+5Z4 GG(L)-I- (5.14)
Corollary 5.2.2 )
pr(z) = — =5 +62G4(L)+20 2Ge(L) + - - (5.15)

Proposition 5.2.4 We put go(L) = 60 G4(L) and g3(L) = 140 G¢(L). Then:

Vze C- L, p’2‘(z) = 4p(2)% - g2 p(2) — g3. (5.16)
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Theorem 5.2.3 Let us consider the curve defined by the equation:
y? =423 - go(L) z — g3(L). (5.17)

Then:

1. the equation 423 — gy & — g3 = 0 has three distinct roots;

2. for every point (z : y : 1) on the curve, there erists a z in C such that z = p(2) and
y = p'(2).
Conversely, if we are given the curve E of equation y?> = 423 — ay = — a3 in C, such that the right
hand side has three distinct roots, then there is a lattice L for which az = go(L) and a3 = g3(L).
The function pr, associated to that lattice yields a parametrization of the curve.

Let L = w;Z + wyZ be the above lattice. Putting r = gzl, with Im(7) > 0, we may write:
L(wy,wz) = wp L(1,7). Then:

g2(L(wi,w2)) = wj g2(L(1, 7)) et g3(Lwr, w2)) = w§ ga(L(1,7)). (5.18)

Therefore, the curve E is isomorphic to the curve defined by the lattice L(1, 7). In the sequel, we
identify the two curves.
Let 9 be the function:

Yp: C — F

z — (p(2):p/(2):1)siz gL
z — QgsizelL.

This yields a group isomorphism ¥ : C/L — E. We thuis identify an elliptic curve to C/ Land
this gives a parametrization for E.

5.2.3 Another expression for G;

We restrict ourself to the study of the lattice L = Z+7Z, where 7 is a complex number of imaginary
positive part. We look for an expression of Gax(L) which is suitable for the computation of the
invariant of a curve. We omit the subscript L without ambiguity.

We write: {
o (m, '14)2(0,0) (mT+ )2~ (5:19)
Then:
Ga = §0 ,_,k + gﬂ n_z_:w mr+ CTFeyea (5.20)
+00  +00 1
Gax = 2((2k) + 2 mzzjl nzz_jw Ty (5.21)

where ¢ is the Riemann function.
Starting from:

1 1 1
7rcot7ra=;1-+2< + _n),a&’bfZ, (5.22)

n—1 a+n  a
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we get by differentiation: :
T 1

sinfra % (a+n)?

With: .
-3Ta .
sinTa = ——-z—i-(l —e2ime),
we find: 2
(21,1!')2 Edemrad
sinfra s

We finish the computation by differentiating (5.25). We have proved:

Lemma 5.2.2

(2im)?F T gk ghimad g > 1.

2 (a+ n)”‘ (2k - 1)!

nez d>1

If we come back to L and put a = m7 and ¢ = €*"":

Gak(T) = 2¢(2k) + 2 (gi”r) T g1 gmd,

d>1
which may be rewritten as:

Gar(T) = 2¢(2k) + 2 ((2?:”) Z oak-1(n) ",

where:

or(n) = Z dr.

din

We give another form to this expression introducing the Bernouilli numbers.

Let us consider the following series ([113]):

Proposition 5.2.5 For every k > 1, bgj4q = 0.
Definition 5.2.83 The k-th Bernouilli number is: By = (—1)'c+l bok.

Theorem 5.2.4
22k -1

VE>1, ((2k) = (ZL)' By 7k,

Plugging this relation in (5.28), we find:

(~1)%4h

/ \
Caul(7) = 24(%)& B X TwtIC

n>1
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We put:

= 5.33
In particular:
4
k=2:((4)= =, By = -1—, E4(7)=1+4240 ) o3(n) ¢". (5.34)
90 30 51
78 1
=3: = — = —, =1-504 ", 5.35
k=3:((6)= gz Bs= ) Ee(1)=1-5 glas(n)q (5.35)
5.2.4 Expansion of j
By definition: ,
. 9:(L)
7) = 1728 . (5.36)
A0 =118 Dy - &)
If we use the preceding results, we find:
3 .
i(r)=1728 _ Lal@ 2T _ (5.37)

) -EXg) 1T °¢

Definition 5.2.4 A modular function of weight 2k is @ holomorphic function on H = {z | Imz > 0},
which is meromorphic at infinity and satisfying:

a b

Vze H,V ( g ) € SLo(Z), f(2) = (cz + d)~2*f (%) . (5.38)

Proposition 5.2.8 The function j(7) is a modular function of weight 0.

We then develop j as a function of ¢ (Cf. [28], VL3):

Theorem 5.2.5

3
: 1
i)==[1+2an q") : (5.39)
. q n21 .

with a,, a positive integer.
We deduce:
Corollary 5.2.3

. 1 n , .

i(q) = T4 Y enqh (5.40)

n>1
with ¢, positive.
We shall have to compute the values of j(r) for some 7 and thus we have to compute the c,’s. We
list their properties.

We begin by the expression of ¢, as a series. This development was found independantly by
Petersson [96] and Rademacher [106], using two different methods.
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Theorem 5.2.6

21 o= Ag(n) . [4n/n
== 5.41
Cn ‘\/Hg L -[1 ( k ) ( )
with: 2

Ar(r)= 3 e, (5.42)

0<h<k, (hk)=1

hh!=—1modk
L(X) = —iJ1(iX), (5.43)

where Jy is the first Bessel function:

et (_ l)uz2u+1

= . .44
Jl(z) ; 22V+11/!(y + 1)! (5 )
We deduce: |
Corollary 5.2.4
on ~ E (5.45)
SRV '

On the other hand, the ¢,’s enjoy the following striking arithmetical properties, that will be
useful to check our computations.

Theorem 5.2.7
If n=0mod 2* then c,=0mod?2%+8 ([79))

n = 0 mod 3% ¢n =0 mod 3%+3  (/79))
n= 0mod 5° ¢n = 0mod 5t ([78))
n = 0 mod 7¢ ¢n = 0 mod 7¢ ([78))
n = 0 mod 11¢ ¢n =0 mod 11°¢ ([5,78])

(See also [6,4,77,94,123]).

We give in the appendix the values of ¢, and a, for n < 160, computed with MAPLE on a
SUN 3/60. We give below the first ten coefficients, together with their factorization.

n Cn
1 1 22.33.1823
2 2 211 5 2099
3 3 2.35.5.355679
4 22 214 33 45767
5 5 23.52.2143.777421
6 2.3 213.36.11.132.383
7 7 33.5.7.271.174376673
8 23 217 3.53.199.41047
9 32 22.37.5.4723.15376021
10 2.5 212 35 52 132.5366467
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Some functions linked to 7

We define ([125, III-§25)):

f=¢® ] (1+4mF), (5.46)
m2>1
Al =g ] '(1 - q”“%) ; (5.47)
m>1
@) =vZer [[ (1+d™), (5.48)
m21

where as usual ¢ = €?*"”. These three functions satisfy numerous identities. We only need:

(= @116 _ (h(@*+16)° _ ()™ +16)"
M % A O

f@)fi(9) f(g) = V2. (5.50)

(5.49)

(Cf. [125, T11I-§54]). We also set:

72(a) = $4(a), 1a(g) = {/i(a) - 122, (5.51)

where the cube root of the complex number z is taken as:
o i
z=pel = Yz = Ypes.

5.2.5 Back to the isomorphism between lattices and curves

It is convenient to associate an elliptic curve F with a unique complex number 7 such that £ =
C/L(1,7).

Theorem 5.2.8 ([61, 1, II, 4, 3]) Let7 and 7' be two complex numbers. Let E and E' the curves
respectively defined by j(t) and j(7'). Then: j(tr) = j(v') iff there ezist a, b, ¢, e in Z such that

ae — be = +1 and:
, ar+bd

T = .
¢t + e

Moreover, if T’ is given, there is a unique T such that j(t) = j(7') and

'—% < §R(T) < %7
| = 1if ®(r) <0, (5.52)
[7]>1if R(r)>0.

In other words, E and E’ are isomorphic iff L(1,7) and L(1,7') are homothetic. We have thus

settled an equivalence relation between elliptic curves via lattices. The classes of equivalence are
definde by the above conditions.
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5.3 Complex multiplication

We have seen that it is possible to associate a curve E with a lattice L, generated by (1, 7), with
Im 7 > 0. We suppose that 7 satisfies (5.52).

We introduce the set EndiE of the endomorphisms of E(k), seen as a group. It is a ring for
operations + and o and is contains the identity for o. One shows ({55, th.IV.4.18]) that we can
identify an element f of EndiE with an homomorphism of C that keeps L unchanged by means of
the function ¥ defined above. Such an homomorphism is in fact the multiplication by a complex
number a. Let A= {a € C | a L C L}. We recognize the stabilizer of L. It is obvious that Z C A,
and a fortiori \A has a neutral element. :

Definition 5.3.1 The curve E has complex multiplication by A if A # Z.

Theorem 5.3.1 ([565, th.IV.4.19]) If E has complez multiplication, then there exisis a 6 > 0
such that T € K_s. Moreover, A is a subset of the ring of integers of K_s.

Conversely, if T = v+ 8/=8, with 7 and s in Q, E has complez multiplication. The ring of
endomorphisms of E is isomorphic to

{a +b7| a, bin Z and 2br, b(r® + 65%) in Z }.

Proof. Let us prove the first assertion. Let o be an element of .4, but not of Z. Then, there exist
rational integers a, b, ¢, and e such that:

a = a + br
{ ar = ¢ + er. (5.53)
Since E has complex multiplication, b # 0. We find:
br2 4+ (a—e)r—c =0, (5.54)

which we write: Ar%2 + BT + C = 0, with A, B, C mutually prime and A > 0. Since 7 ¢ R,
the discriminant of this equation is negative. Hence, there is a § > 0 such that 7 belongs to
K5 = Q(v/=8). We write: 7 = ‘—-B-;LA‘L-'_‘:.

By (5.53), a is an element of K5 and in fact an integer:

a’® - (a — e)a + (ae — bc) = 0. (5.55)

We have proved that A is an order of Ks. We say that A is the order of L(1,7).

Conversely, let 7 = r+ sv/—6, with 7 and s in Q. We are looking for @ = a+br, witha and b in
Z, such that a 7 € L. This implies that & = a7 +br? and thus b72 € L. But 72 = —(r24+6s%)+ 2rr.
We must have 2br € Z and b(r% + 8s%) € Z. The conditions are clearly sufficient and A is the
desired set. It is clear that A is not equal to Z. Therefore, F has complex multiplication. =

Let E be a curve with multiplication and 7 a quadratic number such that: £ = C/L(1,7). To
7 is associated the quadratic form (A, B,C) where Ar? + Bt + C = 0. This is equivalent to say
T = '—Bi?_!-‘j,_ﬂ We rewrite conditions (5.52):

ITI=‘A—)
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—A<B<A,
B20=C 2> A,
B<0= C > A.

It follows that (A4, B, C) is reduced. We can rephrase the conclusion of the above theorem. The iso-
morphism classes of elliptic curves with complex multiplication are in a one-to-one correspondance
with the reduced forms of H(—d).

5.3.1 Class field of Q(v/-D)

Let —D be a fundamental discriminant and K the field Q(v/—D). We can now describe the class
field Ky. Let Cy,...,C) be the (representants of the) classes of quadratic forms od discriminant

—D. To each class C. = (ay,b,, ¢,), we associate the complex numbers 7, = =rtV=D 514 (7).

2ay

This defines an elliptic curve E, 2 C/L(1,r,), which has complex multiplication by the order of
L(1, 7). Then:

Theorem 5.3.2 ([125, III, §-115], [14], [116, C.coro.11.1.1])

1. the j(7.) are algebraic of degree h(—D);

2. K(j(7r)) is independant of r and it is ezactly the class field Ky.

From the general theory, we deduce that the Galois group G = Gal(Ky|K) is isomorphic to
H(—D). More precisely, if C is in H(—D) and g¢ in G is its image through the Artin isomorphism,

we have:

Vr, oc(3(Cr)) = J(CTIC). (5.56)
The quest for the class field of K is finished. The final conclusion is:

Theorem 5.3.3 The equation Np(w) = p has a solution iff p splits in K as (p) =9y’ and p (resp.
p’) splits in the field Ky = Q(v/=D, j(w)), where w generates O.
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5.4 Elliptic curves over finite fields

In order to simplify the formulas, we suppose that an elliptic curve is given by: ,
y® =23 + az +b. (5.57)

We deduce: _
A = ~16(4a® 4+ 275%). (5.58)

5.4.1 n =p% p prime

The notion of elliptic curve over the field Fpa is well defined. We restrict ourself to the case where
a = 1. The results that follow can be generalized easily. We put k = Z/pZ.

