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Abstract.- We present some general tools for measuring distances either between two
statistical models or between a parametric model (or signature) and a signal. These tools
are useful for solving a variety of Signal Processing problems such as detection,
segmentation, classification, recognition or coding.

After a section devoted to general distance measures between probability laws, we
investigate the question of spectral distances between processes. Then we describe
results concerning AR and ARMA models, for which we also mention the problems
related to the interaction between distances for parametric models and estimation of the
parameters of these models. We also recall (when necessary) some classical results
about error bounds in classification and feature selection for pattern recognition, which
are obtained with the aid of properties of distance measures.

DISTANCES EN TRAITEMENT DU SIGNAL. ET RECONNAISSANCE
DES FORMES

Résumé.- On se propose de présenter quelques outils généraux pour mesurer des
distances soit entre deux modeles statistiques soit entre un modele paramétrique et un
signal. Ces outils sont utiles pour résoudre de nombreux problémes en Traitement du
Signal et notamment pour~la détection, la segmentation, la classification, la
reconnaissance ou le codage.

Aprés un paragraphe consacré a des mesures générales de distances entre lois de
probabilité, on considére le probléme des distances spectrales entre processus. Puis on
présente des résultats relatifs aux modeles AR ou ARMA, pour lesquels on mentionne
aussi les problemes liés 2 l'interaction entre distances de modeles paramétriques et
estimation des parameétres de ces ‘modeles. Sont également rappelé€s, lorsqu'il y a lieu,
les résultats classiques concernant les bornes d'erreur de classification ou la sélection de
traits caractéristiques pour la Reconnaissance des Formes, résultats obtenus a l'aide de
propriétés de distances précisément.

Running headline.- Distances for Signal Processing.
47 pages - 1 table.
Keywords.- distances, detection, classification, segmentation, recognition, coding.
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I - INTRODUCTION

Distance measures between statistical models or between a model and observations are
widely used concepts in Signal Processing (and in Automatic Control) for solving
various problems such as detection, automatic segmentation, classification, Pattern
Recognition, coding, (model validation, choice of optimal input signals for system
identification)... . '

Up to our knowledge, the studies concerning distance measures are basically of two
types, apart from those of probabilists and statisticians. On one hand, there are general
studies for the computation of error probabilities in classification problems (of any
objects characterized by any measurements), without taking into account neither the
nature of the parameters which characterize the probability laws nor the way by which
they have been estimated. On the other hand, there are a lot of specific studies in the
speech processing domain (coding, recognition), where refinements of Itakura or
cepstral distance measures still emerge now.

The aim of this paper is to get together disseminated tools and results concerning
distance measures, in view of application in Signal Processing, for detection and
recognition in general. Especially, we shall address some typical issues in model based
Signal Processing, namely choice of models, parametrizations and parametric
estimation methods on one hand, and choice of distance measures between these
models on the other one, without forgetting the possible interaction between these two
choices.

However we do not claim that we exhaustively compiled all the litterature concerning
distance measures. Nevertheless, we try to follow a presentation going from a general
framework to particular cases.

In section II, we introduce general distance measures between probability laws and the
relationships existing among them. Then, we present some general tools for measuring
the distance between a model and a signal. Section III is devoted to spectral distance
measures between processes. In section IV, we analyse the results related to AR or
ARMA models and to the interaction parametrization/distance.

Let us emphasize that the word distance here means measure of how far away from
each other the laws are, and is not used with the strict sense it has in metric spaces.
Particularly, the measures which are mentioned are not all symmetrical and don't all
satisfy the triangular inequality.



Furthermore, we shall use throughout the paper the following terminology and
notations:

e d(Py, Py) distance between the probability laws Py et P,
d(Ay, Ay) distance between the parametric models A; et A,
o d(yy, Ay) distance between a signal (y;) and a model A,

 with such notations, if Ai represents an estimate of A; (i =1,2), then:
A A A
d(A;, A) et diy,,A)

are distances between signals. the symbol 4 will often be omitted for simplification.

