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Summary

For multiple correspondence analysis many procedures are known for handling missing
data. In this paper some properties of the most important procedures are discussed. As a
second step distinct types of missing data are distinguished. Apart from a typology
presented by Little & Rubin (1987), we also give attention to the fact that in multiple
correspondence analysis regularly missing data are created on purpose in order to
eliminate the influence of specific categories. Given the properties of the different
procedures for handling missing data, it is discussed which types of missing data can best
be handled with which procedures for missing data.

This paper was written while the first author visited LR.I.S.A. in Rennes. We are
grateful to S. Nishisato and J.J.A. van Rijckevorsel for helpful comments on an earlier
version of this paper. *Department of Psychometrics and Research Methods, University
of Leiden, The Netherlands. **I.R.I.S.A., Rennes, France.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L. A 227) _ EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 I.N.S. A. DE RENNES (LABORATOIRE DE RENNES)



Traitement des valeurs manquantes
en analyse des correspondances multiples

Peter G.M. van der Heijden* & Brigitte Escofier**

Résumé

Beaucoup de méthodes ont été proposées pour traiter les valeurs manquantes en analyse
des correspondances multiples. Dans cet article, on étudie les propri€té des méthodes les
plus importantes. Nous distinguons différents types de valeurs manquantes en suivant
des propostitions de Little & Rubin (1987), et noud étudions aussi le cas de valeurs
mangquantes crées pour €liminer l'influence de catégories particulieres. Les propriétés des
differentes méthodes sont utilisées pour étudier celles qui s'adaptent le mieux a chaque

type de valeurs manquantes.

This paper was written while the first author visited LR.I.S.A. in Rennes. We are
grateful to S. Nishisato and J.J.A. van Rijckevorsel for helpful comments on an earlier
version of this paper. *Department of Psychometrics and Research Methods, University
of Leiden, The Netherlands. **1.R.1.S.A., Rennes, France.
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1. Introduction

Multiple correspondence analysis (MCA) is a tool for data description that receives much
attention in the last decade. Many reasons for this can be given, one of it being that it is a
very flexible tool in the sense that it can be applied to many types of data (see for
examples Nishisato, 1980; Gifi, 1981; Greenacre, 1984). In this paper we discuss MCA
of categorical data that are coded into an object by variable matrix in some way or
another. Such data are very common in the social sciences, for example as a result of
using questionaires. We concentrate on the case that the object by variable matrix contains

missing values.

For object by variable data many different missing data procedures exist in MCA. The
major sources for these procedures are Hamrouni & Benzécri (1976), Nishisato (1980),
Meulman (1982), Greenacre (1984) and Benali (1985). In this paper we give an overview
of the most important missing data procedures. In our opinion this overview is much
needed, since the above authors often do not seem to be aware of each others work. We

will compare these procedures systematically by studying their properties.

Using a typology of missing data provided by Little & Rubin (1987). They distinguish in
the first place data that are really missing from data that are not really missing. An
example of the latter class is that objects cannot be classified in the original categories, for
example, when a question is irrelevant for some persons. As an extra type we define
missing data that are created on purpose, for example, in order to eliminate the influence
of diminating categories. We will try to come to conclusions that in some specific missing
data situation some specific procedure seems better suited than another. We start with a

description of MCA for non-missing data.



2. Multiple correspondence analysis

There are many ways to introduce MCA. We will introduce MCA here shortly as simple
correspondence analysis (CA) of an indicator matrix (see, for example, Greenacre, 1984,
ch. 5). Many other approaches to MCA are possible, see, for example, Nishisato
(1980), Gifi (1981), Lebart, Morineau & Warwick (1984). For a summary we refer to
Tenenhaus & Young (1985). Introductions to simple CA are also provided by the above
authors. We will emphasize CA properties that result from the fact that an indicator
matrix is analyzed. We only discuss properties needed for our discussion of the various
approaches to missing values in MCA: this paper is not meant as an introduction to

MCA. For more details we refer to the authors mentioned above.

An indicator matrix is defined in the following way. Consider a data matrix P with
qualitative measures of n objects indexed by i, on m variables indexed by j. See table la.
Each variable j has k; categories, indexed by 1, and the total number of categories is
k=Zk;. We transform the matrix P into a binary indicator matrix X of order n x k,
where each category 1 of variable j has its own column. In this matrix x;; = 1 if object i
falls into category 1 of variable j, and x;; = 0 else. See table 1b. Notice that x;;,=1, hence
Xips=m and x,,=nm, and x,; is the marginal frequency for category 1 of variable j. We
will now discuss CA of this matrix, emphasizing geometrical properties (see also
Meulman, 1982, 1986; Greenacre 1984; Carroll, Green & Schaffer, 1986).

CA gives two geometrical representations of a matrix, one for the rows and one for the
columns. First consider the representation for the rows. Each row is represented by a
point in k-dimensional euclidean space, and has coordinates equal to X;j/X;4. The metric
in this space is defined by D;l, where D, is diagonal with elements the column margins
X 4ji/X 44+ = X4j/nm. The vector of coordinates x;;/x;,, is defined as the profile for row i.
With each point i a mass x;, /X, = 1/n is associated. The distance between the profiles

for row iand i' is called the chi-squared distance, and is defined as
8%(i,1") = i K/ Xj)) Ky Xir - xi'jl/xi‘++)2 (1a)

Since x;,,=x;,,=m and x,,,=nm, (1a) can be simplified to



82Gi) = (n/m) Zyy (Uxyq) (i - Xp)? (1b)

This shows that combination jl does not increase 82(i,i') when objects i and i' either both
fall or both do not fall into the same category 1 of variable j: in both cases x;;;-x;;=0.
When only one of the two objects falls into jl, the increase of 8%(i,i") for jl is proportional
to (1/x,;). Therefore objects i and i' will be close together when they have many
categories in common,; this also shows that 82(i,i") will become larger when i and i' differ
by falling into distinct categories with lower marginal frequencies.