The property of complex multiplication is defined essentially in the same way as the case of C.
One can show the following result:

Theorem 5.4.1 ([41]) Let E be an elliptic curve over k. Then EndiE is isomorphic to the ring
of integers of a quadratic field K = Q(v/~-D).
It is convenient to introduce the particular endomorphism, called the Frobenius:

Tp E — F

(z:y:1) — (zP:y?: 1)_ (5.59)

The curve E can be seen as the kernel of the endomorphism =, — Id.

Theorem 5.4.2 The endomorphism r, is associated with an integer # of O_p satisfying Np(w) =
p (i.e. p=rn'). Moreover, the number of poinis on E is:

m=(r-1)(n"-1)=p+1—(n+7). (5.60)

Corollary 5.4.1 (Hasse)
' |p+1-m|< 2P (5.61)

Corollary 5.4.2 Conversely, putt = p+1—m and D = 4p—t2. Then E has compler multiplication
by O_p.

Suppose now that p is a rational prime, ~D is a fundamental discriminant such that (%) = 1.

Suppose also that we have found 7 € O_p (K = Q(v/=D)), such that Nx(7) = p. To this 7 we
associate the Frobenius of a curve E defined over k such that the number of points on this curve is
precisely m = p+4- 1~ (7 4+ 7). This curve is completely characterized by a root j of Pp(X) mod p.
It remains to say that Pp(X) has all its roots in k and that all corresponding curves have the same
number of points. By proposition (4.1.1), there are eaxctely w(~D) elliptic curves with complex
multiplication by O_p, characterized by their numer of points m. '

Complementary results

The equations (5.11) and (5.12) define on E an abelian law. The structure of E(Z/pZ) is described |
in the following theorem.

Theorem 5.4.3 ([24]) The group E(Z/pZ) is either a cyclic group or the product of two cyclic
groups E = Ep, X E,,,, with:

my | mz and my | ged(p - 1, in). (5.62)
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5.4.2 Elliptic curve over Z/nZ, n # p*

In this case, Z/nZ is not a field. Nevertheless, it is possible to define the notion of elliptic curve
over a ring (Cf. [16,81]). We just need a more flexible definition.
Following [32,81], we let:

Va = {(z,9) € Z/nZ, y* = 2® 4 az + b mod 7} U {0,},

with (A,n) = 1. If P and @ are two elements of V;,, and p a prime divisor of n, we note P, and
@p their image by the projection of V, on V,, (reduction modulo p). We remark that V, is a non
singular elliptic curve, since (A,p) = 1.

On V,,, we define an operation, again noted +, which has the following properties. If P and Q
are in V,, the application of + to the pair (P, Q) yields either a divisor of n or an element R of V,,
which satisfies R, = P, + @, for all prime divisor p of n. This operation has been named pseudo
addition by Henri Cohen. We give below the algorithm used to encode this opreation.

procedure PSEUDOADD(P, Q, R, n, d);
(*R:= P+ Q, dis a factor of n *)
(* P = (21,91,21), Q = (22,42, 22), R = (23,93,23) *)
1. if P = 0, then R := Q; go to 5.
2. if @ = 0, then R := P; go to 5.

3. 1. d:=gcd(zy — z3,n);
2. if1 < d < n then go to 5.
3. ifd = 1 then
Lom:=(y2 - n)(z2 —z1)" Y
2. z3:=m? — 21 — 9}

3. y3:= m(xy —z3) — Y13

4. go to 5.
4. 1. d:=gcd(y1 + y2,n);
2. if1 < d < n then go to 5.
3. ifd = n then R:= 0,; go to 5.
4. 1. m:= Bz +a)(y +w) Y
‘2. 23:= m2~a:1-—:v2;
3. y3:=m(x1 ~ z3) — 13
5. end.

In the sequel, the operations we have to do on such a curve will be done with this algorithm.
If we find a factor n in any step, we suppose that we stop all our computations to declare that n
is composite.

We can now explain the Goldwasser-Kilian-Atkin test.
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5.5 The GK algorithm

In order to test an integer for primality using elliptic curves, we need a theorem which is the
analogue of theorem (2.2.2). We must be careful in stating such a theorem, because E(Z/pZ) is
not always a cyclic group.

Theorem 5.5.1 Let n be an integer greater than 1 and prime to 6. Let E be an elliptic curve over
Z/nZ, m and s two integers such that s|m. Suppose we have found a point P on E that satisfies
m P = Og. We suppose also that for each prime factor q of s, we were able to compute verify that
P £ Og using the preceding procedure without finding a factor of n. Then if p is a prime divisor

of n, #E(Z/pZ) = 0 mod s.

Corollary 5.5.1 If s > (¥/n + 1)%, then n is prime.

Remark: if n is prime, m is the number of points on the curve and its role is that of n — 1 in
theorem (2.2.2).

Proof of the theorem. Let p be a prime divisor of n. We note E, the curve E(Z/pZ). Let Q be the
point of E defined by Q = (Z)P. We call Q,, the corresponding point on E,.

Since mP = O, we deduce that s Q = O and s @, = Og,. If w is the order of Q,, we see
that w|s. _

Hqls, (£)Qp = (74 : yg : z9) on Ep. By assumption, (£)Qp = 27 P = (%)Pand z, # 0 mod p.
Hence w ,{'% Therefore, w = s.

Since the order of a point of E, divides the number of points on the curve, we have

#E,=0mods. m . (5.63)

Proof of the corollary. If n is composite, there is a prime p < /n that divides n. We know by
the preceding theorem that #E, = as, with a > 1. By Hasse’s theorem: as < ({/2+ 1)2. We
deduce that (\/p+ 1)? > a(¥/n + 1)%, and thus \/p+1 > /a(,/P+ 1), which is impossible. Thus
n is prime. &

In order to use this theorem, it is imperative to find E and its number of points m = #FE,,. Schoof
([112]) has given an algorithm that computes the number of points on an elliptic curve defined
over a finite field and that has a running time O(log®n) (Cf. [81]). We can now describe the GK
algorithm.

procedure GK(n);
1. choose a non singular elliptic curve E over Z/nZ, for which the number of points m (computed
with Schoof’ algorithm) satisfies m = 2 ¢, with ¢ a probable prime;

2. if (E, m) satisfy the conditions of the theorem with s = m, then n is prime, else it is
composite;

3. the primality of ¢ is proved in the same way;

4. end.
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The running time of the algorithm depends on the following theorems.

Theorem 5.5.2 ([48,81]) Suppose that there exist two positive constants ¢; and cy such that the
number of primes p in the interval [z; z + /2 z](z > 2) is greater than ¢, v/z (logz)~°2. Then GK
proves the primality of n in ezpected time O(log'®+°2 n).

Theorem 5.5.3 ([49,81]) There ezist two positive constants c3 and ¢4 such that for all k > 2,
the set of prime numbers n of k bits for which the expected time of GK is bounded by c3log!* n is
at least 1 — cg 2—F"°%°8% : o

The problem with that algorithm is that Schoof’s algorithm seems difficult to implement. The
idea is then to use the properties of the elliptic curves over finite fields which have complex multi-
plication.

5.6 The ATK algorithm

In algorithm GK, we begin by searching for a curve and then its number of points. Here, we do
exactly the contrary. We use the properties of the curves modulo a prime. We then modify step 1
of GK by: ' '

procedure ATK(n);

1. 1. choose a fundamental discriminant —~D (in practice D runs-through 3, 4, 7, 8,...) such
that n splits as = «n';

2. for this v, compute the number of points m = n+ 1~ (r + n'). If m = k ¢, with k greater
than 2 and q a probable prime, go to 1.3, else go back to 1.1.

3. compute an invariant j (root of Pp(X)in Z/nZ), then the associated curve E (Cf. the
following chapter).

The other steps of the algorithm is unchanged.

We note that there are exactely w(—D) elliptic curves with complex multipplication by Ok,
characterized by their number of points f5(n) = n+1— (7 + ). To this function we associate the
function 7 ff; described in chapter 2, section 2. The function 7 fp is then the test that returns’?’
if the w(—D) functions 7 fJ, return ’?’ and the answer of one of the 7 fp else.
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Part IT1

Implementation of Atkin’s test
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Chapter 6

Precomputations

6.1 Computation of the polynomials Pp(X)

We have seen that the j-invariants of the elliptic curve which have complex multiplication by Op,
—D a fundamental discriminant, are algebraic integers of degree h(—D). The polynomial

h(~D)
Pp(X)= [ (Xx-3r), (6.1)

r=1

is thus in Z[{X]. This polynomial, once reduced in Z/pZ, yields the j-invariants of curves with
complex multiplication over Z/pZ. We have thus to compute those polynomials. As a matter of
fact, they are precomputed and then stored in the program. The first thing to do is to compute j.

Several authors ([12,50,124]) have listed the values of j for all known values of D of class number
2 or 3, and for some other values. This could be used to compute the corresponding Pp(X). This
method cannot be applied to polynomials of higher degree and so we must look for a method that
always works. It seems that the simplest way to do this is the following Rambo method: evaluate
J with sufficiently many digits and then form Pp(X).

6.1.1 The method

Let —D be a fundamental discriminant. We begin by listing all primitive reduced quadratic forms
of discriminant — D using the procedure QFLIST (Cf. section 3.1.3). To each form (a,, b,, ¢,), we
associate the complex numbers 7, = W and j, = j(7).

Then, we make two classes of forms. Inrt_he first one, we put all forms (e, b, c) for which (a, -b,¢)
is also reduced. The second is formed by the remaining forms. This is motivated by the fact that
the values of j corresponding to the forms (a,b,c) and (a,—b,c) are conjugate (in C). This saves
some time. After we have computed the h(—D) values of j, we build Pp(X).

We need a way to check our computations. This is done as follows. We first notice that
N := Pp(0) is the norm of j, in Q(7). It is possible to compute this quantity independently of
Pp(X). Let r be a quadratic number satisfying A7? + Br 4+ C = 0. We define disc(r) = B2 —4AC.
Then: ’

Theorem 6.1.1 ([51,44]) Let —D; and —D; be two different fundamental discriminants. We
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put:
4

wiwy

J(Dy,Dz) = II G(n)-i(m) (6.2)

(r1}. [72]
disc(r;)=D;

where the product is eztended to all reduce forms of discriminants —D; and —D3, and w; is the
number of units in Q(v/=D;). Ifl is a prime number satisfying (-21,22) # —1, we introduce:

() if (D) =1
e(l) = (6.3)
(B) if (D) =1. :

Ifn =TI with (QJEDJ-) # —1 for all i, we extend € by €(n) = I]e(l;)*. Then:

w2
J(Di,D=+ [ F (ﬂpz—l’-) (6:4)
22 < D1Dg 4
22 =D; Dy mod4

where

F(m) = H ns(n), (6.5)

i :
As a particular case
Corollary 6.1.1
2
J(D,-3)% = (M5, (6.6)

This formula shows that A3 and therefore A/ are always rational integers.
We now now some details of the actual computation.

6.1.2 Numerical evaluation of j(r)
Choice of a formula for j

We can use several formulas of j as g-expansion, where g = €%"", The first task is to find one that
is well suited for the computations. ,
. : . Eu(q)? .
The first idea was to compute separetely E4(q) and Eg(q), then j(g) = 1728?@%,737' This
was bad, since these two terms are very small (Cf. below) and this caused some error in evaluating
E4(q)® — E¢(q)%. The second solution tried to use:

Eyq)® — Es(q)* = q [[(1 - ¢")** = 3 r(n)q", (6.7)

n>1 n2>1

given by Ramanujan. D. H. Lehmer computed 7(n) for n < 300 ([76]) and it would have been
possible to use these tables. I did not use this idea, since there is a nice g-expansion of j. We saw
that:

: 1 . .
ig) = =+744+ ) en g™, (6.8)
q n>1
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where all the ¢, are positive integers. The computation of these coefficients began with [138]. It
had been extended to n = 100 in [122], using some relations of the ¢, with the partition function
(5.41). Herrmann has announced ([60]) that he had computed the 6002 first values of ¢,. These
values are unfortunately not given. Finally, Mahler has given explicit recurence formulas for these
coefficients (see [83]).

It would have been tedious to type all these data. SoIused MAPLE to compute the g-expansion
of F4 and Eg, and then deduce from them the g-expansion of j using the Taylor function of this
package. The only thing to do was then to verify the properties (5.2.7) before storing them in a
program. This is a very fast computation and the results coincide with that of [122].