II - GENERAL DISTANCE MEASURES

In this section, we introduce general classes of distance measures, or divergence
coefficients, between probability distributions. In 111, we start with the class related to
Csiszar f-divergence (9) which contains many known distance measures which we also
recall in the multidimensional case. But this class is not related to information
measures, except for Kullback divergence. Then in IL.2 we describe the so called class
of general mean distance introduced by Boeker and Van der Lubbe [6] for Pattern
Recognition, which is directly related to information_measures. In section IL3 we
investigate a general contrast criterion which may be used as a distance and was
introduced by Poor [41] for robust detection. Then we describe some general tools for
measuring the distance between a model and observations: in section 1.4, we recall the
axiomatic derivation of the entropy principle due to Shore [42], and finally in section
IL.5 we present a general model validation tool to be used for segmentation or
monitoring [4]. '

II.1 - f-DIVERGENCE



This general notion has been apparently introduced by Csiszar [9] [10] and
independently by Ali et Silvey [1]. It is based upon the fact thatit is intuitively "natural”
to measure the remoteness of two probability distributions p; et p, with the aid of the
X)

"dispersion" - with respect to p, - of the likelihood ratio ¢(x) = i{x)
1

: if p; and p, are

two densities on R, when they "move" away from each other, ¢ increases on a set of

decreasing p,-probability and decreases on a set of increasing p;-probability. More
generally, we get "reasonable" divergence coefficients by considering as a dispersion

measure of ¢ the p;-expectation of any increasing function g of this p;-expectation.

11.1.1 - Definition

More precisely, let f a continuous convex real function on R 4 (weaker conditions than

continuity may be found in [9] [6]), and let g be an increasing function on [R. Consider
the following class of divergence coefficients between two probability laws Py et P,
over the same space:

dP,
d(@®,,P)=¢g|E, f(EP';) ¢y
dp,
he: 2 A 2
where . 8¢ (2)

is the Radon-Nikodym derivative (possibly generalized in the case where P, has a

singular component with respect to P, see [1]), and where E; is the expectation with

respect to Py.
[1.1.2. Properties

Then [1] d has the following properties :
Dify=t(x)isa measurable transformation of (% JF)on (Y,G) then :

d (P, P,) 2d® 1", Pyt’) 3)

whereP; t! is the measure image of P, by t.



This implies that, when t is the selection of coordinates of a process

(x) , we do not decrease the distingunishability between the two laws by
n¢€ IN

increasing the number of observations, i.e.:
aP™, Py <a@?, BD) form <n (3)
where the Piﬁ) are the marginal laws of x,,...x;.
ii) d(Py, P,) is minimum when Py =P, and maximum when P; L P,.

ifl)if (pg; © € ] a, b [) is a family of densities on [R with monotone likelihood ratio

p, ()

0
(ie if there exists a function T such that for any 61 < 62, -5-2—(-;5- is an increasing

)

. 1
function of T(x) ; [33], p68 ; important condition for designing tests-), then for

a<®0, <0,<8;<b, we have:
d (P61 , Pez) <d (P61 , P63 ) 4)

~ Let us notice that the convexity of f is a necessary condition for i).Furthermore, for g
identity and p,, p, two densities, we have {10] :

P, x)
a0y = | £y P G2 D)

x

with equality if and only if p; = p, almost everywhere.

A key issue here is that there exist [1] other measures of the dispersion of ¢ which are
not the expectation of a convex function of ¢. Thus it is possible to build divergence
coefficients (or distance measures) based upon ¢ which do not have form (1), and of
course coefficients which are not based upon ¢. However, we shall see that (1)
contains many usual measures, and thus the comparison between many distance
measures reduces to the comparison between convex functions [6]. Furthermore, the
classification error probability P, , for which the search for upper and lower bounds -
see formulas (18) to (21) -gave rise to many studies about distance measures [6] [7]
[13], can also be written as in (1) with f(x) = - min(x, 1 - x). Thus the search for upper



and lower bounds for P, reduces to compare this function f to other convex functions

[5].
11.1.3. Examples

Let ) be a measure on (X, F) such that Py and P, are absolutely continuous with

respect to A, with densities p; and p, (ex: A = P; + P, or Lebesgue measure).