We will now study the distance of object i to the average row profile O, which is the
profile of the column margins. This average row profile is in the weighted average of all

row profiles, using masses x;,,/x, ,, as weights, and has values x /X, . So using (1a)
8(1,0) can be found to be

8%(i,0) = (n/m) Ty (/) (i - (Kyp/m))? (1c)

This shows that when object i does not fall into jl, then x;;=0, and 8%(1,0) increases with
x+j1/nm for column jl; when object i falls into jl, then xij1=1, and 82(i,0) increases with
(n/mx_y) - (2/m) + (x,/nm) for column jl. We conclude that when object i falls into

categories with lower marginal frequencies x, 8%(1,0) increases more.

We can also derive the weighted sum of squared distances of all objects to the origin.
Since there are x,;; objects falling into jl, and (n-x,;) objects not falling into jl, it follows
that for jl the sum of all squared distances is (n/m) - x,;/m. Weighting this with the
masses of the objects, and summing over all possible jl (which is allowed due to
Pythagoras theorem), we find the so-called tozal inertia

total inertia = (k/m) - 1 : (1d)

Now we discuss the chi-squared distances between the columns of X. Columns are
represented as points in n-dimensional euclidean space, with coordinates for column jl
Xjji/X4;1. The metric of the space is defined by the D;l, with D, diagonal having elements

Xi+/X 4+ =1/n, s0 we deal with a metric that is proportional to the identity metric. Each



column jl has a mass X, /X 144 = X4/nm associated with it. The profile for category | of

variable j has values x;;/X,;), and We find as the chi-squared distance between jl and j'1'
S2GLIT) = 25 Ry Xip) (KXot - xij'l'/x+j'1')2 (2a)
Since x,,,=nm and x;,,=m, this simplifies to

SHGLIT) = n By (xyxaqt - Xigr/Xag)? (2b)

If object i does not fall in either of x;; or x;jy, then the increase of 82(j1,jT) for object i is
0. If object i falls in only one of both categories, say in jl, then the increase in §2(LiT) is
n(1/x ﬂ-l)z, which will be larger when jl has a lower marginal frequency. If object i falls in
both jl and j'I', then the increase in 8201,3"1') is n(1/x4 - 1/x+j-1-)2 which will be larger
the more the marginal frequencies of jl and j1' differ. Another way to show the influence
of marginal frequencies on the distance between two columns is the following: if we
work out (2b), using the fact that xizjl = ;5 and x%j-l- = Xjj1» we find

Szﬁl,j'l') =n (1 - Zixijlxij~lo)/x+j1 + n(l - Zixijlxij'l')/x+j'l' (2C)

which shows that the distance between jl and j'l' is proportional to the sum of the
proportion of objects having jl but not j'1' and the proportion of objects having j'1' but
not jl. It also shows that the distance between two categories I and I' of the same variable
j is proportional to 1/x 5 + 1/x,.

When we use (2a) to study the distance to the average column profile O, we find
82GLO) = n Z; (xip/x4j - 1Un)? (2d)

This shows that, when object i does not fall into jl, then x;;=0, and 82(jl,O) increases
with 1/n. When object i falls into jl, x;=1, then 8%(LO) increases with (n/x,37) - (2/x,;)
+ (1/n). The total distance 5201,0) can easily be calculated as the sum of (n-x +jk)/n (ie. n-
X 4ik objects do not fall into jl) and x 4l ((n/x ﬂ%) - (2/x +j1) + (1/n)) (since there are x;jl
objects falling into jl), and hence we find 82(]'1,0) = (n/x) - 1. This shows that the

distance of jl to the average column profile is larger for a category with a smaller marginal



frequency. When we take the sum over all jl, weighted with the masses x,;/x,, we find
as total inertia (1d), showing that the total inertia of the configuration of row points is
identical to the total inertia of the configuration of the column points.

We now give another way to derive the total inertia, that will be useful when we discuss
the total inertia for different missing value approaches. This way is

Total inertia = Z;Zj (Xj/Ks4s) - KipsXaf Koy N? / RiasKps ) KX g4
(3a)
and by working out the term in the numerator, using the fact that xizjl = Xy, we find
Total inertia = (;Zj X1/ (X X)) - 1 | (3b)
and since x;,, = m, we can reduce (3b) to further to (1d).