Remark concerning the computation of o.(n)
All integers for which we have to compute o,(n) are small (n < 500). I thus used a very straight-
forward algorithm that is very fast for this range. ' :

function SIGMA(=n, r);

1. s:=0;
2. ford = 1.[\/n] :
1. ifd | n then
A 1. ifd?’=n then s := s + d'jelse s:=s+d" + (3)7;
3. SIGMA:=s;
4. end.

Computation of j(r)

- We have to evaluate j for values of r of the form T = M, where (a, b, 84Dy s a primitive

2a 4a
reduced form of discriminant —D. We put ¢ = pe~%, with p = e"ﬂag andf =~ % Since this form

is reduced: a < \/—?. We deduce: p < e~™3 < 4.34x 103, Hence, the series giving j(7) converges
very quickly. The evaluation of j is carried out separetely for the real part and the imaginary part.
We may remark that the leading term of j is ;— + co. Thus:

(6.9)

. TvD
log|j| = ——.

It is possible to estimate the error made in truncating the series for Jj. Let N be a positive integer.
We want to get an upper bound for:

An(q) = E cnq”.
n>N

By theorem (5.2.4), there exists a constant C; > 1 such that:

Cy etV
Vo 21, e < —= ——5—.

V2 nt
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Then:

47r\/;
AN <
|An(g)| < z_;vp ﬁ ~
We write:
e41r\/ﬁ
Up = pn. 3
nt
Hence: D
nrv D 4a
logu, < (—1 + ) .
ogu, < - =~
Since a < —?—, we deduce:
logu, < —n log Rn,
with: /D
v D 4
egin =D (12 ).
og AN 3NV
We find: i 1 ‘
‘ 6.10
NI g g (6.10)

6.1.3 Computation of Pp(X)

We have just seen that log|j| =~ ’—"@ The number of digits of j(¢q) is asymptotically ﬁg We
have to compute the coefficients of Pp(X) to within 0.5 and in particular the product I17-. The
precision required is thus:

A A1
where the sum is taken over all primitive reduced forms of discriminant —D, and vp a positive
constant that takes care of the error made in our estimation of log|j|. We then form all products
of the form X — j, regrouping terms of the type (X — j) and (X —J) to get:

(X=X =) =X>-(G+IDX +7j,

which reduces error computations.
We check the result with (6.6). If we find that Pp(0) is the cube of an integer to within 0.5,
we are confident that the computed polynomial is indeed the one we were looking for. I have

computed all polynomials Pp(X) corresponding to all known values of D for which h(—D) is less
than 10. This makes 454 polynomials ([22]). These computations were done using MAPLE ([29])
on a GOULD/NP1. It took roughly 10 hours of CPU time.

The coefficients of these polynomials are huge (sometimes more than 200 digits). It is sometimes
possible to get smaller coefficients, as explained in the next paragraph. '

Compacting data
We can reduce the amount of storage needed by our Pp(X) using the following result.

Theorem 6.1.2 ([125,111]) Let 7 be a quadratic number defined by At> + Bt + C = 0 and
satisfying (5.52). Then, if 3|B, 3 A, 3 JB? — 4AC, we have:

Q(72(7)) = Q((7))- (6.12)
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Conversely, let —D be a fundamental discriminant not divisible by 3. It is always possible to
find a form (A, B, C) that satisfies the preceding conditions. For instance, we may take:

(1,3, D+9) if D = 3 mod 4,

4
(6.13)

(1,6,-21;316—) if D-= 0 mod 4.

The corresponding reduced form yields the same value of j (Cf. section 5.2.5).
1
The minimum polynomial of ¥, noted P3(X), is of degree h(— D) and its coefficients are smaller

1
than those of the original Pp(X). This saves some space. From a practical point of view, P3(X)
is computed as follows:

procedure MINGAMMA;
1. R(Y):= Pp(Y3);
2. factor R(Y) in Q;

3. write: R(Y) = Ri(Y)R2(Y), where R, and R are irreducible polynomials, of respective
degree h(—D) and 2h(—-D);

. v
4. P3(X) is precisely Ry(X).
5. end.

For example, for D = 23, we find:

Pp3(X) = X3 +3491750X 2 — 5151296875X + 12771880859375,
1
PA(X) = X34 155X? + 650X + 23375.

1
Factoring these polynomials Pp or PJ over Z/pZ is very expensive. We shall see in next
chapter how this computation can be avoided in the case where D is an Euler number.
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6.2 Computation of the invariants of the Euler numbers

6.2.1 Summary of the results

If =D =[]%., ¢* is an Euler number, all quadratic forms of discriminant —D are ambiguous, since
the square of a class C is in the genus Gy, which only contains the principal form.

Lemma 8.2.1 Let Q = (a,b,c) be an amibguous form and let T = _—-_b-g_;@ Then:

j(r) € R. ‘ (6.A14)

Proof. We know that an ambiguous form can be of three types. In the case where @ is of the shape
(a,0,¢) or (a,a,c), the number g = €277 is real and it follows that j(7) is also real.
When Q = (a,b,a), we see that || = 1. On the other hand, we know that ](T) =jL) (jisa
modular function). We deduce that:
i(r) = i(7)

and this is precisely j(r), which can be seen by looking at Ga;. Therefore: j(7) € R. =

We know that the genus field Kg = Q(\/qf,...,/4qf) coincides with the class field Ky. Let C
be any class of H(—D) and o¢ its image by the Artm isomorphism. We have:

VC, Vs, 0c(3(Cs)) = (C1C,) = §(CC), (6.15)

since all forms are ambiguous. On the other hand (Cf. section 4.2.2) the isomorphism o¢ is the
Artin symbol of Kyx|K and:

ST+ o) = Ca(CW s -+ XA W D). (6.16)

Since all forms are ambiguous, all j are reals, by the lemma. Hence, the values of j are contained
in the largest real subfield of K. If the first [ prime factors of D are congruent to 1 modulo 4 and
the others to 3, then the j’s are in:

Kig = Q(V415- - s VO VAT 101425 - - VU+102)- (6.17)

Since we have determined the field of definition of the j’s, we can now describe some methods
used to compute the exact expression for j. Do not forget that we have computed all.the polynomials
Pp(X). As soon as we have computed a formula for 7, we can check it by direct evaluation.

6.2.2 Weber’s formula

Let —D be an Euler number divisible by 4. Letting m = £, the principal form is (1,0,m) and the
corresponding value of T is iv/m. Weber has proved the following formulas (Cf. [125, I1I-§143] and
(126]):

Theorem 6.2.1 There are two cases:

1. if m is odd then:

( f(i\/r_n“)) (=D = [ #OHE), (6.18)

of
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where the product is taken over all the decompositions of D as —D = §6' with § = 5 mod 8
(6 positive or not). The function H is defined by:

2 .
5 k() if8<,

(
2 h(é6) otherwise,

H(6) = (6.19)

For each factorization —D = §6', one among § and §' is positive and then 7 is a fundamental
unit of the corresponding real quadratic field.

2. if m is even, then:

( f1(iy/) ) D [ n#®HE, (6.20)

.1..
21

with the same notations.

Example

Let D = 840 = 8 x 105 that satisfies h(—D) = 8. With the help of the tables glven in [15] and [63],
we find:

51 O H@) [HG) |1 -
—3T 250 4 | 251 +30v70 = (5v5 + 3V14)? |
5 | -168 s |25

o1l _a0| 2 0 5+\/— _ (VB +\/_ 7)

-35 24 |- 2 2 5+2\/6_(\/'+\/')2

N Wy

We deduce:
27 = (5v5 + SVIDL + V) A(VE + VINIHVE + V).

We then plug that result in MAPLE to get:

j= 436810980663310134386664450093663086400
+ 195347809216301527540490053498198986240 /5
+ 178327336111639887169359664860260102400 /6
+  79750409158415962769096479496235724800 /30
+ 116742645173060259939233851836971520000 +/14
+  52208898096020088304326516705167788800 /70
+  47659985316131200714081618743535430400 /84
.+ 21314193394702233808587585180348748800 /420.

Weber gives numerous examples of computation of j in [125, Tabelle VI].

! And not (5v/5 + V14)? as indicated in [125, Tabelle VI].
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6.2.3 A complementary method

This method was explained to me by D. Bernardi. We describe it on an example.

Let us consider the case D = 1155. We write: —D = (5) x (=3) x (=7) x (—11). The field
containing j is then Kz = Q(V5,v21,v33).

To each form C, = (a, b, ¢,) We associate 7, = :—”I%‘/—_D— and j, = j(7r), and the Artin symbol
o, = oc,. We know that:

or(ahs - o JTE) = CalCNTh - xdCND)-

We evaluate x,(C,) by the computation of (1’;—) where p is any prime number represented by C;
(p /D). |

In the following table, we have listed all forms of discriminant —1155. For each of these, we
have found a small prime p (p fD) represented by it and the values of the Jacobi symbol (‘%),
where ¢ is a divisor of D. We have just indicated the signs of the symbols.

e] ble=2[(5) 1) |(5) (5
Ci| 1] 1| 289 + + + +
Ca {171 1 17 — - - -
Cs| 3| 3 97 + — - +
Cs| 5] 5 59 - + - +
Cs| 7| 7 43 + - + —
Ce |11 |11 29 - + | + -
C7 11515 23 - - + +
Cs {19 )17 19 + + - -

Let us decide that j; is written:

i = a+bVB+eV=3X —T+dV—3X 11+ ey/=T X =11
+fVEX =3 X =T+ gV5x =3 x =114+ hy5 X =7 x —11,

with a, b, ¢, d, e, f, g, h in Q.
Let us now consider the action of o, on the j’s. By theorem (6.15):

VS,O’2(j(C3)) = ](CZ_ICS) = j(CZCs),
(C, is ambiguous). In particular: 02(j1) = j2. Therefore, jz may be written as:

j2=02(f1) = a+boa(V5E)+ car(vV=3)ox(v=T)
+do(V=3) 02(vV=11) + e 02(V=T) 02(V-11)
+f 02(V5) 02(v/=3) 02(V=T) + g 02(v/5) 02(V=3) 02(v/-11)
+h oo(V5B) o2(vV=T) o2(vV/—=11).

Using the preceding table, we get:

jo = a— b5 — V21 + dV/33 — eVTT + fV105 — gv/165 + hV/385.

55



We do the same with the six other forms and we obtain:

[ 31 (++++++++\(a

7 + -+ + 4+ - - = |5

73 + - -+ - + - + ev2l
Al _ |+ ++ - -+ - - dv/33
- N B S i eV'77
Je + + - 4+ - - 4+ - fV105
Jr + - - -+ + + - gv165
N D AN &3

We have just written the signs of the coefficients of the matrix, since they are +1. In order to
find the coefficients a, b, c, d, e, f, g et h, we have to invert that matrix. We do that with MAPLE
and we get:

[ a \ [+ + + + + + +\ [ A
5 + - -+ - + - + J2
V21 + + -+ 4+ - - - Js
dv33 1+ ++ - -+ - - Ja
eVT7 T84+ + - - - -+ 4 Js
fV105 + -+ + - - + - Je
gv165 + - - -+ + + - Jr

\ 1385 ) \+ -+ -+ - = +/ \js)

We then replace the j, by their numerical value, as indicated in the above table:

S Js
11 -23373692778731029019776599932265891844886003843.88
2 1706.63
3 -~-2859186231495065.55
4 —1878214955.10
5 ~4207529.03
6 ~15686.61
7 -635.72
8 9.27

We deduce:

a = —2921711597341378627472074991533593879124992000
b = -1306629148460963287630585767202654373354618880
c = —637569740649866931007417559855913439057920000
d = —508604706243764883294133415277319212624076800
e = —332959937881833102714456353625205560476467200
[ = —285129856098002680171205468160808422359654400
g = —227454939367474000635400441674356512822886400
h = —148904210977577231461745263391546913552998400

6.2.4 How not to use the two preceding sections

Before using the machine guns described in the last two sections, it is worthwhile to make some
remarks. We have to solve equations of degree 2! by means of square roots.
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When t = 0, it is obvious. If t = 1, we must solve equations of degree 2 and this is easy too.
In the case t = 2, we know that the equations are solvable by radicals, no matter where they come
from. Using MAPLE and the function solve on the first example corresponding to D = 84, I found
the following results:

IN=/1
.-\l 1/1.. INRIA - Rocquencourt
\' MAPLE / Version 4.2 --- Dec 1987
L S > For on-line help, type help();
|
> p84;
4 3 2

x - 3196800946944 x - 5663679223085309952 x + 88821246589810089394176 x
~ 5133201653210986057826304

# find first approximations of -the roots with 30 digits

> Digits:=30:

> fsolve(p84);

-1787216.60124765701986744310183, 58.0070617294852765340555935901,

15488.6808931242445922671434083, 3196802718613.91329280328999865

> solve(p84);
1/2
799200236736 + 302069634048 7

/2 1/2 1/2
3 (142197407 7  + 376218976)
Y 11 R T —————

# floating point approximation
> je=":
> evalf(j); _
3196802718613.91329280328999865

We next simplify this expression by recognizing that:
142197407V/7 4 376218976 = v/7(142197407 + 376218976v7) = v/7(8432 + 3187/7)?
and we find:

j = 799200236736 + 302069634048V + 54722304v/3(8432 + 3187V7)
= 799200236736 + 302069634048V/7 + 461418467328v/3 + 174399982848+/21.

