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A 3-D MULTIGRID FINITE ELEMENT METHOD
FOR THE EULER EQUATIONS

Hervé STEVE
Alain DERVIEUX

INRIA, 2004 Route des Lucioles, Sophia- Antipolis, VALBONNE, F-06364

Abstract : The problem of extending the multigrid principle to unstructured
tetrahedrizations is solved by a cell-grouping method combined to an upwind finite
volume formulation ; an explicit Runge-Kutta solver is applied at each level.

Application to transonic 3-D Euler flows are presented.

UNE METHODE MULTIGRILLE EN ELEMENTS FINIS
POUR LA RESOLUTION DES EQUATIONS D’EULER

EN TROIS DIMENSIONS

Résumé : L’extension du principe “multigrille” a des tétraédrisation non struc-
turées est réalisée en groupant des volumes finis et en appliquant un schéma spatial
décentré. La méthode de résolution utilisée a chaque niveau est du type Runge-
Kutta. On présente quelques applications a des écoulements transsoniques tridi-
mensionnels.
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INTRODUCTION

The solution of the Euler equations on unstructured grids has been recently
studied by several teams [LOH1, ANGI, DON, HUG, JAM1].

The motivation in deriving such methods is the perspective of a somewhat
more reliable use for the industrial applications. Now one important condition for
this use is the possibility to perform heavy 3-D calculations, involving the several
dozen thousand nodes that are necessary for the study of complex recirculating flow.

To reach this purpose, it seems mandatory to study solution algorithms that
satisfy the following properties '

- A cost that increases slowly with the number of nodes
- A low storage requirement
- The ability to vector and parallel computing

These properties are more or less satisfied by explicit multigrid algorithms,that
have been studied in the unstructured context by Lohner-Morgan [LOH2] and
Angrand-Leyland [ANG2] with Lax-Wendroff-types basic schemes, and Mavriplis-
Jameson [MAV], Perez et al. [PER] starting from Jameson’s Finite Volume Central-
Differenced scheme ; upwind adaptations were also derived in [LAL1]. The main
feature by which these studies are different is the way to consider the coarse levels
when the grid is unstructured ; we distinguish four ways :

—
]

the coarse levels are generated separately [LOH2,MAV],

2- fine levels are derived by global or adaptive (local) division from a coarse initial
grid [BAN,ANG2],

3- coarse levels are constructed algebrically from a matrix [BRA], this has not yet
been applied to Euler calculations,

4- coarse levels are generated from non regular finite volume grouping relying on
neighboring relations [LAL2].

We refer to [LAL2] for a discussion of the advantages and disadvantages of each
way.

The presented “topological” approach is of the fourth type, and presents the
following features :



- the grids are embedded ;

- the coarse meshes are not classical FEM triangulations but generalized finite
volume partitions ;

- the spatial approximation is derived on each level ;
- a full approximation storage (non linear) scheme is employed.

The approach has been already presented in 2-D in [LALZ2]; furthermore, the
paper referenced above deal only with 2-D Euler calculations. One main original
point of this paper is to consider the important issue that is the practical application
to 3-D flow.

1. THE GENERATION OF THE DIFFERENT LEVELS

The objective is to generate coarse levels automatically from an arbitrary un-
structured tetrahedrization.

To achieve such degree of reliability, we explore the possibility of grouping to-
gether nodes associated with contiguous control volumes. Thus, coarse levels are
not produced by a new tetrahedrization of the domain: identifying nodes to con-
trol volumes permits a homogeneous description of the different levels in terms of
Finite Volume partitions.

Finite Volume Dual mesh :

Indeed, it has been observed that simplicial (triangles,tetrahedra) Galerkin ap-
proximations are equivalent in some sense to adhoc finite volume formulations on
specific dual meshes : for the three-dimensional case, the dual mesh is derived using
median plans of the elements, that are defined as plans containing (Fig.1) :

- the middle of an edge
- a face cenfroid
- an element centroid.
Coarsening agglomerating algorithm :

Grouping together control volumes results in a new (coarser) mesh. Repeating
the operation allows us to get coarser and coarser levels until sufficiently many levels
are obtained.



The coarsening algorithm that we present here is based on neighboring relations
(two cells are neighbors if they contain vertices that are neighbors) ; the algorithm
reads as follows :

Consider successively every cell.

(1) if the cell C is already included in a group then consider next cell; else: create
a new group containing C, and put into this group each cell neighboring C and not
already included in a group.

(2) if the new group contains only the cell C, then destroy the group and put cell C
in an exzistent group containing a neighbor of C'.

(8) next cell.

Note that this algorithm is formulated independently of the space dimension:
the 3-D context brings no modification.

2. GENERALIZED FINITE VOLUME UPWIND SCHEMES

One main feature of the algorithm is that it relies on the construction of a Finite-
Volume Method applicable to an arbitrary partition of the computational domain.
This construction is presented for a first-order accurate upwind scheme.