Knowing the total inertia of the full-dimensional space, one is usually interested in the
study of a low dimensional projection of this space that displays as much inertia of the
full dimensional space as possible. One generalized singular value decomposition (SVD)
can be used to project the full dimensional space for the rows and the full dimensional
space for the columns onto lower dimensional subspaces (see, for example, Greenacre,
1984). This corresponds to the following decomposition of X:

X/x,,. =D,(1 + RAC)D, , 4)

where D, is diagonal with margins x;,,/x, ., D, is diagonal with margins x5/, ,Ris a
matrix with object scores r;o, for row i on dimension o and C a matrix with category
scores Cjq, for category 1 of variable j on dimension ¢, and A is a diagonal matrix with

singular values Ay. R is normalized so that RD,R =1 and tD,R = 0, and C is

normalized similarly as CD,C =1 and tD.,C = 0. Since D, =¥/n, and X, ,, = nm, (4) can

be simplified, and the normalization of R is RR =nl and tR =0.

The row scores R and column scores C are related by the transition formulas



R* =RA =D;!XC (52)
C* =CA =D!X'R(5b)

These properties are the key concepts in 'reciprocal averaging', one of the approaches to
MCA. Since D, =I/n, (5a) can be simplified. Equation (52) shows that object scores can
be derived as averages of the scores for the categories that they used, and (5b) shows that
category scores can be derived as averages of the scores for the objects that used these
categories. Distances between the rows are equal to chi-squared distances when R* is
used as coordinates for the rows, and distances between the columns are equal to chi-
squared distances when C* are used as coordinates for the columns. Often the pair
(R,C*) is used for a joint representation in which the category points are in the weighted
average of the objects falling into them. Notice that R¥DR* = A% = C*D_C*, where
trace A2 equals the total inertia. This shows that the total inertia is spread out over the

row points and dimensions, and the column points and dimensions.

MCA is related to many techniques for the analysis of quantitative data, such as analysis
of variance, principal components analysis and generalized canonical analysis. We will
not discuss this in detail here, but refer instead to Tenenhaus & Young (1985). Here we
will only discuss this relation verbally. Central in the relation between MCA and these
techniques is the notion of the quantified data matrix that we will denote as Q. Starting
from a non-quantified data matrix P (see table 1a), we can use the scores found for the
categories in MCA to construct a quantified data matrix Q of the same order as P. In
principle such a quantified data matrix can be constructed for each MCA dimension, but
here we only describe this for the first dimension. This matrix Q has values q; = Z,
X;iiCiip» 1.6 we replace the labels in P by the quantification of these labels on dimension
1.

The relation between MCA and principal components analysis is that the matrix Q has the
property that the average of the squared correlation between each of the columns of Q and
the object scores on dimension 1 is maximized and equal to the first eigenvalue found by
MCA. This objective is similar to the objective in PCA, where Q is fixed, and the
eigenvalue is maximized as a function of the object scores (called component scores)

only. The relation between MCA and generalized canonical analysis tuns along the same



line, but now each of the columns of Q is viewed as an optimal linear combination of the
columns of their corresponding part of the indicator matrix. The relation between MCA
and analysis of variance is that it is tried to make the values in each row of Q as similar
as possible while at the same time the averages of the rows (which correspond to object
scores) are made as dissimilar as possible. This is done under the restriction that each
column of Q has average 0 and variance 1. It comes to the same as maximizing the
average of the ratio of the 'between variance' and the 'total variance' for each variable,
hence the relation with analysis of variance. For more details on these approaches we
refer to Tenenhaus & Young (1985) and the references given there. Here we only
emphasize the importance of the quantified matrix Q in many interpretations of MCA,
since it makes some of the missing data approaches more easily understandable.



3. Missing data procedures in multiple correspondence analysis

* In section 2 we discussed MCA without missing data. We approached MCA as a CA of
an indicator matrix. Now we can introduce most of the missing data procedures
described so far in the literature by simply showing how the presence of missing value in
the original data leads to the adjustment of the indicator matrix. Consider again our small
example in table 1a, in which we have inserted three missing values into row 3 and 4, see

_table 2a. We proceed by discussing the missing data procedures separately.

3.1 Missing passive.

This is a very popular approach to missing data. The idea is simply that x;; = 1 if object i
falls into category 1 of variable j, and x;; = 0 if not. This implies that if the information
for object i on variable j is missing, x;; = 0 for each category 1 of variable j (see table
2b). As a second step the centroid of objects that are missing on variable j can be
calculated 'passively' (i.e. it does not influence the other analysis results) as a point for
'missing' on variable j, hence the name 'missing passive' (Gifi, 1981). This approach is
suggested in Benzecri et al. (1973, p.327), Hamrouni & Benzécri (1976), Nishisato
(1980) and Gifi (1981) and the properties of this approach are studied in detail by
Meulman (1982). It is the default option for missing data in the program HOMALS (van
de Geer, 1985).

Notice that the row margins are not all equal to m, the number of variables (see table 2b).
This affects many of the MCA properties. First of all the metric for the category points is
not the identity metric anymore. Chi-squared distances (1a) and (2a) can still be
calculated, but cannot reduced further to (1b) and (2b) since x;., is not necessarily equal
to m. For (1a) this has the somewhat strange result that, if x;, . #x;.,, and both objects
fall into the category 1 of variable j, the distance 82(i,i') increases. The total inertia is not
simply (k/m) - 1 anymore, but larger. This follows from (3b): since in 'missing passive'
X;i+ < M, it follows that 1/x;,, > 1/m, and hence the total inertia becomes larger. The
general equations (4) and (5a) cannot be simplified since D, is not proportional to I
anymore. However, the transition formulas define MCA still in a very simple way: using

normalization (R,C*), each categories is still in the centroid of the objects that fall into it,

10



and using normalization (R*,C), each object (also an object with missing values) is in the
centroid of the categories it falls into. A drawback of this approach is that, since D, is not
proportional to the identity matrix anymore, the interpretations of MCA in terms of
principal component analysis, generalized canonical analysis and analysis of variance do
not hold anymore (see Meulman, 1982, for a proof).