The floating point value is:

3196802718613.91329280328999865,

57



which is the correct value.

This case can thus be dealt with without complicated methods.

The case t = 3 and 4 | D is treated by Weber’s formulas. Eventually, we are left with four odd
values of D for which we must use the second method.

The last discriminant, D = 5460 and ¢ = 4, is divisible by 4, and therefore we use Weber’s
formulas. '

6.2.5 Utilisation in Atkin’s test

We succeeded in calculating an expression of j in the field K,g. This expression is a linear combi-
nation of square roots with coefficients in Q (as a matter of fact in Z except in the case D = 15,
where we get some denominator %)

The computation of j in Z/pZ is done by replacing the computation of square roots in R by .
the computation of square roots modulo p (these roots are of the form /g7 mod p and we do know
that ( %5-) = +1, by the choice of a quadratic form of discriminant —D to represent p).

The algorithm we use to find these roots is faster than Berlekamp’s algorithm used to find a
root of Pp(X) modulo p.
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Chapter 7

Practical considerations

7.1 Selecting D

Let n be the number tested for primality. The first part of the algorithm consists in choosing a
fundamental discriminant —D such that n splits in K= Q(+/~D) as a product of two distincts
principal ideals. We look for D in increasing order of h(— D), first among Euler numbers, and then
among the others.

We write —D = ¢f...q; and the first thing to verify is:

()~

If this is the case, then we test if n can be represented by a form in the principal genus. That is to

say, we verify that:
Vi> 1(q—) = (1) = +1.
n q:

(£)=(D)1(2)-

k2

We do not compute (%}:) since:

This is done to avoid the case where 4 | ;.
If n satisfies all these conditions, we compute the form in the principal genus that represents
n. We use procedure RED when D is odd and the procedure CORNACCHIA in the other case.
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7.2 Looking for m

7.2.1 Possible values

We know that there are w(—D) possible values for m. If n splits as @ @’ in K, the associated
number of points is m = n + 1 — (@ + @'). Starting with this decomposition of n, we find the
others in the following table.

D | w(—D) | possible decompositions

31 6 |[(xw)(xw'), (pw)(xpw’), (xp*w)(+pw’)
4 4 (xw)(xw'), (iw)(tiw’)
>17 2 (xw)(xw') .

with p = % and i2 = 1.

7.2.2 Factorization of m = (7 —1)(«' — 1)

We remark that m = Ng(m — 1). Since this the norm of an integer of O_p, we have the following
property. If [ is a prime divisor of m, then, following (4.1.3): {| D or (ZTQ) = +1. This gives us
some information on the potential divisors of m.

Trial division

We begin by looking for small prime factors of m. Let p1,...,px be all the prime numbers less
than a given B. We suppose they are stored in a file. We want to know which of them divide m.
In order to optimize the computation, we make the following remark. We begin by factoring n +1,
then some numbers of the form n + 1 + t. We build the following vector:

RES[i] := (n+ 1) mod p;,for i = 1..k.

Divisibility of n £ 1 is tested as follows:
for ¢ = 1..k

1. if RES[¢] = 0 then p; | n + 1;
2. if RES[i] = 2 then p; | n — 1.

This idea was already used in (20, Section 7, Rem. 1] and [34]. We can generalize it in the case
where we want to factor my = n + 1 £ ¢, with |t] < 2/n.

fori= 1.k
1. r:==17mod p;;
2. if r = RES[i] then p; | m_;
3. if r + RES[i] = 0 or p; then p; | my.

We replaced 2k divisions of numbers of size L with k divisions of integers of size %
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Looking for larger factors

The larger the numbers we test, the larger the factors we must find. The preceding method has the
disadvantage of requiring a lot of memory. For instance, storing all prime numbers below B = 108
requires 170 kbytes. In order to find factors less than 107 or 108, we must use another method. It
seems that the best one is Pollard’s p method ([98,17]) for the size of factor we want to discover
(Cf. the empirical study in [18]).

Choice of the parameters

A current strategy for a number with less than 300 digits is to find all factors less than B = 104
by trial divisions and then use 4000 iterations of p. Thus, we are sure to discover all factors of m
less than 10° (Cf. [53]).
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7.3 Computation of j

Let D be a discriminant. The computation of the associated value of J modulo n depends on
h(—D), the class number of —D.

7.3.1 D is an Euler number

h=1

This is a nice case, because we just have to do one division.

h>2

We have computed in section 6 an expression of j as a linear combination of square roots with
integer coefficients (éxcept for D = 15). These expressions are stored in the following format:

hlj IIz'st
2 la+b/d| . (dy a d)
4 la+b/dy + cv/dy + d/did; (didzabecad)

8 |a+bVdi + V/dy + dV/ds + ev/didy + fV D5 + gV aads + h/Edads | (dy do dsabced fgh)

This is done in order to have an algorithm which is as compact as possible. More precisely, we use
the following procedure:

procedure EULER(n, A, £)
(* h = 29 is the class number and £ the list of coefficients giving j *)

1. for i = 1..g r; = \/next(L) mod n;

2. j:=nezt(L) mod n;

3. fori=1.A
1. z := nezt(L) mod n;
2. 1= ¢.. €91, with ¢; € {0, 1};
3. for u=0..(¢9- 1)

1. ife, = 1 then z := z %y mod n;

4. j:=j 4+ z mod n;

['aN

. return(y).
5. end.

7.3.2 D is common

The coefficients of Pp(X ) are stored in a file. Since Pp is monic, we do not store the leading 1.
Moreover the constant term is a cube and so we only store the cube root of that coefficient.

We find a root of Pp over Z/NZ using Berlekamp’s algorithm ([11,67]). We use the folk’s
method, that is to say:

procedure BERLEKAMP(P(X), n);
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1. F(X) = 1, I 1= 0;
2. while degree(F(X))# 0

l.zg: =20+ 1;
2. F := ged((X + z0) T = 1, P(X)) mod n;
- 3. if degree(F(X))> 1 then P := F;

3. F:X—j;
4. end.

We know that Pp(X) mod n has exactly h(—D) roots in Z/nZ, which is the favorable case of
this algorithm. One can show that the probability of success for each z¢ is :1,- (one even conjectures
that this probability is > 1 — Jx Cf. [105]). The cost of this algorithm is ([105]):

O(h*(logn)?).
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7.4 Looking for an equation of F
We are looking for a Weierstrass equation for E of the type y? = z®+ az +b. With these notations,

A =-16 (443 + 270%),

ad

: . 09893
IS e

7.4.1 The cases D = 3,4

The theorems we use below are taken from the excellent book by Ireland and Rosen (64]. In all
that follows, p is a prime number that splits in Q(s) (resp. Q(p) and we want an equation of a
curve E, defined over F,, that has complex multiplication by ©O_4 (zesp. O_3).

D=3

We know that the j-invariant of our curve is 0. Hence, we can look for an equation of F of the

form: . ,
y? = 23 + b mod p, (7.1)

where b is a non zero element of F,,. One shows ([16])that such a curve has complex multiplication
by O_3 = Z[p], where p = e %",
By the assumption that p splits in Z[p], we have:

p=rmr'. (7.2)
Lemma 7.4.1 There is a unique solution of ww' = p which satisfies:
w = 2mod 3. (7.3)

This solution is called primitive.

Proof. We know that equation (7.2) has six solutions. Starting from the solution =, the five others
are (m where ¢ is any sixth root of unity, that is an element of {—1,+p, £p?}. We write: { = r+sp,
with 7 and s in {—1,0,1}. But 7 nay be written 7 = A + Bp, with N3(r) = A(A- B) + B? = p.
We are looking for w = (7 such that w = 2 mod 3. This is equivalent to:

(A+ Bp)(r+ sp) = 2mod 3,

or: .
A r - B s =2mod3.
B r + (A-B) s =0mod 3.
We remark that A and B cannot br both divisible by 3. If both are not, the system has the solution:
r = 2(A- B)mod 3.
s = B mod 3.

We may verify that these formulas yield also a solution in the case where 3 divides A or B.
Conversely, these formulas give a solution to the initial problem.
Then:
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Theorem 7.4.1 Suppose that p | b. Then the number of points on the curve of equation (7.1) is:

N=p+1+ (4b) T+ (ﬂ) T/, : (7.4)
6 6

T T
where m is defined by (7.2) and (7.3), and (%) is the sextic residue:

(ﬁ) = o mod 7. (7.5)
T/e _ :

Application to Atkin’s test. We are in the case where n = 1 mod 3. We have determined
in Z{p] such that n = 77’ and m = (v — 1)(#' — 1) is B-nicely factored. We are looking for one

equation of the curve of number of points m. We know that = has a unique associate w = (7 such
that w = 2 mod 3. We compute w with the help of lemma (7.4.1).

Determination of b. Since n = ww’, with w primitive, the number of points on the curve is:

N=n+1+v(4—l-)-) w-{—(g) W
W /g wW/e

We note that if 7 and w are associate, then: (=)g = (3)s. With B = (£)g mod n, N may be
written:

N=n+14+Br(+Br(.

We see that: B=—-(modr=> N=n+1—-7—7'=m.
As a consequence, the curve y? = 23 + b mod n, with b satisfying (4b)"7'71‘ = —(mod 7 has m
points.
The condition on B yields: B = —(r + sp) + (u + vp)(A + Bp), with v and v in Z. We deduce
that:
(A- B)v+ Bu = s, (7.6)

B = —r+ Au ~ Bv. (7.7)

We solve (7.6) by Bezout’s algorithm. We plug the values of u and v in (7.7) and we find B. By

trial and error, we find a ¢ such that ¢*F = B mod n. Eventually, we compute b = 4~! ¢ mod n.
We remark that '

2r=ymodn & z= l%J mod n if y is even, (7.8)
T = [QJ + nt 1, isy is odd. (7.9)
2 2 .
Example
Let n = 103. We find 7 = 11 4+ 2p, and successively:
¢=-p
103 B = 46,
7 = 46 mod 103,
b=179.

The curve of equation y? = z3 + 79 has 104 — 20 = 84 points in Fygs.
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D = 4.
The invariant is 1728. The curve E has the equation:
y® = 23 + az mod p, (7.10)

where a is a non zero element of Fp. This curve has complex multiplication by O4 = Z[i]. We
know that
p = =’ in Z[i].

Lemma 7.4.2 There is ezactly one solution to the equation ww' = p that satisfies:

w = 1 mod (2 + 2i). (7.11)
This element w is called primitive.
Proof. We start from nn’ = p and we are looking for a fourth root of unity £ such that w = Enr =
1 mod (2 + 2¢). Since £ is a unit in Z[z], we may write 7 = £~! mod (2 + 2i). All we have to do is

to compute a unit ¢ such that 7 = ( mod (2+ 2¢). Weput r = A+ Bi and ¢ = r+ 3¢, with rs = 0
and r and s elements of {—1,0,1}. We want to determine « and B in Z such that

A+ Bi=(r+ i)+ 2(1 +i)(a + iB). (7.12)

This is equivalent to:
A=7+2(a-p)

B = s+ 2(a+ 0). (7.13)

This implies in particular:
A—~B=r—3smod4. (7.14)

We now prove that this equation characterizes the solutions. First, we have:
' _ 2 2 _
T =p<=> A4+ B =p.

Hence A and B are of different parity. If A is even, we deduce that r = 0 mod 2 and thus r = 0.
Since B is odd, A ~ B is also odd and the equation s = A — B characterizes s. We then check that »
the system (7.13) has rational integer solutions o and 8. If B is even, we do the same work. It is
then easy to compute £ = ¢~1. m

We have then the following result:

Theorem 7.4.2 Ifp [fa, then the number of points on the curve (7.10) is:
N=p4+1- (7—3> T — (-’-‘i) x/, (7.15)
T /4 4

where m satisfies (7.11), and:
9—) = o’ mod 1. (7.16)
4
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Application to Atkin’s test. We are in the case n = 1 mod 4. We have computed an element
7 such that n = 7 7', and m = (7 — 1)(x’ — 1) is B-nicely factored. We want one equation of the
curve having m points. We know that = has a unique associate w such that w = 1 mod (2 + 27).
We write 7 = (w, with ¢ computed as in lemma (7.4.2).