2.1. First-order scheme

The time-dependent Euler equations are written in conservative form :
(1) Wi+ F(W), +GW), + HW), =0,
in which as usual :
W = (p, pu, pv, pw, E)
where p is the density, (u, v, w) the velocity and E the total energy per unit volume.

The upwind finite volume scheme is derived in the simplest manner that one
can imagine. We describe it in the context of the usual explicit time-stepping.

Given a cell C; , the mean value W; of the dependent variable in this cell is
advanced from time level n to time level n 4 1 as follows :

(2) arca(CHWPH - WP =-At ¥ (W[ WPnY)

j neighbor of i

4



where 7/ is the following metric vector :

nd = / vedo

GC.'naC,-
i —
N, = / vydo
80,’0801'
nd = / v,do
8C;NaC;

U = (Vg,Vy,V;), unit normal vector pointing outward from C;
and where & is a flux-splitting consistent with i F + /G + n/ H.
In this work, we use the van Leer flux splitting [LEE], that is written
(3) @u(Wi,Wr) = Fj(Wr) + F;;(Wg)

in which, when 7j = (1,0,0) , the F}; and F; are defined as follows

( F st M>1

( +E(E+1)’ = £ \

+
B ((y = 1)u +20)
(4) FH (W)= v st M| <1
fifw
—1)u+2¢)? V2 4w?

\ A [ )

L 0 st M <0

and

(5) Fu(W)=FW)-Fj(W)

vl

where c is the local sound speed and M the local Mach number : M = ke ; for an

c
arbitrary 77 , the above splitting is applied in a rotated coordinate system [FEZ1].
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On the finest mesh, that is a standard triangulation, a second order scheme
can be applied: this scheme, a MUSCL-FEM one [FEZ2], is obtained by replacing
in the above flux summation the first-order accurate integration

(6) @W!,WJ,n7)

by a second-order accurate one

oy

(1) (W5, WinY)

that is obtained as follows: a linear interpolation is performed

n 1l = N~

Wi = W' + 3 VimW () . 3

(8) 1w o oo
Wi = W@ + 3 ViimW (i) . j2

in which .
VlimW(i) = (Df"nW(Z),Dy W(Z))

lim

is a limited estimate for the nodal gradient defined as:
D W) = MinMod(% )

where the MinMod is taken over the tetrahedra that have node 7 as a vertex and
the notation %sz holds for the element-wise P;-Galerkin derivative.

2.2. Stability

The efficiency, and to some extent the robustness of the algorithm relies on the
accurate estimation of the maximal time-step ; this is particularly essential when
local time-stepping is employed.

Unfortunately, estimating the local time-step evaluated from a simplified
Fourier analysis can be very hazardous. Hence, we prefer to evaluate a lower bound
based on the L™ stability of a multi-dimensional model. We refer to [LAL2] for a
stability study of linear multidimensional advection model that is also valid in the
3-D case. We define the following “reference time-step” which will be computed on
each cell as follow :

At; = volume(C;)/(Alax / do)
| * 8C;
with .

A’l

max

= max(A; max Aj
(A j neighbor of i i)
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and .
Ai = (uf + 0] +w))? +e
where u;, v, w;, c; hold for the values in cell C; of the velocity components and

sound speed.

Because of the ratio area/volume in 3-D, a factor of six may be lost w.r.t. usual
L? stability condition; in practice, time-step larger than At; by a factor of 5 can be
used (L2-)stably and a good strategy for multi-gridding is to set At in the range of
4At; to 5AtL;.

3. MULTIGRID SCHEME

3.1. Basic Iteration Method

A Runge-Kutta scheme is applied with either one or (following [JAM2]), four time-
steps :

([ wO=w"
w® =w® —a;At D(W®)
(9) { W®A=w® _a,At D(WWD)
W =w® — a;At DW®)
W) = W — o, At D(WD)

where D holds for the spatial fluxes divided by the cell area, see (2).

In the second option, the following coefficients are employed (see [TUR], [LAL3]

a1 = A1
ag = .2766
10
( ) Q3 = .5
Qq = 1.

3.2. FMGQ first-order scheme

The basic algorithm uses FAS iterations and Full Multigridding as in [JAM2]. We
have it sketched for 3 grids. The transfer operators are defined in the present ap-
proach as follows :



- Fine-to-coarse : values are averaged in a conservative manner.

- Coarse-to-fine : the trivial injection is applied.

3.3. Second-order version

The second-order spatial scheme is introduced into the fine-grid solver only for the
last phase of the full-multigrid process. This introduces a minor modification in
the algorithm. However, two disadvantages appear in this construction : first the
coarse level correction is less consistent with the fine level smoother ; second, in
a full-multigrid approach, the third phase starts from a first-order (medium level)
solution instead of a second-order one. The resulting convergence degradation is
about a factor 2 and is studied in [LAL4].

4., NUMERICAL ILLUSTRATION

We have experimented the above algorithms with three calculations that require
many time steps before reaching steadiness when an explicit scheme is applied.