This approach has the advantage of being very simple, and the transition formulas can
still be interpreted in the same way. However, many other important MCA properties are
lost. Missing passive resembles so-called "available case" methods (compare Little &
Rubin, 1987, ch. 3) that are sometimes used for data analysis with missing values: the

resemblance is that only the non-missing values play an 'active’ role in the analysis.
3.2 Missing passive modified margin

This approach, proposed by Escofier (1981,1987) is concerned with the property of the
indicator matrix for missing passive that the row margins x;,, are not all equal to m, the
number of variables. The option 'missing passive modified margin' solves this by
artificially using constant row margins 1/n in the MCA calculations. So, compared to (4),
we can write this approach in terms of generalized CA decomposition (see Escofier,
1983; van der Heijden & de Leeuw, 1985)

\

X/x,., =S5,1S, + S,RAC'S, (6)

where X is the same matrix is in 'missing passive', S is a diagonal matrix with the
elements x, /X, but S is a diagonal matrix with values 1/n. Notice that the sum of the
elements in X/x,,, = 1 whereas it is nm/x,, for S;1S_. The objective of fixing the row
margins artificially is to obtain a solution in which many of the MCA properties still hold.

So 'missing passive modified margin’' is meant to remedy the weak points of 'missing
passive'.

Like in MCA without missing data, but unlike 'missing passive', the mettric for the
category points is the identity metric. Chi-squared distances between the rows have the
property that, when x;;=x;;=1, this does not increase 82(i,i"), since artificially

Xi4++=X;44- The total inertia is equal to (1d) (up to a proportionality factor nm/x, ,, to

11



remedy the fact that the total number of observed values x,, is not nm). Transition
formula (4b) holds as usual, i.e. using normalization (R,C*) the categories are still in the
averages of the objects that used them; however, (4a) has a slightly different form, since
the row margins of X/x,,, are not equal to the row margins of S 1S (compare van der
Heijden & de Leeuw, 1985). Another nice property of 'missing passive modified
margins' is that the relation with principal component analysis, generalized canonical
analysis andanalysis of variance again holds when we fill in g;; = 0 if object i is
missing on variable j, and the maximized eigenvalue is corrected with a factor nm/x . It
falls beyond the scope of this paper to discuss this option in more detail, we refer instead
to Escofier (1987).

We conclude that, compared to 'missing passive', 'missing passive modified margin' has
many nice MCA properties that are lost in 'missing passive'. As for 'missing passive'
only the non-missing scores play an active role in the analysis, and as such this approach
resembles "available case methods" also. The approach is computationally more difficult

to use since a special program for generalized CA is needed.

3.3 Missing single

In the option 'missing single' for each variable having missing values a single extra
category is created for the missing objects (see table 2b). This option for the treatment of
missing data is very popular. Since it comes down to an ordinary MCA, all formulas in
section 2 can be used in a straightforward way. Equation (1d) shows that, by adding
columns to the indicator matrix, the total inertia increases with 1/m for each extra column.
This shows that the missing categories take part 'actively' in the solution (as compared to
‘missing passive'). Problems might result from this, for example, when the number of
missing objects for some variable is very small, then the new categories may dominate
the solution (Nishisato, 1980). Notice that the increase of the inertia (and hence of the
influence on the solution) is relatively larger if the original number of categories is
smaller (see (1d)). So if all variables have few categories 'missing single' will have a
greater influence on the solution than if all variables have many categories. As far as the
transition formulas are concerned, we find that, as usual, categories are in the centroid of

the objects that chose them (this also holds for the categories for missing); objects are

12



now in the average of all their categories, i.e. not only the categories of the variables on
which they were not missing. In the quantified data matrix Q the objects missing on

variable j all have identical scores, that may very well be extreme.

We conclude that this approach is very simple to apply. It might sometimes lead to
unwanted results: for example, when we are not really interested in the missing values,
we might very well end up with a solution that distinguishes persons having missing
values from persons not having missing values. In terms of general missing data
procedures, this approach is not comparable to "available case methods" like missing
passive, but instead to methods where optimal values are filled in into the data matrix.
Notice that all objects that are missing are inserted into a single extra category. This is
useful when it is assumed that these objects have something in common. It is generally
suggested to use 'missing single' when the mechanism behind the missing data is not
random, i.e. has a specific meaning (see, a.0., Hamrouni & Benzécri 1976; Bastin,
1980, p.310; Meulman, 1982; Greenacre, 1984; Benali, 1985; Benali & Escofier, 1987),
or when one is not sure about the mechanism behind the missing data (Nishisato, 1980).

3.4 Missing multiple

In 'missing multiple' for each missing value in the original data matrix a separate extra
column is created (see table 2b). So when a variable has more than one missing value, it
receives multiple categories. This option is discussed in Gifi (1981), and studied in detail
by Meulman (1982).