+ Kolmogorov variational distance

fx)=11-x1; g(x)=%;
1 A
d(Pl,P2)=-2-I |p,-p,| A VP, P) - ®
x
» Hellinger distance
) = (V175 g0 =5 s
1
d(Pl,P2)=EJ- (Vp ,-+/p ) MAH @, P) (©6)

K

o Kullback information |

f(x)=-Logx ; go)=x ;
d(Pl,P2)=J‘ p, Log -E—l-dké_ K(P,, P) (7
2
x



+ Kullback divergence

f(x) = (x- DLogx ; g(X) =x ;

P
d(P,,P) = _[ (p,- py Log f d\=JP,,P) AK(®,,P) +K(P,, P)
xX

which is symmetrical.

¢ Chernoff distance

0<r<l; f(x) = X ; g(x)=-Log(-x) :
d(P,,P) =-Log C(P,, P)

where C(p,, P,) =J. pr1 plz'r dA
x

is called Chernoff coefficient.

1
* Bhattacharyya distance :previous case with r= >

ie f(x) =- v/'x ; g(x)=-Log (x);
d(P,,P)=-Log p(P,,P)4 B, P)

where p(P.,P)=| +p.p,drd1-8p, P
1 15 2 1 )
x

®

)

(10)

is called Bhattacharyya coefficient in the field of Pattern Recognition and affinity in
theoretical Statistics. We refer to [28] for its formulation in the case of Markov chains

and its use for detection .



« Generalized Matusita distance

r
r21;f(x)=|1-x1/rl ;g(x)=x1/r;
h
d(Pl,P2)=«/I /- p) 1PN AM, P, P) (1)
®

Notice that, for r = 1, we get Kolmogorov distance and, for r = 2, the usual Matusita
distance, which is equal to ~'2 H(P;, Py).
- Error probability in classification
It is known that the error probability P, of the optimal Bayes rule for the classification

into 2 classes with a priori probabilities w et 1-n and where the corresponding densities
of the observations are p; and py, is

P, [min EECEIA R (12)

It results that 1 - P, which is a way to measure the distance between p; and po, is of
the form (1) with f(x) = - min (x, 1-x) and g(x) =x + 1.

» Notice that [31] Patrick and Fisher distance :

2
d®,, Py =ﬂ(p P N dA (13)
xR
and Lissack and Fu distance
o
©<o 4@, By=[ |p,-p,| (14)
x

are not of the form (1) (except for o. = 1 for the last one).

» We will see other examples of spectral distance measures in section IIL

» Special case of gaussian multidimensional laws R ( p;, Xj) ( = 1,2)
This case is investigated in many papers related to the field of Pattern Recognition.
We then get [14] [31] :



* Bhattacharyya distance:
1z, +2)
NORAN

1 ' - 1
B, Py =7 (- tt)' (£,+5)" (-1 +5 Log (1s)

* Kullback divergence

. . 1 . R
1@y PY =2 () &+ 5 Gy w) vz (515, 515 0 1)

When the covariance matrices are identical ¥, = X, = %, we get
* Mahalanobis distance: : i

M(P,,P)2J(P,,P)=8B (P,,P) ;
= (l-lz‘ HI)T 2-1 (uz' p'l) ( )

II.1.4 - Some inequalities

As we said before, the search for bounds of the classification error probability [7] [13]
[5] [6], but also other goals such as feature selection for Pattern Recognition [7] [31] or
signal selection [27] [37],led to various inequalities between P, and many of the above
mentioned distance measures or between these distances.

For example [27] [30] :

%[1-'\/1-41t(1-n)p2]5PeSVE(l-TC)P | (18)

where p is defined in (10)

2
I 4
-;-min (m1-mye <P <vr(l -n)[z] (19)
or [6] :
1 1
Lo
P<3-5V (20)
1 1. -
< - 21
P<z->M

10



Other bounds for P, may be found in [13] [7], [6] where the case of several classes is
also investigated and general bounds are given , and [5]. In [29] the author studies the
case where the a priori probability laws are not precisely known .