Determination of a. We have seen that if n = 1 mod 4, n prime, n may be written as ww’,
with w primitive, and: ' '

N=n+1- (i) & — (l‘f) W' (7.17)
W /a4 W /4

We remark that if 7 and w are associates, then: ()4 = (5)4. Weputw = 7¢ and A = (Z2)4 mod n.
We deduce that the number of points on the elliptic curve of equation y? = 2 + az mod n is:

N=n4+1-Anr( - Ax (1.

We then see that: A=(modr=>N=n+1l-7—-7"=m.
As a conclusion, the curve y? = 2% + az mod n, with a satisfying (-—a)% = ( mod 7 has its
number of points equal to m.
The condition on A may be written in the form A — (r — is) = (u + iv)(A + iB), with u and v
in Z. We deduce that
Av + Bu = s, (7.18)

A=r+ Au - Bo. (7.19)

The equation (7.18) may be solved using Bezout’s algorithm. Plugging the values of u and v in

(7.19), we can compute A. Then, we search for a value of a such that (—a.)"_:l = A mod n. This
is done by trial and error.

Example
Let n = 101. We find 7 = 10 — 2. Then:

C =1,

A =91,
(-2)"" = 91 mod 101,

a=2.

The curve of equation y2 = 22 4 2z has 102 — 20 = 82 points in Fy¢;.

74.2 D2>7

Given jo in Z/nZ, we put k = 172;’_10. If ¢ is any non zero element of Z/nZ, then the j-invariant

of the curve:
vt = 13 + 3kc?z + 2k (7.20)

is precisely jo.
When D > 7, we know that there are only two classes of curve having the same invariant jo,
which is any root of Pp(X) = 0 mod n. Their equations are:

E : y? = 2% 4 3ka + 2k, (7.21)

or
E' : y? = 23 4 3kcla + 2ke3, (7.22)
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where ¢ is a quadratic non residu modulo n. We remark that £ and E’ are not isomorphic, since
they do not satisfy (5.1.1). ,

Their respective number of pointsare m=n+1—-7—7"and m’' =n + 1+ 7 + 7'. Since we
do not know which point corresponds to which equation, we use the following algorithm. We first
choose a point on the first curve and compute mP. If we find Og, then we have the right equation,
providing that the actual order of P is not too small (more precisely, we must verify that gP # O,
where g = ged(m, m')). Otherwise we choose a non residu c and try to compute mP’ on E’. Then,
we can check the conditions of the theorem.
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7.5 Computing on elliptic curves

7.5.1 Choosing a point on a curve
Suppose E is given by the equation:
y? = 23 + az + b mod n. (7.23)

We select a point on E as follows. We start from a value o and we increment it until the Jacobi
symbol (i"-ﬁ”fﬂ’) is equal to +1. We then extract a square root of this expression with the

algorithm of [2].
- 7.5.2 Formulas for the group law
The formulas of addition on the curve £ of equation
v =z +ax + b, (7.24)

are easily derived from the expressions (5.11) and (5.12). We find that the coordinates (23 : y3 : z3)
of the sum M3 = My + M;, starting with My = (z, : y; : 1) and M; = (z3 : y2 : 1) are:

I3 =‘ )\2 ~ T1 — T2, (7.25)
y3 = A(21 — z3) — 1, (7.26)
with:
| = (g2~ yn)(e2 —21) 7", f 32 # 21, (7.27)
= (322 + a)(2y1) 7!, otherwise. (7.28)

Then kM is computed using the well-known binary method (Cf. [67]). Alternatively, one can’
use addition-subtraction chains ([87]).

7.6 Primality proof for n

We now explain the use of the theorem (5.5.1). The idea is to look for a point whose order is
greater than (n¥ + 1)2.

We consider the number of points written m = kg, with ¢ pprime. There are two cases according
to whether ¢ > (n4 +1)? or not. In the first case, we look for a point P on E and compute @ = kP.
If @ = O, we choose another P. Else, we compute ¢Q. If we do not get O, n is composite, else
it is prime, because we found a point of order g¢.

In the second case, we look for P on F and we compute its order on the curve. If this order be
greater than (n4 + 1)2 we win, else we look for another P.

There are some cases for which we cannot reach a conclusion. For instance if m = M? is a
perfect square and E is isomorphic to Z/MZ x Z/MZ.
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7.7 Schemes for the program ATK

7.7.1 First idea
We introduced in chapter 2 the set . We now define:

D

{-1,1}U {D | — D fundamental discriminant}
= {_1’1’3,4,7,8,...} .

and:
nextp: Z — D

z — Min{DeD|D>z}.

We then redefine F by
F={fp|De D}

We can now describe the procedure PRIME that test whether an integer n is prime.
function PRIME(n):boolean;
1. 2:=0; [ := |logzn}; no := n;
-2for s:= 0.1
| Ds := ~2;
3. while n; > B?

o D; := neztp(D;);

e while 7 fp,(n;) =?
| D; := neztp(D;);

o if Tfp,(n;) = TRUE

then
niy1 := R(fp,(n:), B);
t:=14 1; :
else
ifi=0

then go to 4;
elsei:=:¢ - 1;

4. PRIME := T fp,(n);

5. end.
This is the easiest way to program this algorithm.

7.7.2 A two-phases algorithm

Let us give a close look at function PRIME. At each step ¢, we look for a well suited test, then we
check the conditions of the associated theorem. When we use an elliptic-curve test, this implies the
computation of a root of a polynomial whose degree can be high. It may happen that during step
(i4+1), we cannot find a test for n;4;. This is because we have only a finite number of curves in our
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data base. It is not rare that all numbers of points we have to compute have simultaneously large
prime factors. So we have to backtrack in our algorithm and thus we have lost all the computation
time of step 1. :

This explains why we divide our program in two phases. The first one consists in finding all
number of points that B-nice factored and the second one checks all the theorems.
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Chapter 8

A few examples

8.1 167 is prime

Let us show that n = 167 is prime using Atkin’s test.

We begin by looking for a fundamental discriminant —D for which 167 is represented by a form
of the principal genus. We find D = 43. We are sure that 167 is represented by the principal form
since h(—43) = 1. We then solve the system:

r2

T

Using the algorithm of [2], we find » = 25. We reduce the lattice p = 167Z + %JZ,"EZ with
procedure RED:

—43 mod 167,
1 mod 4.

7= ( e ) , I19] = 3347 = 111556, 7 = ( A ) , Il = 257 + 43 x (~1)* = 668,

334 x 25
pi= —a—

o8 = 125, m =12, e = +1,

L[ 334-12x25 )\ _ [ 34 i .
v—<0—12x(—1))‘(12)’”5”—34 + 43 x 12% = 7348.

Since ||7])| > ||4]|, we deduce that @ is a shortest vector in P.
We now compute the possible numbers of points for the two elliptic curves having complex
multiplication by O:

2% 13 -1 2x13-1
m+=167+1—2—x—2u=143=11x13,m_=167+1+2—x%=193.

We choose m4 and we now look for an equation of a curve having m, points in Fygr. The
corresponding j is (~960)2 mod 167. We deduce:

k=107 x (1728 — 107)"! mod 167 = 158,
e=3k =140,
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b=2k = 149.
We choose the point P = (6 :6: 1) on E and we find:

143P=(0:1:0).
Therefore, the curve E of equation:
y? = 23 + 140z + 149 mod 167

has exactly 143 points in Fy¢7.
We verify the conditions of the theorem with s = m = 143 :

%P = 11P = (140:147:1),
%P = 13P = (12: 65:1).

Hence 167 is prime.

8.2 Numbers taken from the Cunningham project

I implemented Atkin’s algorithm on a SUN 3/60 using the language Le-Lisp 15.21 developed in
INRIA. This language can handle arbitrarily large integers and the basic arithmetic routines are
written in assembly. With that implementation, I was able to prove the primality of 43 numbers
of [21). Those numbers are listed below.

d | name d { name
222 | 2,1958M 284 | 2,2338M
228 | 2,1594M 284 | 2,1096+
228 | 2,1874M 286 | 2,2102M
236 | 2,808+ 288 { 2,1049—
2371 2,979— 294 | 2,2126 L
237 | 2,883+ 296 | 2,2122L
237 | 2,1886L 301 { 2,1061+
245 | 2,844+ 307 | 2,2242M
1255 | 2,2366M 312 (2,1189+
260 | 2,911+ 315 | 2,1093+
264 | 2,10134+ - | 315 | 2,2314L
264 | 2,2290L 319 | 2,1117+
265 | 2,1858M 321 (2,1112+
266 | 2,2054M 324 | 2,2234M
268 1 2,1169— 327 | 2,2342L
268 | 2,1966L 332 | 2,2258L
271 | 2,2198M 334 | 2,2374M
277 12,1906
279 1 2,1934L
284 [ 2,2134L
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My personal record is the certificate of the 564-digit factor of F1;. We now know thatl:
Fy; = 319489 x 974849 x 167988556341760475137 x 3560841906445833920513 X Pse4.

The computations needed three weeks CPU time.
A little later, I proved the primality of the 572-digit number S} 493, where

1+V2)P 4+ (1-V2p
= :

8y =

This number was introduced in [95] (see also [108]). The computation took nearly a month to
complete.

1The second and third largest factors of this number were found by R. P. Brent in May 1988 using the elliptic
curve method ([89]).



8.3 Primality certificate

The primality proof consists in blocks of numbers. Each block has the following structure :

UL
type

SlioNeoNeN--N,-

where n; is the number to be tested, type giving the type of theorem used to show the primality of
n;. This is an integer, choosen as follows : :

-1 : use of the factors of n; — 1,
1 : use of the factors of n; + 1,
0 : wuse of the factors of n? — 1,
D : an integer (D > 2) used in Atkin’s test.

The primality proof of n, ends with a 0.

To each of the types corresponds a list of numbers used to complete the proof of »; being prime,
whenever the following block is valid.

We now describe the four possible lists :

1. type -1:

Po .
. the factors of n — 1
Dk
0
bo .
. the b;’s of Theorem 1 in [133]
br

2. type 1:

qo
.- the factors of n + 1

Q
0

Py
Qo
Py

Q

3. type O (Cf. Theorem 2 in [133]) :

like in Theorem 2 in [133]
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Do
Pk
0
bo
bx
0
9o
qi
0
Py
Qo
Py
Qi

D the discriminant used
m  the number of points on the curve

the factors of m

Tk
0
a thecurveisE:y2 =z3+az+b

b  E has complex multiplication by O(v/=D)
x  the coordinates of a point P on the curve
y
f1

the factorization of the order of P on E

In all cases, the p;, ¢; and r, are small primes (< 108), and they are listed in decreasing order, po
being the largest prime,...

In the proofs (except in the last type), a factor s that is larger than 106 is not listed in the
blocks and must be reconstructed from the knowledge of the others. This is done in order to save
some space.

We give in the appendix an example of a certificate.
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Chapter 9

Statist'ical tests

9.1 Protocol

We follow [34]. We begin by choosing a number of digits, say d. For this d, we repeat 20 times the
following pricedure.

1. choose a random odd number n with d digits;
increment n;

. look for possible factors less than 10%;

. execute 4 Miller-Rabin tests on n;

2.
3
4. if we find a factor of n then go back to 2;
5
6. if n is not a spsp then go back to 2;

7

. use Atkin’s test to prove that n is prime.

Each time we go through point 7, we keep the computation times of each phase of the algorithm
and also the length of the primality chain and the maximum rank of discriminant used. We then
make some statistics which are summarized below.

9.2 Results

The computations were done on a SUN 3/60 with version 2.3.4 of the program (June 20, 1988).
The results are given in seconds of CPU. For each d, we have indicated on the first line the time
needed to discover all prime factors of n below 104, on the second the time of 4 Miller-Rabin tests,
on the third the time of Atkin’s test, on the fourth the maximum rank of discriminant uséd and
on the fifth one the length of the primality chain.
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d | minimum | maximum mean | deviation
50 0.7 0.8 0.7 0.0
1.6 1.9 1.7 0.1

76.9 715.6 383.6 192.4

0.0 7.0 2.3 1.8

2.0 8.0 5.6 1.6

100 0.8 0.8 0.8 0.0
5.6 6.9 6.1 04

1441.3 10407.1 | 4108.1 2181.7

1.0 100.0 22.3 30.5

6.0 14.0 9.8 2.4

120 0.8 0.8 0.8 0.0
8.4 10.5 9.4 0.6

2637.2 10504.4 | 6567.8 1965.2

3.0 90.0 25.2 24.9

7.0 20.0 13.1 2.8

140 0.8 0.9 0.8 0.0
12.0 14.7 13.2 1.0

4862.9 16651.3 | 10917.0 4648.3

6.0 290.0 80.0 72.5

12.0 19.0 15.8 2.1

160 0.8 0.9 0.8 - 0.0
15.3 20.4 17.1 1.4

8391.4 33091.7 | 17762.5 6423.1

3.0 205.0 65.3 51.6

14.0 25.0 18.2 3.0

180 0.8 0.9 0.9 0.0
19.6 24.9 21.8 1.5

13113.8 43803.5 { 27404.4 9327.9

8.0 278.0 113.5 88.2

15.0 26.0 21.4 3.0

200 0.8 0.9 0.9 0.0
24.9 30.9 27.7 2.0

18436.8 66597.8 | 36905.6 11212.0

5.0 276.0 116.1 72.5

21.0 30.0 24.5 2.4
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Conclusion

We have described a primality testing algorithm that extends the oldest ones. This algorithm has
benefited from a century of research. This algorithm is very fast and gives a certificate of primality.