As in missing single, missing multiple also provides us with a complete indicator matrix,
and therefore all equations in section 2 can be applied in a straightforward way. Similar
remarks as for 'missing single' can be made for the chi-squared distances. Here, when
objects have one or more missing values, they will be placed very far from the other
objects in full-dimensional space. A striking point is that the rotal inertia increases
considerably when the number of missing categories is large. Therefore this option is
likely to produce outliers, given the tendency of MCA to place categories with small
marginal frequencies in the periphery of the solution. The transition formulas show that,

13



using (R,C¥), the missing catqgoﬁcgreéeive the same scores as the objects for which

‘they are missing. For more details we refer to Meulman (1982).

We conclude that this option is easy to interpret, like 'missing single'. Conéepiually itis
attractive in the case that it is assumed that the missing objects are missing for different
reasons. However, this option is likely to produce outliers, especially if there are objécts

that have more than one missing value.

35 Missing insertion

In 'missing insertion’ objects having missing values are inserted in some way into one of
the original categories. Nishisato (1980; see also Nishisato & Levine, 1975) discusses
two possible options to insert, namely "insertion of most consistent responses” and
"insertion of least consistent responses". In the former approach objects with missing
values are assigned to categories in such a way that the first eigenvalue is maximized, in
the latter approach objects are assigned to categories in such a way that the first
eigenvalue is minimized (for more details, see Nishisato, 1980). Van Buuren (1988)
applies the k-means algorithm to assign an object with missing values to categories in
such a way that the total inertia is maximized. In these options we deal with complete
indicator matrices, and hence the properties of MCA all hold. They require a relatively
large computational effort. He discusses the use of the above techniques for the
determination of the range of the first eigenvalue, and the loss of information due to
missing data. His aim is to indicate emperically when an analysis of the data should be
given up, which is the case when the gap between the best and the worst configurations

generated is too large to ignore (Nishisato, pers. comm.).

In the program SPADN (Lebart et al., 1987) a procedure is used that is closely related to
inserting: there objects in categories with very low marginal frequencies are inserted at
random into the other categories. Inserting at random seems to give good results if the

main interest is in the configuration of category points.
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3.6 Missing fuzzy average

In this option we fill in proportions for the missing categories. Much attention has been
given to the following approach: when variable j has k; prespecified categories, and some
object is missing on this variable, it will receive a value 1/k; for each category. So its
value is distributed uniformly over the categories. We call this fuzzy because fuzzy
coding is the name given to indicator matrices with values between zero and one (see
Greenacre, 1984; van Rijckevorsel, 1987). This option is discussed in Benzécri et al.
(1973, p.310), Hamrouni & Benzécri (1976), and properties of this option are studied in
Cazes (1977, republished in Bastin et al., 1980), and Greenacre (1984). Benzécriet al.
(1973) already warned for the inherent danger in this approach that when some category
has a very low marginal frequency, an object with missing information receives a
relatively large score on this category using this approach. This objection seems SO
serious to us, that we will not consider this possibility any furthér, but instead go to its

natural generalization, that we coin missing fuzzy average.

In 'missing fuzzy average' we fill in the marginal proportions for the cells corresponding
with a-missing value. So for the first variable in table 2a this is 4/8 2/8 2/8, since 4 out
of 8 non-missing objects fall into 'a, and so on; for the second variable the proportions
are 4/9 3/9 2/9 (see table 2b). We call this average, because the average distribution for
the non-missing objects is filled in into the indicator matrix. This approach was
suggested by Benzécri et al. (1973, p.327) and Hamrouni & Benzécri (1976), and can
be found in modified form in Greenacre (1984). These proportions can also be found
using a procedure for missing data in ordinary contingency tables, namely 'reconstitution
of order zero' (see Tallur, 1973; Mutumbo, 1973; Nora, 1975; Greenacre, 1984; de
Leeuw & van der Heijden, 1988). When we apply reconstitution of order zero to the cells
of an indicator matrix that correspond to the missing elements in the matrix of objects by
variables, this procedure will iteratively find values that are independent given the new
margins. These independent values are the average proportions. For 'reconstitution of
order zero' it is known that the cells for which independent values are fitted do not
contribute to the inertia (compare de Leeuw & van der Heijden, 1988). We will now

discuss some other properties.
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Due to the fact that the row margins x;, ,=m, some of the MCA properties are still intact.
Chi-squared distance formulas apply in a straightforward way. The total inertia will be
lower than (k/m) - 1: the cells in which we find the marginal proportions do not
contribute to the total inertia since Xy = X;,4X,j)/X,4, (compare (3a)). In this sense
missing fuzzy average provides us with the lowest possible total inertia when we try to
find an indicator matrix starting from an ordinary object by variable matrix as in table 2a.
As far as the transition formulas are concerned, they can be applied straightaway: using
(R*,0), an object is in the average of the categories that are non-missing; however, using
(R,C*), a category is not in the average of the non-missing objects only, since the
missing objects also contribute somewhat. In the quantified data matrix Q we find for the
missing values the score 0, since Zx;;C;o, = 0 for these cells. This clarifies what we do
when we fill in average proportions into the indicator matrix: in terms of the quantified
data matrix is comes down to filling in the average value (namely, zero) for the missing
values of each variable. The optimality properties of MCA in terms of principal
component analysis, generalized canonical analysis, and the analysis of variance do not

hold anymore, however, due to the fact that the indicator matrix contains proportions.