Amdng the known theoretical inequalities[11]}., we have :

B @-H)=1-p (22)

e-I/Z K @, P3) < P(Py Pz) (23)

WP, P,) S VP, Py <HEP) v 2-H @, Py (24)
I _K@.P)

7e 12 <1-V@,,P)<p @, P) (25

- IL2 - General mean distance for classification

For the m-classes classification problem, with a priori probabilities T;, the error
probability P, (12) becomes :

P =1-j maxiﬂip(xlci)]dx

€ i
%

=1-;[ p(x)mex P(Cilx)-] dx

where P(C; ! x)is the.a posteriori probability of the class C; given the observation X,

and p(x)=z T, Px1C).

i=1

A possible approximation is:

and for all the pairs (C;, C)) the previously mentioned bounds may be used. Another
way of getting bounds for P, was introduced by Van der Lubbe [6] who defines what
he calls the "general mean distance”between the m classes C; by :



o

G, © = [ poo |2, PCI 0P| ax 26)
’ i=1 - |

This "distance"is symmetric by definition.

This set of distances (26) also contains many known distance measures for Pattern
Recognition, and is related to information measures such as Shannon entropy (also
called equivocation) and the quadratic entropy, as can be seen from the following
examples .

Examples
The following distance measures were introduced for the derivation of bounds for the

error probability P, which are tightest than Shannon entropy:
2 -P(C,1x) LogP(C,lx)

1

* Devijver Bayesian distance[13]
*B=2,0=1;

. 2
Gl‘?_(CIX)=J' p(x) Zi P(C 17} ax
* @7
AB(CIX)

=1-H,(CIX)

where Hy is the mean conditional quadratic entropy defined from the usuél entropy by
replacing - log P(C;!1x) by 1-P(C;!x).

*B=3,a=1

i=1

Gm(CIX):J' p(x) Z P(C;1%)” | dx

It can be shown.that :

le3(CIX)=1—.H3(CIX) : (28)

12



where Hj is the mean conditional cubic entropy introduced by Chen [7] and defined
from the usual entropy by replacing log P(C; i x) by

P(C, 1 %) - 1+2[P(C 1x) - 1]

*ou=1/PfandB>1:
1/8

m

CIX)= Jp(x) D peiP|

I’B p i=1

is the distance B’y (C | X) proposed by Trouborst [50].

Many bounds for P, can be obtained from this class. Among others[6] :

k> 0,B>1, I<af<lia =

1/a B ' .
1.g 1% FT<psi-c Cix*®?
o, p e o,p

Sl--—l— Ga B(CIX)

ma

*a>0,B>1l, 0Bl =

1-G, ,(CIX)<P<1-G, o i’

1/a B
<. G, 41 *

*ou>0,p> 1L afz2o+ 1=

1/a B
1-G (CiX) <P <£1-G (C1X)
a,p e a,pB

<1-1 6 ©Ix
o,B

mU.

. Bh_r:lm(l-G‘UB,B(CIX))=

These are generalizations of known bounds.



IL.3 - CONTRAST TYPE DISTANCE MEASURES

Another type of distance between laws has been introduced by Poor [41] for robust
detecton. It is based upon a generalized version of the signal to noise ratio often called
contrast .

Given a statistics h for deciding (by comparison to a threshold) between two laws P,
and P,, we call "distance between P, and P, through the statistics h" :

E, ) -E, ()]

if Var. (h) >0
q _ Var () ar, (h)
WPy, PY = !
(29)
0 , if Var(h) =0
If P, and P, have densities p; et p,,this distance may be written as :
2
Cov, (h, §)
S, (P, P) _—_V_Qr:-(_}_{)— (30)
where ¢ = E—- From Schwarz inequality, we have :

S, ®,, Py sVar (9) = Sq) (P, P) (31)
Notice that S belongs to the class (1) with  f(x) = (x z 1)2, g(x) =x (32)

The interest of this generalized version of the signal to noise ratio for robust detection is
as follows.The problem of designing robust detectors in terms of risk (in the usual
sense of decision theory) reduces to the derivation of a least favorable pair in terms of
risk - LMFR in abbreviated form - ; the risk robust detector is then the likelihood ratio
of this LMFR pair. The problem is that the finding of this pair is not always a tractable
task. It is thus of interest to search for sub-optimal detectors which are more easily
obtainable. It can be shown [41] that, if we define a robustness notion in terms of the
distance S (29), we keep the fact that the robust detector in terms of S - LMEFS in
abbreviated form - ; but we gain that such a LMFS pair is often more easily obtainable
because it minimises Sy, (P), Py).Furthermore, this result is also true for the distance §'
defined by :

14



E, 1)

S, (P, P)= -
"1

(33)

also used for detection.