4.1. Comparison with a classical approach

In order to validate the approach,we consider the first-order accurate version. The
test case is the classical flow in a channel with 4.2 % thick bump with a Mach at
infinity equal to .85.

We recall a first result that was performed by M-H. Lallemand [LAL1] with
(what we call) a two- dimensional multi-triangulation algorithm : three
triangulations are nested standardly (by element division) and as spatial scheme,
the first-second-order upwind scheme is applied at each level and the one-step RK1
time stepping is applied at each level and the inter-grid transfers are Galerkin
standard ones. For the 2-D calculation, the successive nested triangulations contain
respectively 161, 585, and 2225 vertices.

Secondly the presented 3-D algorithm is applied to a tetrahedrization which
is essentially a 72x21x3 mesh, see Fig. 2-a. The automatic coarsening gives three
coarse levels with the following sizes: 3016 cells, 516 cells, 91 cells; the size ratio
between two successive levels tends to be about 6 because of the quasi- 2-D character
of the fine mesh; in this severe condition, the CPU ratio between one MG cycle
and one usual RK4 iteration is only 1.7.We present in Fig. 2-b the history of the
convergence when a Full four-grid algorithm is applied ; it favourably compares to
the 2-D 3-grid multi-triangulation calculation (Fig.2-c); this proves that both the
original coarsening algorithm and intergrid transfers presented in this paper do not
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bring any trouble in 3-D at least when spatially first-order accurate schemes are
used.

4.2. Two-jet flow in chamber

A practical illustration of the efficiency of the 3-D code is the calculation of two
impinging supersonic jets in a rocket combustion chamber. This test case is rather
severe because of high pressure ratios, resulting in Mach number as high as 5. A
mesh with 21,859 vertices is used and the first-order scheme with RK4 iteration
is applied. The convergence in Full Multi-Grid mode is rather fast with the first-
order accurate MG scheme: 36 cycles are sufficient for a residual division by nearly
1000, the reduction factor is .89, see Fig. 3. Unfortunately, attempts to apply the
second-order accurate MG solver made arise instabilities (negative pressures), while
the fine grid iteration stayed stable : we must remember that the multigrid schemes
are designed to be L? stable, but not L™ stable (in the sense of positiveness or
maximum principle).

4.3. Flow past a delta wing

We turn now to a second-order accurate calculation; then the full-MG strategy
cannot be applied since only first-order accurate solutions are available on coarse
levels: this does not give a very good initial condition; another strategy consist in
the combination of the MG algorithm with the use of a succession of locally refined
meshes. We illustrate this with the following calculation: the flow around a delta
wing with circular profile is considered; the Mach number at infinity is 1.2 and the
angle of attack is equal to 10 degrees; mesh adaption by local element division is
applied after a coarse mesh (about 5000 vertices) calculation; the final fine mesh
contains 22160 vertices; the numerical solution is obtained by applying the second-
order MG version (fine level) relying on the RK4 time-stepping (at each level).

We give in Fig.4 an idea of the solution and the history of convergence with
multigrid when we use as initial condition an interpolation of the solution obtained
with the coarse mesh. The convergence is much less good than in Sec.4.2; the reduc-
tion factor has a mean of .89 over 60 cycles, but it degrades progressively. However,
in this calculation, a very partial convergence seems to be sufficient since the solu-
tion does not essentially change after the first 40 cycles.

4.4. Computational costs

The calculations have been performed on a mini-computer in scalar mode.
For giving an idea of the complexity (number of operations) of the algorithm, we
compare the different measured costs with the cost of a standard one-grid RK4
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solver, that involves the calculation of a local time-step and four Euler fluxes defined
in Sec.2:

Cost of the coarsening algorithm: about 0.2 RK4.
_Cost of one MG cycle: about 1.7 RK4.

The second number is slightly lower in the case of the second-order scheme
since second-order is applied only to the fine grid. Both numbers do validate the
coarsening approach for both start up and transfers.

5. CONCLUSION

Using the presented algorithm, an efficient calculation can be performed on an
arbitrary 3-D tetrahedrization without any need of taking care of the coarse levels:
they are generated in an automated manner once for all and we can just ignore
them.

While the problem of coarsening seems to us rather well solved by this approach,
the choice of the iterative method is not completely satisfactory: the second-order
version is not yet efficient enough and presents some lack of robustness. One way
to deal with the difficulty in the second-order extension can rely on the Defect
Correction principle; this possibility is currently studied by B. Koren and M.H.
Lallemand [KOR]. We may also consider some more sophisticated iterative methods
such as implicit ones already investigated in 2-D [LAL4].
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(a)

(b)

Figure 1 3

Sketchy representation of the Finite-Volume partition

i : node

T : tetrahedron

Ci : cell around i
M : middle of edge
G : face centroid

Gy, G2 : face centroids
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intersection of Ci{ and an element T
intersection of C; and Cjy.
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First-order 3-D scheme :
Transonic impinging jets in a
combustion chamber (21 000 nodes)
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