Notice that by filling in the average it is not tried to extract information from the fact that
someone is missing. On the contrary, a solution is sought in which, in terms of the total
inertia, the influence of the missing entries is completely eliminated. It resembles the
approach used in the context of missing quantitative data, where sometimes means are
imputed for the missing values (compare Little & Rubin, 1987).

3.8 Missing fuzzy subgroup.

Missing fuzzy subgroup is a natural extension of 'missing fuzzy average': now we fill in
proportions that are found for some subgroup, for example, when an older male has a
missing value on some category, we calculate the proportions on this variable for the non-
missing older males, and fill these in for the missing older male. For the missing entries
in table 2a this implies the following: for row 3 we fill in the distribution of objects
having scored 'q' 'w': this distribution is 1/2 1/2 0. For row 4 we fill in the distribution
aving scored 'v': this is 2/3 1/30 2/3 0 1/3 (see table 2b). Though not precisely identical,
this approach is suggested in Greenacre (1984, p.155). In this vein it is also possible to
use more sophisticated methods to estimate the missing data (compare Little & Rubin,
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1987, ch.9 and 11). It is tried to find a best guess of the score of an object, given its
scores on the other variables. So, again, it is not tried to extract information from the fact

that someone has a missing value on some variable.

Chi-squared distances can again be simplified since x;,,=x;,,=m. The transition
formulas apply, however, compared to missing fuzzy average, an individual is not
anymore in the average of his non-missing variables only, since we- have made a best
guess for his missing variable. The total inertia is smaller than (k/m) -1 (see Greenacre,
1984; van Rijckevorsel, 1987) but larger than the total inertia for 'missing fuzzy
average'. In the quantified data matrix Q the cells that correspond with missing values
have a score that is in the average of the scores that the objects in its subgroup have. As
in 'missing fuzzy average', MCA is not optimal in terms of principal component

analysis, generalized canonical analysis or analysis of variance.

3.9 Concluding remarks

Nishisato (1980) distinguishes approaches that extract information from the fact that some
object has a missing score, and approaches that do not do this. Obviously, 'missing
single' and 'missing multiple' are options that extract information from being missing by
defining 'being missing' explicitly as alternatives. Approaches that do not try to extract
information from missing values are the available case methods 'missing passive’,
'missing passive modified margin', the fuzzy options 'missing fuzzy average’, 'missing
fuzzy subgroup', and 'missing insertion’. In 'missing passive' an object score is only
based on the non-missing scores, and in this sense no information is extracted from the
fact that it has scores missing. The same holds for 'missing passive modified margin’
that can be considered as an option that tries to remedy some MCA properties that are lost
in 'missing passive'. In 'missing fuzzy average' always the average zero is filled in, and
this shows that this option does not extract information from the missing scores. In
'missing fuzzy subgroup' an average is filled in for a subgroup, and this average does
depend only on the non-missing information, so in this case we also do not extract
information from the fact someone is missing. 'Missing insertion' doesnot use the fact
that someone is missing for the determination of the category into which one is inserted.
So we conclude that in this respect the main difference is between 'missing single’ and

'missing multiple’ on the one hand, and the other options. We have the impression that if
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the number of missing values is small, the methods that do not extract information from
being missing will give very similar results. First of all, the procedures 'missing passive’
and 'missing passive modified margin' are almost identical. Compared with the fuzzy
procedures and the inserting procedures, the indicator matrices only differ somewhat for

the objects having missing values.

We have only discussed the approaches to missing data that are most distinct. We have
ommitted some approaches from our study. For example, a set of combinations is found
in Greenacre (1984), who combines in various ways 'missing single' together with the
two fuzzy options. We have chosen to discuss these options separately in their '‘pure’
form. In Bastin et al. (1980) it is suggested to use reconstitution of order zero (see
'missing fuzzy average') to end up with an appropriate choice of zeros and ones for the
missing values, but this is not worked out. A last option, discussed in Greenacre (1984)
and Benali (1985) is to create one extra column, indicating the number of missing values
each object has. This has the objective to have again an indicator matrix with constant
row margins. Compared to missing single, this comes to the same, geometrically, as

merging all missing categories into one point, their centroid (Greenacre, 1984).
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4. Types of missing data

Here we will discuss distinct types of missing data that can appear in object by variable
data (compare Little & Rubin, 1987). A first distinction is between data values that are
really missing, and data values that are not really missing. We speak of data values that
are really missing if in reality an object falls into one of the categories but we do not
know into which category. As an example of data values that are not really missing, we
might think of attitude items to which a person doesn't know the answer. In this case -
such a person cannot be classified in any of the prescribed categories . In the sequel we

will refer to this type of missing data as missing not categorizable, abbreviated to MNC.

For data values that are really missing, Little & Rubin (1987) distinguish different classes
of missing values, namely missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). Consider a categorical variable 'Salary'
with one or more missing values, and the categorical variable 'Education’ without
missing. If the mechanism to be missing on 'Salary' does not depend on 'Salary’ nor on
'Education’, we speak of "missing completely at random". In this case the observed
contingency table Salary x Education should be approximately equal to the not observed
(due to the missing values on Salary) contingency table. If the mechanism to be missing
on Salary does depend on Education but not on Salary, we speak of "missing at
random". This implies that the conditional distribution of Salary given Education for the
complete data can be used to estimate the missing values on Salary. If the mechanism to
be missing on Salary depends on Salary and on Education, we speak of "missing not at
random”. This may be the case if the observed salary distribution of the higher educated
persons differs from the non-observed salary distribution for the higher-educated persons

that refused to specify their salary.