Poor also shows [41] that a LMFR pair is also a pair of closest laws with respect to any
f-divergence of the class (1) for any convex continuous f . Furthermore, a LMFR pair
is also a LMFES one; but the converse is false. ’

Finally, refering to section IL5 for the local point of view, Var, (¢) = S¢ (P, Py plays

)
the same role as Fisher information I(p) = J‘—(Bp-)—- when searching an optimal robust

local test for a translation parameter. Indeed, when Py has density p(x) and P, has

density p(x - 0), where & — 0 - whence the local terminology -, the optimum robust
local test is built from the law p which minimizes I(p).

The remainder of this section II is devoted to distance measures not between laws but
between a law (or a model) and datas. This classification is somewhat arbitrary,
because we would have have delt with this problem above by taking an a priori law as
Py and an a posteriori or an empirical law as Py. Nevertheless, we keep this
distinction, mainly because of the initial motivations of the hereafter presented tools.

Paragraphs 4 and 5 are even less claimed to be exhaustive than the previous ones. The
presented tools will be re-analysed in section IV devoted to parametric AR and ARMA

models. -

I1.4 - ENTROPY

In this section, we give the axiomatic derivation of the maximum entropy and minimum
cross-entropy (or divergence) principles due to Shore and Johnson [42], because it

emphasizes the criteria which lead to these distance measures between models and data
already introduced by Kullback [32].

15



Given a system with the following informations :
e an a priori density p ;
+ constraints I on the "true" unknown density q* of the form :

qg* (x) ak(x) dx =0
or (34)

g* x) ¢ (x) dx =20

for known sets of bounded functions agand ¢y ;

We investigate the problem of the choice of the best éstimate q of q* knowing the a
priori p and the constraints I (34).

We define 4 axioms which are to be satisfied by the choice criterion and we show that
any choice criterion satisfying these axioms is equivalent to the minimization of the
cross-entropy (or "oriented"” divergence or Kullback information (7)) :

K(qp) = j 4 Log gﬁ; x (35)

For this purpose, we introduce the following "information operator" 0 :

q=p0I

which associates, to an a priori law p and a set of constraints I on g*, an a posteriori
law ¢ by minimization of a functional H, ie :

q=p0l<= H(g,p = min H(q', p)
q' satisfying I

If there exists another functional H' such that

H@m=mmfmnm¢$fﬂmﬂ=%nfﬂmm,
q '

H' et H are said to be equivalent, and the operator 0 can be realized using either
functional.



The axioms are as follows :

i) unicity : for any pand any I,  =p 01 is unique ;

ii) invariance by coordinate transformation : if I'is a transformation from % to y
then :

TpodDH=I'Pol
where IT is the constraint satisfied by the transform of q*. This means that, if the
problem is solved in two different coordinates systems, the two resulting a posteriori
densities are related by the coordinate transformation.
iii) system independence :

If %, and %, are two spaces, with independent a priori densities p; and p,, for which
we know the constraints I; and I, then :

(pyp) 0 AL =(,01) (p,0 L) (37)

where I A I is the union of the constraints.
This means that the joint a posteriori is the product of the separated a posteriori.
iv) subset independence
If % is an union of disjoint subspaces S; (1 Si<n),letp * S; be the conditional a priori
defined by :

p(x)

(P * Sl) (X) =
J‘ p(x") dx'
S.

1

and I the constraint on the conditional density g*  S; Then:

RE

(POD*S.=(*S)0T, (38)

where I=1; A .. AT
(In fact, a stronger condition is imposed [42]).