It remains to give an exact analysis of Atkin’s test. This seems to be a difficult problem, but
I think there some possible ways of attack, that I will describe elsewhere. Recently, Atkin has
indicated to me ([8]) that there are several improvements possible for his algorithm. They too, will
be treated elsewhere. : .

The last point worth noting is the work of Adleman and Huang ([1]). They describe a primality
test that uses algebraic curves of genus 2. It is a polynomial test, but it seems difficult to get a
practical version of it.
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A.1 The coefficients of j

By section 6.1.2, it is necessary to compute the ¢, up to » = 160. This computation was done
using MAPLE on a SUN 3/60 in about 90s of CPU. I verified the results with theorem (5.2.7).
The values found for n < 100 agree with that of [122].
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N=Jv ol = I SR - )

744

196884

21493760

864299970

20245856256

333202640600

4252023300096

44656994071935

401490886656000
3176440229784420
22567393309593600
146211911499519294
874313719685775360
4872010111798142520
25497827389410525184
126142916465781843075
593121772421445058560
2662842413150775245160
11459912788444786513920
47438786801234168813250
189449976248893390028800
731811377318137519245696
2740630712513624654929920
9971041659937182693533820
35307453186561427099877376
121883284330422510433351500
410789960190307909157638144
1353563541518646878675077500
4365689224858876634610401280
13798375834642999925542288376
42780782244213262567058227200
130233693825770295128044873221
389608006170995911894300098560
1146329398900810637779611090240
3319627709139267167263679606784
9468166135702260431646263438600
26614365825753796268872151875584
73773169969725069760801792854360
201768789947228738648580043776000
544763881751616630123165410477688
1452689254439362169794355429376000

Table A.1: Values of ¢, for 0 < n < 40
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41
42
43
44
45
46
47
48
49
50
51
52
53
- 54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

3827767751739363485065598331130120
9970416600217443268739409968824320
25683334706395406994774011866319670
65452367731499268312170283695144960
165078821568186174782496283155142200
412189630805216773489544457234333696
1019253515891576791938652011091437835
2496774105950716692603315123199672320
6060574415413720999542378222812650932
14581598453215019997540391326153984000
34782974253512490652111111930326416268
82282309236048637946346570669250805760
193075525467822574167329529658775261720
449497224123337477155078537760754122752
1038483010587949794068925153685932435825
2381407585309922413499951812839633584128
5421449889876564723000378957979772088000
12255365475040820661535516233050165760000
27513411092859486460692553086168714659374
61354289505303613617069338272284858777600
135925092428365503809701809166616289474168
299210983800076883665074958854523331870720
654553043491650303064385476041569995365270
1423197635972716062310802114654243653681152
3076095473477196763039615540128479523917200
6610091773782871627445909215080641586954240
14123583372861184908287080245891873213544410
30010041497911129625894110839466234009518080
63419842535335416307760114920603619461313664
133312625293210235328551896736236879235481600
278775024890624328476718493296348769305198947
579989466306862709777897124287027028934656000
1200647685924154079965706763561795395948173320
2473342981183106509136265613239678864092991488
5070711930898997080570078906280842196519646750
10346906640850426356226316839259822574115946496
21015945810275143250691058902482079910086459520
42493520024686459968969327541404178941239869440
85539981818424975894053769448098796349808643878
171444843023856632323050507966626554304633241600

Table A.2: Values of ¢, for 41 < n < 80
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81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118
119
120

342155525555189176731983869123583942011978493364
679986843667214052171954098018582522609944965120
1345823847068981684952596216882155845897900827370
2652886321384703560252232129659440092172381585408
5208621342520253933693153488396012720448385783600
10186635497140956830216811207229975611480797601792
19845946857715387241695878080425504863628738882125
38518943830283497365369391336243138882250145792000
74484518929289017811719989832768142076931259410120
143507172467283453885515222342782991192353207603200
275501042616789153749080617893836796951133929783496
527036058053281764188089220041629201191975505756160
1004730453440939042843898965365412981690307145827840
1908864098321310302488604739098618405938938477379584
3614432179304462681879676809120464684975130836205250
6821306832689380776546629825653465084003418476904448
12831568450930566237049157191017104861217433634289960
24060143444937604997591586090380473418086401696839680
44972195698011806740150818275177754986409472910549646
83798831110707476912751950384757452703801918339072000
155668193750688990263073298451234875129478434543218264
288303186787951198298816113296992617122316038101483520
532360384582564934616501236583995061891109488627959595
980138362015635064853029622650402721085223194498170880
1799337415283351057784679746927662437028848197411667200
3293814717594067150615059405642913451163618464253284352
6012628945306905638475933896845978280628197052031129310
10945239571973146355644316377974790144184665570787328000
19870021249929143399620419901633518864858002945671570872
35974914067272344165080069731483463647351003483134771200
64959906526239451003631207679783219244067157572973309165
116990520972038212694292103853261700870542959023866511360
210150650607452579599569241266223402742536169598850140520
376530684735414125523529312982816424375348668355995860992
672936445390958162789200232375699256427860729243275278200
1199681393661839026926928055463470424354390385916227584000
2133486254395087627066211294768723060158283934803591682840
3784943390783182045215204579988585449490852441694764032000
6698658178192740642445240413620216160411737678961227977333
11827368666877314043343176772350152158003158756436017152000

Table A.3: Values of ¢, for 81 < n < 120
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121
122
123
124
125
126
127

128 |

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

20834019715817024229638765444619811002731409879518705977860
36614667641297465631148164090265327830116953146702260817920
64201685070162147725464611749673657092707750583184564007140
112320501139624198948010798556804314935597620040020216250368
196067062984509187040951955197586503581394033288131187910000
341503183853729284527745542437450034191132793987024191963136
593527224934578104990955101074755370464156900515981460035760
1029326982786807780822262981773369664910194824346496663552000
1781327334607563553242155946942957911787915231543786544855872
3076255458121660274525842607461942502721486243667804049203200
5301512358998791842434783684140565672963212144540589846766730
9117716891510272645246866321916903552833089894324700932997120
15649173580646538023632483701212113986051179845148676081072000
26805600507843615676780348158506233745679095840358313631457280
45824545752897975638363067327021086978138050526337864068105250
78184160892692360692033106743351524493227376006503223904698368
133136363037979448419802190281354711972084964205919759749844360
226277328936119593410684227507299067090596382230940358427607040
383849364102110667918871300554352702001779875575109378311687238
649927414915107204189746056821613805195682334609541750934732800
1098403231975197618162311176531601274195935838151818755420426496
1852934958400944784442796335379663899730066804201679410906808320
3120098748434279557741977638004552939262820438627923690537304215
5244384362783084550505991237107663434068139738718177587933216768
8799272669010035139635788408275531605262723487998864772081386000
14737813753294520543203260468676056729565795540294581967508221952
24641161908405295029454883456868810746753999135187535773657492210
41128114800832056472193427901680195244842608500412778593407303680
68528854069293841520850278819906383394886596742476743833938452888
113991534440339214303055815358975788933153385224046103306861568000
189296894095711243511596757344199309221843546698914758259626164006
313829171558617091476645679676773650170102111122685815971708928000
519432505469337519910483996962754593807807386379002989717621971720
858337074911864194441021902465973211289758739151296158885919916032
1416075424321568658998716121949374369295392301441222953251282883200
2332498577634015943075501801916414647041675190944717865454457716736
3835919567106744967943382133370273180904167274393873623087469325560
6298501103182276920761494070150073057818043578349302767232585728000
10325972125458895112489938740970562151366569134784241868994861388333
16902736289392763393686481949937653722118982016482528463202916761600

Table A.4: Values of ¢, for 121 < n < 160
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A.2 The coefficients of j3

For the sake of curiosity, we computed the coefficients a, of the expénsion of j%il. They are listed

below.
L ]

'With the unvaluable help of P. Flajolet
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0 1
1 248
2 4124
3 34752
4 213126
5 1057504
6 4530744
7 17333248
8 60655377
9 197230000
10 603096260
11 1749556736
12 4848776870
13 12908659008
14 33161242504
15 82505707520
16 199429765972
17 469556091240
18 1079330385764
19 2426800117504
20 5346409013164
21 11558035326944
22 24551042107480
23 51301080086528
24 105561758786885
25 214100032685072
26 428374478862400
27 846173187465216
28 1651298967150546
29 3185652564830016
30 6078963644150128
31 11480231806541824
32 | 21467177880529689
33 39764843702689336
34 72997137165153780 -
35 | 132850632324345216
36 | 239789319501693956
37 | 429388971394662400
38 | 763068418302358384
30 | 13451568250201602544
40 | 2358124102729916605

Table A.5: Values of a, for 0 <n < 40 |



1

41 4102886111983480016

42 7092013721210817960
43 12181659673477246976
44 20796676802261030704
45 35295598997521245568
46 59562101011874495480
47 99958912569056522240
48 166859205793906934725
49 277094035493060977616
50 457846796927164829644
51 752824055834234849792
52 1231993177206298051342
53 - 2006887024540451971552
54 3254564967545188642688
55 5254984221166437861376
56 8449072038631284807277
57 13528641219547382906880
58 21575122191088716659580
59 34272883507725150027776
60 54236148944092100035212
61 85508372157211839147200

62 134322619611238780551560
63 210255786410830905483264
64 327975307667040641422302
65 |  509874665522370694985616
66 790038401097295649534084
67 1220190367687966774807360
68 187859240627112510182€850
69 2883320664671775504158112
70 4412020319246554888052096
71 6731223196884016735290368
72 | 10239746206630909007114830
73 | 15532772283766353988621232
74 1 23496237940048719603978416
75 | 35445525499405116178184192
76 | 53328774255935088876042846
77 | 80024225913215197570007040
78 | 119774106067660824059137680
79 | 178816321332967892783308800
80 | 266302141435950687083385898

Table A.6: Values of a,, for 41 < n < 80
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81
82
83
84
83
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

395626464585099415963089432
586352076626848780324055868
866987343646345830897958656
1278987646997829708458075006
1882508106790653584486831264
2764657727253873829818087008
4051319627022611947623208960
5924045677593740492679605242
8644158584921556252765072640
12587072583726783877738645716
18291076185713333532765044736
26526546765920570822788875850
38393981309791172640582140288
55462599260838952202638766240
79965973974278151669445132288
115077692326257138869488942075
165299135663513669579964825600
237004094508424964729153350948
339202414826477820420315095168
484609065806 766896282938482968
691138441600089052702411591904
083989817612649436669691786728
1398553400363731792138273996800
1984453790102172211090137629699
2811167715384595156580776052432
3975817581081717649606841502180
5613967994231286902030805696512
7914561136734092932391881774424
11140548680268370691910462784832
15657353594272677118695949314432
21972079777407156339515827556352
30787455424666221753488388089495
43075947987034599772855654621704
60181460106441112717662285030976
83958689700895620451017311468032
116963859237905549824916705653938
162715419527062258476018684695200
226049955585838792249236143298288
313607461020191720384154765193216
434492199579667713444383965500952

Table A.7: Values of a, for 81 < n <120
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121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

© 1581

152
153
154
155
156
157
158
159
160

601171604103733471011494341100144
830697498860633213455753416384040
1146363273870952303930084880089088
157995002696 7464060191677004403394
2174767502582626014100470990503936
2989766396767913422897695805815400
4105093251310268960542963603120128
5629585677548807970979586777992337
7710874585380392479639157406420464
10548985436280083641789107175956044
14414630823291997610081658767241664
19673786429634071372183534147106166
26820674052322518367437907154160672
36521981720657265010493373341104104
496760884995953666 78683799535752192
67492304843899802414958986406122325
91596786489072201699606922298163200
124173959966600654306613294406166400
168155180707388555789104892570643456
227470153401561503667255919349419838
307381671579243224863052347733548416
414930863195854442410224501710292520
359528864403412243525770128382287872
753742343253799109368091817263721781
1014335420294288881844760354458770304
1363650409832209162008303428426024192
1831435904468340865827030108248473600
2457264964996216372081345420227008626
3293731059511585227842181411905769248
4410668178543085797101556454430789400
5900718479526590969482843431500279808
7886671402073515781360956901059333150
105311296171194726943405046526 78980848
14049228742397892242259801442890322284
18725361561021751188977256641891737600
24935149193335510230514215424857965558
33174281604635868193149797107675299840
44096344280510308280025843088905609600
58562390892916336176312504564409819136
77705857305943109983208336928208798419

Table A.8: Values of a, for 121 < n < 160
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A.3 The Pp(X) polynomials

I computed all the polynomials corresponding to all known values of discriminant D for which
h(—D) < 10. We begin with some results concerning the number of these numbers. Then we give
the smallest polynomials for given h.