Another instance in which we deal with missing data in MCA 1s when we create them on
purpose. We coin these missing data created missing (CM). The general idea of creating
missing data is that we do not want certain categories to have an effect on the solution;
therefore we define objects falling into these categories as missing. For example, we
might eliminate categories with very low frequencies because they have produced outliers
or they have dominated the solution in an earlier analysis. Another reason is that we

consider objects in a specific class to be in that class for heterogeneous reasons, for
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example, some persons do not agree with an item because it is to extreme whereas other
do not agree because it is not extreme enough. Typical examples of this last phenomenon
are 'pick any out of m'-data, seriation data, or voting data. For example, for 'pick any
out of m'-data it is possible that only persons that pick some item are thought to be
identical, since the persons who did not pick the item might have done so for different
reasons. For seriation data, objecis found in a tomb might indicate an identical period,
whereas objects not found might indicate a period before or after the period in which
these objects were found. And lastly, voters for some law are likely to have similar
objectives, whereas voters against some law might do so for opposite reasons. For a
thorough discussion of MCA of this type of data, we refer to Hamrouni & Benzécri
(1976), Heiser (1981) and Meulman (1982).

We will now try to draw some conclusions from the properties of the different options
for the treatment of missing data, by relating these properties to the different types of
missing data. Our conclusions are summarized in table 3, having types of missing data in
the columns, and the options for treating them in the rows. These conclusions will be
helpful if we want to make a justified choice for any of the different options, given that
we deal with a specific type of missing data. We will discuss table 3 columnwise.

4.1 Missing not categorizable

If an object having a missing value is not classifiable in the other categories, this object
defines a new class. There are two possibilities: either we are interested in the relation of
being missing with the other categories, or we are not interested in this relation.We
assume here that in first instance we are interested in this relation. For the case that we are
not interested in this relation we refer to section 4.5 where we discuss ‘created missing'
data.

Given that we are interested in being missing, we should extract information from it, and
hence we can only use 'missing single' or 'missing multiple' (see section 3.9). In the
other options the state of being missing does not play an active role in the analysis.
'"Missing single' is to be preferred if we assume that those objects missing have
something in common, for example, some persons ommit a question about children

because it is irrelevant for them since they have no children. 'Missing multiple' is to be
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preferred if it is assumed that the objects do not have something in common, for example,
they ommit a question for different reasons. However, this option is likely to produce

outliers.

4.2 Missing not at random

If we deal with data that are missing not at random, most often we do also best to extract
information from the fact that someone is missing. In this way we can study, firstly, in
which way 'being missing’ is related to the categories of the variable for which the
objects are missing, and, secondly, in which way 'being missing' is related to the
categories of the other variables. As for 'missing not categorizable' we conclude therefore
that we should use 'missing single’ or 'missing multiple’, depending on the fact whether
we assume that those objects missing have something in common or not. In these options
the fact that one is missing plays an active role in the analysis. Contrary to our discussion
of 'missing not categorizable', we do not dismiss 'missing insertion' because it is a
possible way to insert the missing objects into the category they would have had if they

were not missing.

4.3 Missing completely at random

If we deal with data that are missing completely at random, it is perhaps best to not to use
the option 'missing single' since it treats all objects missing in the same way whereas
they do not have anything in common, due to the definition of 'missing completely at
random'. On the other hand, 'missing multiple' seems elegant since is gives a category
point for each missing score, but on the other hand it is very susceptible to producing
outliers. Good choices are the options 'missing passive' and 'missing passive modified
margin', since they only use the available information for each object. Using the fuzzy
options can also be defended, since this corresponds to imputing the average for 'missing
fuzzy average' or subgroup averages for 'missing fuzzy subgroup'. Obviously, the latter
of these two fuzzy options is more elegant. 'Missing insertion' will also be a reasonable

option in this context, since it can lead to inserting an object into its original category.
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Our conclusions correspond roughly with findings from stability studies performed by
Chan (1978; see also Nishisato, 1980, for a summary), Meulman (1982) and Benali
(1985). In these studies data sets are used with a known structure, and in these data sets
cells are defined completely at random as missing. It is evaluated how well the various

options recover the properties of the complete data from the analysis of the incomplete

data.

Chan (1978) uses a three-parameter logistic latent trait model for binary items. The
generated data are one-dimensional. She compares, among others, 'missing passive’ and
'missing single', and finds that the recovery of information in the complete data from the
incomplete data declines rapidly for 'missing single' when the proportion of missing goes
from 15 to 20%. On the other hand 'missing passive' works relatively good, even with

25% missing values.

Meulman (1982) compares the options 'missing passive', 'missing single' and 'missing
multiple' using many criteria. Missing data are randomly inserted into three types of data
sets, namely an algebraic data set, data generated under the multinormal distribution, and
a set of real data that we do not discuss here further. All data sets are one-dimensional.
The first data set has a rather strong first dimension. In general 'missing single'
performs worse than 'missing passive' and 'missing multiple’ when the number of
missing values increases from 7 via 14 to 20%. There are two data sets generated with
the multinormal distribution. The first has a rather weak first dimension: r=.30 for seven
variables each discretized into five categories, with n=80. For 9% missing, 'missing
passive' perfdrms best; for 16% missing, 'missing passive' still performs best, though
'missing single' still performs acceptable, and 'missing multiple' is not acceptable
anymore. The second data set is drawn from a multinormal distribution with r=.20, for
n=1500; 14% missing values are imputed. In this case 'missing single' performs slightly
better than 'missing passive’, whereas 'missing multiple' should be avoided. Her main
conclusion is that, when the data set has a strong first dimension, all three options behave
rather well; when the first dimension is less strong, then missing passive and missing

single are superior.