In order to show that an operator 0 satisfying these 4 axioms can be realized only by the
cross-entropy K (35), the case of equality constraints in (34) is first investigated (and
finally K is shown to work also for inequality constraints). The first step consists in
showing that the axiom iv) (38) and a special case of the axiom ii) (36) lead to
restricted functionals of the form :

H(q,p) = J f(q(x), p(x)) dx

17



Then, at the second step, the general case of i) is shown to lead to the form :

Hgp) = [ 460 f(%%) dx (39)

%

(which strangely enough looks like the remark below (4)) .

The third step uses axiom iii) and shows that, if H satisfies the 4 axioms, H is
equivalent to the cross-entropy K (35). The last step shows that K actually satisfies the
4 axioms. -

This cross-entropy minimization principle is successfully used for spectral analysis
[43] including in the multidimensional case [26], classification for Pattern Recognition
[44] and many other applications in various domains (see [42]).

II.5 - MODEL VALIDATION

We conclude this section with another tool for measuring the distance between a model
and datas, introduced for signal segmentation and systems monitoring [4]. An example
of use of this measure will be presented in section IV devoted to the parametric models
ARMA. '

Let (Y,) be a controlled Markovian process (or more generally a controlled semi-

Markovian process) in le, the transition probability of which is parameterized by 8, €
R¢. Assume that this "true” parameter 8, is identifiable from the observations Yo, i.e.

it exists a functional H such that the sequence ((Bn)n defined by:

en = en-l + Yn H(en-l ’ Yr) (40)

converges to 6, (see [4] for precise conditions).

18



Let 6 be a model fixed by the user, and let us investigate the problem of detecting

small deviations (local approach as at the end of 11.3) 06 with respect to 6 using the

vector field H as the only statistics. One licit ( based upon a central limit thcorern) and
possible solution consists in considering the random variables :

Z,®) & H@®,, Y) @1)

as if they were independent, whatever the degree of dependency of the law of
the Y is, asymptotically gaussian distributed, and reflect the small deviation 86 by a
change in their mean value . Thus we can use a 2 test based upon these Z; :

RO = Y, cov (H®, Y) , HO), Yy)
n€Z ’
and where the dependency of Zand R in 60 has been omitted for simplification.

In (42), we assume that, if :

h®) 4 E H®G, Y)Y

then 5(9) (ie the derivative of h) is invertible. If this is not the case, see [4].

(42) is clearly a way for measuring the agreement (or the deviation) between the model
6, and the observations (Yy).

This way is obviously not the unique possible one. Another one, more classical,
consists in running the algorithm (40) and using a y? test of the form :

® -8y £'6,-0) z 2 43)

using the fact that 8, - 6 is asymptotically gaussian distributed with zero mean. But it

turns out that 6_- 8, has a quite complex dynamics ( Gaussian Markovian process of
first order ), and its temporal dependency structure, which is not taken into account in
(43), is better reflected in (42) which is probably more efficient.

19



Finally, we refer to [45] for a special use of Kullback information (7) between
condotional laws for multivariable input/output model validation.

Before entering the section devoted to spectral distance measures, let us notice the
existence - and the huge theoretical importance - of a general distance between

processes, called P Ornstein distance [18], which measures how two processes look
like each other, namely how much one typical realization of one of the processes has to
be modified in order to look like to a typical realization of the other one. An example
concerning gaussian processes will be seen in the paragraph II1.3.5.

ITT - SPECTRAL DISTANCE MEASURES

In this section, we are interested in spectral distance measures, namely in distances
between processes based upon their second order properties. Some of these distance
measures have already been introduced in the previous section, but by far not all of
them, and thus it is obviously interesting to present together all the possible distances.
We recall that the formulation of these distances, when the spectra are represented by
parametric AR or ARMA models, will be addressed in the next section, together with
the questions related to parameter estimation.

The key references for this problem are without doubt the papers [16] [17] [36] [30],
and also [18] and the book [40] which are less accessible.