A.3.1 Buell’s tables

In [22], the author has made some statistics on discriminants of imaginary quadratic fields less than
- 4000000. '

h | smallest D | largest | number of D
1 3 163 9
2 15 427 18
3 23 907 16
4 39 1555 54
5 47 | 2683 25
6 87 3763 51
7 71 5923 31
8 95 6307 131
9 199 | 10627 34
10 119 | 13843 87

Table A.9: Buell’s tables.

We thus have a stock of 456 discriminants, making 6 + 4 4+ 2 x 454 = 918 (classes of) elliptic
curves. '
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A.3.2 Some polynomials

P

Py
Py3
Psg
Pyr

Pry

Pgs

Prog

P19

X

X? 4+ 191025X — 4953 _
X3 4 3491750X2 — 5151296875X + 23375°
X4 + 331531596 X3 — 429878960946 X2 + 109873509788637459X + 27553773

X5 + 2257834125 X4 — 9987963828125 X3 + 5115161850595703125 X2
—14982472850828613281250.X + 2522093753

X6 + 5321761711875 X% 4 85585228375218750. X% + 28321090578679361484375000.X3
+497577733884372638735595703125 X2 + 432181202257616392838287353515695.X
+8192251406253

X7 + 313645809715X° — 3091990138604570.X5 + 98394038810047812049302.X 4
—823534263439730779968091389.X 3 + 5138800366453976780323726329446 X2
—425319473946139603274605151187659.X + 9035689915673

X8 + 19874477919500 X7 — 688170786018119250X 6 + 395013575867144519258203125 X 5
—13089776536501963407329479984375.X 4

+352163322858664726762725228294921875 X3
—1437415939871573574572839010971248046875 X 2
+2110631639116675267953915424764056884765625X + 4759110045006253

X?® 4 17656190279770938660 X 8 + 1331303100189256816837434 X7
+311741055246397228842310784103371345424 X
+23969299805117437326359388515188205981243787 X 5
+934682848803434155897358662478037099871861466271 X 4
—15361831050875895680622837467024669907518877308748738 X3
+81311504213341585710631261056689664491326495914681965478 X 2
—26264856563493863087105499097317110823999604480371275106459.X
'+1824531736981070213913

X104 764872171216961X° — 70241355662808988599 X 8
+585035810262130969538043606647 X7
—52855712468679496581065487695942573 X ¢
+4794937071328670764609540039796857947016.X 5
+12480611255809545689627144542329203076373873.X ¢
+29494022920507896313766601313371285654722780443 X3
—292223928830848711011022637790896567674102040378617.X 2
+346485626218561739292181172729923937711295004460654234 X
—~22682415332397243833
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A.4 A certificate

93



‘Bibliography

(1] L. M. ApLEMAN, M. A. HUANG. Recognizing primes in random polynomial time. Proc.
CRYPTO 86.

[2] L.M. ApLEMAN, K. MANDERS, G. L. MILLER. On taking roots in finite fields. Proc. 18th
Annual IEEE Symp. Foundations of Computer Science, 1977, pp. 175-178.

(3] L. M. ApLEMAN, C. POMERANCE, R. S. RUMELY. On distinguishing prime numbers from
composite numbers. Annals of Math., 117, 1983, pp. 173-206.

[4 A. O. L. ATkIN, J. N. O’BRIEN. Some properties of p(n) and ¢(n) modulo powers of 13.
Trans. Amer. Math. Soc., 126, 1967, pp. 442-459.

[5] A. O. L. ATKIN. Proof of a conjecture of Ramanujan. Glasgow Math. J., 8, 1967, pp. 14-31.

[6] A.O. L. ATKIN. Congruences for modular forms. Computers in mathematical research, North
Holland, 1968, pp. 8-19.

[7] A. O. L. ATKIN. Manuscript, August 1986.
(8] A. O. L. ATKIN. Private communications, September 1988.

(9] P. BEAUGHEMIN, G. BRASSARD, C. CrEPEAU, C. GOUTIER, C. POMERANCE. The gener-
ation of random numbers that are probably prime. J. Cryptology, 1, 1988, pp. 53-64.

(10] E. BEpoccHI. Cubiche ellittiche su Fy. Bollettino U. M. I, 5 (17-B), 1980, pp. 269-277.

[11] E. R. BERLEKAMP. Factoring polynomials over large finite fields. Math. of Comp., 24, 111,
1970, pp. 713-735.

[12] W. E. H. Berwick. Modular invariants expressible in terms of quadratic and cubic irra-
tionalities. Proc. London Math. Soc. (2), 28, 1928, pp. 53-69.

[13] E. BomBIERI. Counting points on curves over finite fields (d’apres S. A. Stepanov). Séminaire
Bourbaki, 430, 1972-1973.

[14] A. BorekL, S. CHowra, C. S. HErz, K. Iwasawa, J. P. SERRE. Seminar on complex
multiplication. Lect. Notes in Math., 21, Springer, 1966.

(15] Z. 1. BoreviTCH, I. R. SHAFAREVITCH. Théorie des nombres. Gauthiers-Villars, Paris,
1967.

[16] W. BosMa. Primality testing using elliptic curves. Report 85-12, Math. Instituut, Universeit
van Amsterdam.

94



[17] R. P. BRENT. An improved Monte Carlo factorization algorithm. BIT, 20, 1980, pp. 176-184.

[18] R. P. BRENT. Some integer factorization algorithms using elliptic curves. Proc. 9th Australian
Computer Science Conference, Feb 1986.

(19] J. BRILLHART. Note on representing a prime as a sum of two squares. Math. of Comput., 26,
120, 1972, pp. 1011-1013.

[20] J. BriLLHART, D. H. LEBMER, J. L. SELFRIDGE. New primality criteria and factorizations
of 2™ + 1. Math. of Comp., 29, 130, 1975, pp. 620-647.

[21] J. BriLLEART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN. Factorizations of
b*+1, b=2,3,5,6,7,10,11,12 up to high powers. Contemporary Mathematics, 22, AMS,
1983.

[22] D. A. BueLL. Small class numbers and extreme values of L-functions of quadratic fields.
Math. of Comp., 31, 139, 1977, pp. 786-796.

(23] H. CARTAN. Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables com-
plezes. Hermann, Paris, 1978.

[24] J. W. S. CassELs. Diophantine equations with special references to elliptic curves. J. London
Math. Soc., 41, 1966, pp. 193-201.

(25] J. W. S. CAssELS, A. FrROLICH. Algebraic number theory. Proc. Int. Congress organized by
the London Mathematical Society, 1967.

[26] J. CrAILLOUX, M. DEVIN, J.-M. HuLLOT. Le-Lisp: A Portble an Efficient Lisp System.
ACM Symposium on Lisp and Functional Programming, 1984, Austin, Texas.

[27] J. CuaiLLoux, M. DEVIN, F. DupoNT, J.-M. HuLLOoT, B. SERPETTE, J. VUILLEMIN.
Le-Lisp version 15.2, le Manuel de référence. Documentation INRIA, Mai 1987.

[28] K. CHANDRASEKHARAN. Elliptic functions. GRU 281, Springer-Verlag, 1985.

[29] B. W. CHAr, K. O. GeppEs, G. H. GONNET, S. M. WATT. MAPLE Reference Manual,
Fourth Edition. Symbolic Computation Group, Depaitment of Computer Science, University
of Waterloo, 1985.

[30] D. V. CEuDNOVSKY, G. V. CHUDNOVSKY. Sequences of numbers generated by addition in
formal groups and new primality and factorization tests. Research report RC 11262, IBM,
Yorktown Heights, 1985.

[31] H. CoHEN. Tests de primalité d’aprées Adleman, Rumely, Pomerance et Lenstra. Séminaire
de théorie des nombres, Grenoble, 2, 11, et 18 juin 1981.

(32] H. CoHEN. Cryptographie, factorisation et primalité : P’utilisation des courbes elliptiques.
Proc. of Journée annuelle de la SMF, Paris, January 1987.

[33] H. ConEN, H. W. LENSTRA, JR. Primality testing and Jacobi sums. Math. of Comp., 42,
165, 1984, pp. 297-330.

[34] H. CoHEN, A. K. LENSTRA. Implementation of a new primality test. Math. of Comp., 48,
177, 1987, pp. 103-121.

95



[35] H. Coun. Advanced number theory. Dover, New York, 1980.

(36] H. Coun. A classical invitation to algebraic numbers and class fields. Universitext, S pringer
Verlag, 1978.

[37) H. CounN. Introduction to the construction of class fields. Cambridge studies in advanced
mathematics 6, Cambridge University Press, 1985.

[38] G. CorNAccHIA. Su di metodo per la risoluzione in numeri interi dell’ equazione
S heoChe™tyh = P. Giornale di Matematiche di Batlaglini, 46, 1908, pp. 33-90.

[39] C. COuVREUR, J.J. QUISQUATER. An introduction to fast generation of large prime numbers.
Philips J. Research 37, 1982, pp. 231-264.

[40] H. DavenporT, H. Hassk. Die Nullstellen der Kongruenzzetafunktionen in gewissen zyk-
lischen Fillen. J. Reine und Angew. Math., 172, 1935, pp. 151-182.

[41] M. DEURING. Die Typen der Multiplikatorenringe elliptischer Funktionenkdrper. Abh. Math.
Sem. Hamburg, 14, 1941, pp. 197-272. '

[42] M. DEURING. Die Klassenkdrper der komplexen Multiplikation. Enzyklopidie der mathe-
matischen Wissenschaften mit Einschluss ihrer Anwendungen, Bd 1, H. 10, T. 2, Teubner,
Stuttgart, 1958.

[43] W. DIFFIE, M. E. HELLMAN. New directions in Cryptography. IEEE Trans. on Information
Theory, vol I1T-22-6, nov 1976.

[44] D. R. DorMAN. Special values of the elliptic modular function and factorization formulae.
J. Reine und Angew. Math., 383, 1988, pp. 207-220.

[45] W. J. ELLisoN, M. MENDES FRANCE. Les nombres premiers. Hermann, Paris, 1975.
[46) W. FurToN. Algebraic curves. Math. Lec. Note Series, W. A. Benjamin Inc., 1969.

[47] C. F. Gauss. Disquisitiones Arithmeticae. G. Fleischer, Leipzig, 1801; English translation
by A. A. Clarke, Yale Univ. Press, New York, 1966; revised English translation by W. C.
Waterhouse, Springer-Verlag, New York, 1986.

[48] A. O. GEL’FOND, YU. V. LINNIK. Elementary methods in the analytic theory of numbers.
Pergamon Press, Oxford, 1966.

[49] S. GoLpwassER, J. KILIAN. Almost all primes can be quickly certified. Proc. 18th STOC;
Berkeley, 1986, pp. 316-329. '

[50] A. G. GREENHILL. Table of complex multiplication moduli. Proc. London Math. Soc. (1),
21, 1891, pp. 403-422.

[51] B. H. Gross, D. B. ZAGIER. On singular moduli. J. Reine und Angew. Math., 355, 1985,
pp. 191-220. '

[52] R. GupTa, M. RAM MURTY. Primitive points on elliptic curves. Compositio Mathematica,
58, 1986, pp. 13-d4.

96



[53] R. K. Guy. How to factor a number. Proc. fifth Manitoba Conference on numerical math.,
1975, pp. 49-89.

[54] G. H. HAarDY, E. M. WRIGHT. An introduction to the theory of numbers. 5th edition,
Clarendon Press, Oxford, 1985.

[55] R. HARTSHORNE. Algebraic geometry. GTM 52, Springer, 1977.