Benali (1985) compares 'missing passive modified margin' with at random inserting the

objects missing in any of the categories. He uses real data that are clearly more-
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dimensional in which he defined missing values completely at random. He finds that
'missing passive modified margin' gives somewhat more stable results than the
alternative option. However, the evidence provided by this study is relatively small, since

only one real data sets are used.

|

Important as these studies may be, it should be noticed that it only describes the behavior
of some of the options under completely random missing data, and it concentrates mainly
on the behavior of options in one-dimensional data sets. 'Missing passive' and ‘missing
passive modified margin' seem to perform adequately. Contradictory results are found by
Chan and Meulman for 'missing single': Meulman explains the acceptable performance of
'missing single' in her study from the fact the data generated by her have more
categories, and she concludes "the smaller the number of categories, the worse missing
single is expected to behave" (Meulman, 1982, p.164). The reason for this is that, with a
smaller number of categories, the relative increase of the total inertia is larger (see section
3.3).

4.4 Missing at random

Given the definition of 'missing at random' the option 'missing fuzzy subgroup' seems a
very elegant alternative since it specifies probabilities that an object falls into any of the
categories given its other scores. For the same reason 'missing fuzzy average', and
'missing insertion’ are suboptimal options. We could use 'missing passive' and ‘missing
passive modified margin' if we only want to make use of the scores an object has.
Conceptually, 'missing multiple’ is also usefui, but probably produces outliers. 'Missing
single' is advized against since the objects missing do not necessarily stem from the same

(unknown) class.
4.5 Created missing
Lastly, we might be dealing with data made missing on purpose because we want to

eliminate the influence of some category. In this case we could best use 'missing fuzzy

average', since this option minimizes the total inertia, and thus eliminates the influence of

'
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this category completely. Other possible candidates are 'missing passive' and 'missing
passive modified margin', in which no attempt is made to extract information from the
fact that someone is missing. A drawback of 'missing fuzzy average' is that it does not
work for binary variables: if one of both categories is eliminated, the average proportion
for the other category becomes '1', and we have a column with all values equal to'l’".

§. Conclusion

In this paper we have discussed the ways for treating missing data that were most
important in our opinion. We related these options for the treatment of missing data to the
types of missing data that can occur. Table 3 indicates which option for the treatment of
missing data will most often be preferable, given that one knows what type of missing
data one is dealing with. We agrre with Nishisato (1980, see also section 3.3) that if the
reason for being missing is unclear, it seems wise to assume that the data missing not at
random and start with 'missing single'. Thus one is able to study the behavior of the

extra categories.

For most of the types of missing data we pointed out that often, in our opinion, more
than one option for the handling of missing data was acceptable. We never preferred
'missing multiple’ due to the fact that is likely to produce outliers. '"Missing insertion' is
never preferred because we think that it is only useful in very specific circumstances: in
ordinary circumstances there are always better candidates, in our opinion. When more
than one option is preferable, a choice between these options should be made if there are

specific ideas about the properties of MCA that are thought to be important.
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Table 1. An object by variable matrix with its indicator matrix

Table 1a. An object by variable matrix ~ Table 1b. The corresponding indicator matrix
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Table 2: Row 3 and 4 of table la with missing values, and the
corresponding indicator matrices

Table 2a. Row 3 and 4 of table 1a with missing entries on variable 1 and 2

Table 2b: Rows 3 and 4 of indicator matrices, illustrating distinct options to deal with

missing citrics

Missing passive 0O 0 O 0 1 0 0 1
: 0O 0 O o 0 O 1 0

Missing single 0O 0 0 1 o 1 0 O 0 1
0O 0 0 1 o 0 0 1 1 O

o o0 0 1 o0 O 0 0 0 1

Missing multiple

Missing fuzzy average 1/2 1/4 1/4 0o 1 O o 1
12 1/4 1/4 49 3/9 2/9 1 0
Missing fuzzy subgroup 12 1/2 0 0 1 0 0 1
23 13 0 2 0 173 1 0
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Table 3: Types of missing data (columns) with options for their treatment (rows). The
entries of the table indicate whether a combination can reasonably defended or not.
Options that seem preferable are in bold. Abbreviations are MNC for 'missing not
categorizable', MNAR for 'missing not at random', MCAR for 'missing completely at
random’, MAR for 'missing at random’' and CM for 'created missing'. For details, see

text.
MNC MNAR MCAR MAR M

Missing passive no nb yes yes yes Only zeroes

(modified margin) Available case
method

Missing single yes yes no no no One extra

' column per var.

active role

Missing multiple yes yes yes yes no One extra col.

: per miss.val.
active role
outliers

Missing insertion no Sleé yes yes no Inserted in

' original cat.
Missing fuzzy no no  yes  yes yes ~ Mean imputed,
average , ‘ Inertia minimal
Missing fuzzy no no y es yes no . Subgroup mean

subgroup imputed
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