(e

IIL.1 - PRELIMINARY REMARKS

Following [17], we shall use the following notations. Let s(A) be a (energy or power)
spectral density corresponding to a scalar signal. A varies from - © & ©, where we

assume that 7t is half of the sampling frequency of the signal. s is a positive even
function, the Fourier coefficients of which define an autocorrelation sequence :

s(\) = Z r(n) ¢’™
néezZ

(44)
r(n)=f s ™ a
o 21
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For a wide sense stationary ergodic process (yn)0 <n<N-T the sequence r(n) defined
by:

£ () pour | nl<N
r(n) =
0 pourinl2N
where .
o) N_In|-1
r; (o) 4 z Ve Yo tal ©O<inl<N-1)

k=0
corresponds to an energy spectral density.

If r (n) =1,(n) 8 E(y,¥,,,) then (44) defines a power spectral density. Noting that

foranyn:

X 1 o
llm -ﬁ rl

N — oo

(m) = r,(n) ps.,

we conclude that the sequel will not depend upon the nature - energy or power - of the
spectral density .

Following the terminology introduced in the introduction, for r = r, the following
distance measures will be laws between processes, and for r = r; (empirical
covariance) distances between signals.

Let Ry (s) be the Toeplitz (N+Dx(N+1) matrix , the (k,j)th element of which is
T (k -) O0<k,jSN). We shall use several fundamental properties of Ry [19] [17]
| Ry | denotes the determinant of Ry.



For each p, there is associated with the spectral density s a Toeplitz form :
T ) 2 .dk
T (a) QJ’ li a e | sy =
P 2
n k=0 T

Y D s e @)

k=0 1=0
T . .
=a R a
0
where al = (ay, ay, ..., a) is real.

A numerically convenient formis :
T, (@) =1(0) r(0)+2 i rk) r, (k) (45"
k=1

where

-k
r, (k) A z a, a4, 0<k<p)

1=0

We shall see later that this Toeplitz form directly appears in spectral distance measures,
and especially in distances between a model a and a signal summarized in its
covariances Ry.

Let be : A<z>=i 8 z" (46)
k=
. n ) d?\’
Then : T@=]| lae™P soy =
P : 21
Let be | o.p) = min T (a) ; then[19]:
a
(2y=1)
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! Rp(s) |

o, (p) = RO K, Bl

K

and the minimizing polynomial A(z) may be analytically expressed in terms of
orthogonal polynomials (cf. Levinson algorithm). Let Ay (z) be the p th order
polynomial with ag=1 which minimizes (45).

This polynomial A(z) together with .0: (p) may be used to model the spectral density

s()). Actually, for any polynomial :

n

G(z) = Z g, 7k ,

k=0
we can write :
¢ 2 d
T@ & [ |6 o=
2T
-
. 2
a2 o,  di
=J|G®| N2 2n
A ()] T
- P
Furthermore, let be [19] :
Gi 4 lim Gj:‘(p)
p o0
¢ A
= exp- f Log (s(A\)) — 47
_n' 27

and let us consider the following spectral factorization :

] =|A@%F
s(A) 5

s

(48)

2
O

where A(z)= lim Ap(Z) has no zero on or outside the unit circle. We shall call —AE

: 1
the (infinite) autoregressive model of s, and x the normalized AR model.

Most of the spectral distance measures which we shall consider will be in terms of Lg
norms, ie :
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l/q
a dh
21

= 4
IS, - j 's OV (49)

-7
which satisfies :

IIsll-ql < IIsII‘12 pour 0<q, S g,

If s is continuous, Il s Il _exists and is the maximum magnitude of s.

ITIL.2 - SPECTRAL DISTANCE MEASURES AND EQUIVALENCES

Spectral distances between two spectral densities s, et s, may be measured with the aid
of Lq norms of their difference, ie :

d(s;,s)=l 8, 32I|q .

These distances are "true" distances in the sense that they satisfy the symmetry property
and the triangular inequality. We saw examples of such distance measures in section
I1.1. However, the spectral distances which will be used here are functions of the
difference between the log-spectra, ie of the ratio between the spectra :

S S
d(s,, s) =d(l,=2) =d(=, 1) (50)
1 5 s, . :

for obvious requirements of invariance with respect to the measurement scale.

For a given distance d, we shall use two types of scaling [17]. A gain normalized
distance measure is defined by:

1. %
* Y= dTS (51)
d (S], S,) 0_3 Gi

where 6, and 6, are defined in (47) and correspond to s; and s, respectively. This
distance is usefull for separating the effects of the normalized models and the gains.