[56] H. HAsseE. Beweis des Analogons der Riemannscher Vermutung fiir die Artinschen und
F. K. Smidtschen Kongruenzzetafunktionen in gewissen elliptischen Fiéllen. Ges. d. Wiss.
Narichten. Math.-Phys. Klasse, 1933, pp. 253-262.

[57] H. Hasse. Abstrakte Begriindung der komplexen Multiplikation und Riemannsche Vermu-
tung in Funktionenkérpern. Abh. Math. Sem. Univ. Hamburg, 10, 1934, pp. 325-348.

(58] H. Hassk. Zur Theorie der abstrakten elliptischen Funktionenkorper I, II, IIL. J. Reine und
Angew. Math., 175, 1936.

[59]) H. Hassk. Zur Geschlechtertheorie in quadratischen Zahlkorpern. J. of the Math. Soc. of
Japan, 3, 1, 1951, pp. 45-51. .

[60] O. HERRMANN. Uber die Berechnung der Fourierkoeffizienten der Funktion j(7). J. Reine
und Angew. Math., 274-275, 1973.

[61] A. HurwiTZ, R. COURANT. Funktionentheorie. GRU 3, Springer.
[62] D. HusEMOLLER. Elliptic curves. GTM 111, Springer, 1987.

[63] E. L. INCE. Cycles of ideals in quadratic fields. Mathematical Tables, vol. IV, British Asso-
ciation for the advancement of Science, Cambridge University Press, 1968.

-

[64] K. IRELAND, M. ROSEN. A classical introduction to modern number theory. GTM 84,
Springer, 1982.

[65] B. S. KaLiskl, JR. A pseudo-random Bit generator based on elliptic logarithms. Proc. Crypto
86, pp. 13-1, 13-21.

[66] N. M. KaTz. An overview of Deligne’s proof of the Riemann hypothesis for varieties over
finite fields. Proc. Symposia in Pure Mathematics, 28, 1976, pp. 275-305.

(67] D. E. KNUTH. Seminumerical algorithms. The art of computer programming, T. I1, Addison-
Wesley.

[68] D. E. KNUTH, L. TRABB PARDO. Analysis of a simple factorization algorithm. Theoretical
Computer Science, 3, 1976, pp. 321-348.

[69] N. KoBLITzZ. Introduction to elliptic curves and modular forms. GTM 97, Springer, 1984.

[70] N. KoBLiTz. Primality of the number of points on an elliptic curve over a finite field. Pacific
J. of Math., 131, 1, 1988, pp. 157-165. '

[71] S. LaNG. Elliptic functions. Addison-Wesley Publishing Company Inc., 1973.

97



[72] S. LANG. Introduction to algebraic and abelian functions. Addison-Wesley Publishing Com-
pany Inc., 1972.

[73] S. LANG. Elliptic curves, diophantine analysis. Springer-Verlag, 1978.

[74] S. LaNG, H. TROTTER. Frobenius distributions in GL, extensions. Lect. Notes in Math.,
540, Springer-Verlag, 1976.

[75] D. H. LEAMER. Computer technology applied to the theory of numbers. Studies in number
theory, Mathematics Association of America, 1969, pp. 117-151.

[76] D. H. LEEMER. Ramanujan’s function 7(n). Duke Math. J., 10, 1943, pp. 483-492.

[77] D. H. LEEMER. Properties of the coefficients of the modular invariant J(r). Amer. J. Math.,
64, 1942, pp. 488-502.

(78] J. LEENER. Divisibility properties of the Fourier coefficients of the modular invariant i(r).
Amer. J. of Math., 71, 1949, pp. 136-148.

[79] J. LEENER. Further congruence properties of the Fourier coefficients of the modular invariant
J(r). Amer. J. of Math., 71, 1949, pp. 373-386.

[80] H. W. LENSTRA, JR. Primality testing algorithms (after Adleman, Rumely, Williams).
Séminaire Bourbaki, 576, 1980-1981.

[81] H. W. LENSTRA, JRr. Elliptic curves and number theoretic algorithms. Report 86-19, Math.
Inst., Univ. Amsterdam, 1986.

[82) H. W. LENSTRA, JR. Factoring integers with elliptic curves. Annals of Math., 126, 1987,
pp- 649-673.

(83] K. MAHLER. On a class of non-linear functional equations connected with modular functions.
J. Austral. Math. Soc., 22, Ser. A, 1976, pp. 65-120.

[84] Yu. I. MANIN. On cubic congruences to a prime modulus. Amer. Math. Soc. Transl., 2, 13,
1960, pp. 1-7.

(85] R. MERKLE, M. E. HELLMAN. Hiding information and signature in trapdoor knapsacks.
IEEE Trans. on Information Theory, IT-24-5, sep 1978.

[86] G. L. MILLER. Riemann’s hypothesis and tests for primality. Proc. 7th annual ACM Sym-
posium on the theory of computing, 1975, pp. 234-239.

[87] F. Morain, J. OLIvos. Speeding up the computations on an elliptic curve using addmon-
subtraction chains. Preprint, 1988.

[88] L. MoNIER. Evaluation and comparison of two efficient probabilistic primality testing algo-
rithms. Theoretical Computer Science, 12, 1980, pp. 97-108.

[89] P. MONTGOMERY. Fermat number F11 factored. Transaction on USENET.sci.math.

[90] M. RAM MURTY. On Artin’s conjecture. J. Number Theory, 168, 1983, pp. 147-168.

98



[91] M. NEwMAN. Remarks on some modular identities. Trans. Amer. Math. Soc., 73, 1952, pp.
313-320.

[92] M. NEwWMAN. The coefficients of certain infinite products. Proc. Amer. Math. Soc., 4, 1933,
pp. 435-439.

(93] M. NEWMAN. An identity for the coefficients of certain modular forms. J. London Math.
Soc., 30, 1955, pp. 488-493.

[94] M. NEwMAN. Congruences for the coefficients of modular forms and for the coefficients of
§(r). Proc. Amer. Math. Soc., 9, 1958, pp. 609-612.

(95] NEWMAN, SHANKS, WILLIAMS. Simple groups of square order and an interesting sequence
of primes. Acta Arith., XXXVIII, 1980, pp. 129-140.

[96] H. PETERSSON. Uber die Entwicklungskoeffizienten der automorphen Formen. Acta Mathe-
matica, 58, 1932, pp. 169-213.

[97] D. A. PLAISTED. Fast verification, testing and generation of large primes. Theoretical Com-
puter Science, 9, 1979, pp. 1-16.

[98] J. M. POLLARD. A Monte-Carlo method for factorization. BIT, 15, 1975, pp. 331-334.

[99] C. POMERANCE. On the distribution of pseudoprimes. Math. of Comp., 37, 156, 1981, pp.
587-593. ,

[100] C. POMERANCE. Analysis and comparison of some integer factoring algorithms. Computa-
tional methods in number theory, H. W. Lenstra and R. Tijdeman Eds, Math. Centrum,
Amsterdam, 1984, pp. 89-140.

[101] C. POMERANCE. Fast, rigorous factorization and discrete logarithm algorithms. Proc. of the
Japan-US Joint Seminar, Discrete Algorithms and Complezity, Academic Press, 1987.

[102] C. POMERANCE. Very short primality proofs. Math. of Comp., 48, 177, 1987, pp. 315-77

[103] C. POMERANCE, S.S. WAGSTAFF, Jr. The pseudoprimes to 25.10°. Math. of Comp., 35,
151, 1980, pp. 1003-1026. |

[104] V. R. PRATT. Every prime has a succint certificate. SIAM J. Comput., 4, 1975, pp. 214-220.

[105] M. O. RABIN. Probabilistic algorithms in finite fields. SIAM J. Comput., 9, 2, 1980, pp.
273-280.

[106] H. RADEMACHER. The Fourier coefficients of the modular invariant J(7). Amer. J. Math.,
60, 1938, pp. 501-512.

[107] H. RADEMACHER. The Fourier series and the functionnal equation of the absolute modular
invariant J(r). Amer. J. Math., 61, 1939, pp. 237-248.

[108] P. RiBENBOIM. The book of prime number records. Springer, 1988.
[109] R. L. RIVEST, A. SHAMIR, L. ADLEMAN. A method for obtaining digital signatures and
public-key cryptosystems. Comm. of the ACM, 21, 2, 1978, pp. 120-126.

99



[110]
[111]

[112]

[113]
[114]

[115]

[126]

[117]

[118)

[119]
[120]

[121]
[122]

(123]
[124]

[125]
[126]

[127]
[128]

[129]

[130]

A. ROBERT. Elliptic curves. Lect. Notes in Math., 326, Springer, 1986.

R. ScuERTZ. Die singuliren Werte des Weberschen Funktionen f, fis f2, 72, v3. J. Reine
und Angew. Math., 286-287, 1976, pp. 46-74.

R. Scuoor. Elliptic curves over finite fields and the computation of square roots modp.
Math. of Comp., 44, 1985, pp. 483-494. -

J. P. SERRE. Cours d’arithmétique. P. U. F., Paris, 1970.

D. SuANKs. Five number theoretic algorithms. Proc. 2nd Manitoba Conference on Numerical
Mathematics, 1972, pp. 51-70.

D. Suanks. Class number, a theory of factorization, and genera. Proc. Symp. Pure Math.,
AMS, 20, 1971, pp. 415-440. :

J. H. SILVERMAN. The arithmetic of elliptic curves. GTM 106, Springer, 1986.

R. Sorovay, V. STRASSEN. A fast Monte-Carlo test for primality. Siam J. Comput., 8, 1,
1977, pp. 84-85. Erratum, ibid, 7, 1, 1978.

I. N. STEWART, D. O. TALL. Algebraic number theory. Second edition, Chapman and Hall,
London, New-York, 1987.

J. T. TATE. The arithmetic of elliptic curves. Inventiones Math., 23, 1974, pp. 179-206.

J. T. TATE. Classes d’isogénie des variétés abéliennes sur un corps fini (d’aprés T. Honda).
Séminaire Bourbaki, 352, 1968-1969.

B. VALLEE. Une approche géométrique des algorithmes de réduction des réseauz en petite
dimension. Thése, Caen, 1986.

A. VAN WINIGAARDEN. On the coefficients of the modular invariant J(r). Proc. Kon. Nederl.
Akad. Wetensch. Ser. A, 16, 1953, pp. 389-400.

G. N. WarsoN. Singular moduli. Proc. London Math. Soc., 40, 1936, pp. 83-142.

G. N. WaTsoN. Ramanujans Vermutung iiber Zerfillungsanzahlen. J. Reine und Angew.
Math., 179, 1938, pp. 97-128.

H. WEBER. Lehrbuch der Algebra I, II, III. Chelsea Publishing Company, New York, 1902.

H. WEBER. Zur complexen Multiplication elliptischer Functionen. Math. Annalen, 33, 1889,
pp. 390-410. ' ’

H. C. WiLLiams. Primality testing on a computer. Ars Combinatoria, 5, 1978, pp. 127-185.

H. C. WiLLiaMs, H. DUBNER. The primality of R1031. Math. of Comp., 47, 176, 1986, PP
703-711.

H. C. WiLriams, R. HOLTE. Some observations on primality testing. Math. of Comp., 32,
143, 1978, pp. 905-917. '

H. C. WiLL1aMs, J. S. Jupp. Determination of the primality of V by using factors of N241.
Math. of Comp., 30, 133, 1976, pp. 157-172.

100



[131] H. C. WiLLiAaMS, J. S. JUDD. Some algorithms for prime testing using generalized Lehmer
functions. Math. of Comp., 30, 136, 1976, pp. 867-886.

[132] P. WILKER. An efficient algorithmic solution of the diophantine equation u? + 5% = m.
Math. of Comp., 35, 152, 1980, pp. 1347-1352.

[133] M. C. WUNDERLICH. A performance analysis of a simple prime-testing algorithm. Math. of
Comp., 40, 162, 1983, pp. 708-714. ‘

[134] M. C. WUNDERLICH, J. L. SELFRIDGE. A design for a number theory package with an
optimized trial division routine. Comm. of the ACM, 17,5, 1974, pp. 272-276.

[135] B. F. Wyman. Hilbert class fields and group extensions. Scripta Mathematica, XXIX, 1-2,
pp. 141-149.

[136] J. YouNnG, D. A. BUELL. The twentieth Fermat number is composite. Math. of Comp., 50,
181, 1988, pp. 261-265.

[137) H. G. ZIMMER. An elementary proof of the Riemann hypothesis for an elliptic curve over a
finite field. Pacific J. of Math., 36, 1, 1971, pp. 267-278.

[138] H. S. ZuckeRMAN. The computation of the smaller coefficients of J(r). Bull. AMS, 45,
1939, pp. 917-919.

Imprimé en France
par
I’ institut National de Recherche en Informatique et en Automatique



/11; !