A gain optimized distance measure is defined by :

d'(s,,s) 4 &nino d(s,, os) (52)

By definition, d(s,, sp) = d'(sy, Sp).

Notice that the usual spectral distance measures are easily defined in the spectral
domain, but are most of the time numerically computed without reference to this

domain.

As there exist numbers of spectral distance measures d (and d' and d* defined above
are ways to introduce variants !), it is important to know when they are equivalent.
Intuitively, two distances are equivalent if the results obtained for a given application
with either of them are qualitatively the same. More precisely, following again [17], we
define two types of equivalence. The first one is the usual equivalence for metrics. The
second one is a convenient equivalence for coding and classification problems (search
of nearest neighbor). ‘

A distance d, is said to be stronger than a distance d,, and we write :

dl => d2 ,
if a small distance d, implies a small distance d,. d; and d, are said to be equivalent if
each is stronger than the other.

Let us now consider the problem of finding a nearest neighbor (NN), ie of a

representation S of s in a particular set which minimizes a distance. d; and d, are NN-

equivalent if the two corresponding functions s F> s are identical, whatever the

representation set is. This equivalence can be very useful in practice because it allows to
use the simplest NN-equivalent distance for the computations.

If two distances di and dp are equivalent in both senses, they are said to be
completely equivalent and we write :

d,<=>d,.
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From (51), (50), (52), we get :

d'(s;,8) 2 d' (5.8 .

Thus d and d* are stronger than d'.

I3 - MAIN SPECTRAL DISTANCE MEASURES
I11.3.1 - Log spectrai deviation -

This measure is probably the oldest one in speech processing, and is defined by the Lq.'
norm of the difference of the logarithms of the spectra :

dq (s,,s)=1ILogs,- Logs,ll a
§ 53
=1llLog — Il (53)

s, 4

The more common choices are :

e g=1 mean absolute distance
*+ q =2 mean quadratic distance (r m s)
° q = e maximum deviation.

We have :
d .2 d22 d1

These distances satisfy the symmetry property and the triangular inequality. They are
directly related to decibel variations in the log spectral domain by the factor

10
Log (10)
computable. Approximations will be mentioned in the next section. Moreover, it turns
. out to be experimentally close to L., {16], at least when the spectra are estimated via
Fourier transform.

= 4.34, The L, norm is the most popular because the most easily

26



I11.3.2 - Itakura-Saito distance [24]
It is defined by :
51 5 .
_dls (s> 82)=“S_2 - Log ;—2 - 1y (G4
and is also called "error matching measure”.

As: u-logu-120, we also have :

£

T 2

s, d\ o
4G5y 59 = | === - log— - 1 55)

w2 G,

by the residual theorem.

Using the expansion :

1 :
u=¢exp(Logu)=1+Logu +—2- (Log u)2+

. . o 1 2 e

it can be shown that dj g is an approximation for 5 d, for "small" distances.

On the other hand, by Jensen inequality, we have :
2
dig (51, 89 2 di5 (9, "i)

ie for given spectral gains, constant spectra give the smallest distorsion.

For s, of the form :
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where A, is causal of order p - namely if we want to solve the problem of linear
prediction of s, - from (55) and (45) we conclude that :

2
( Lo Log <1 . q
dis 6,59 =— T @) - Log — - (56)
G, G,

We shall hark back to this expression in the next section.

Another form of the Itakura-Saito distance has actually already been mentioned in the
last section. Consider the Kullback information (7) for gaussian processes [40] :

1 IRy (s)! 1 [ _ 1 ] N

. q = P S, — R,,(s)R (S - —
KN_(Sl’Sz) 5 Log IRN(SZ)I + 5 tr N(l) N (89 5 (57)

It can be shown that [40] :
Al !
K(sl,sz) A 111\In T KN(sl,s2)
| (58)
j =5 dIS (SI’SZ)

In other words, Itakura-Saito distance is equal to two times tha asymptotical Kullback
information under gaussian hypothesis. This technique has been successfully tested for
classifying non gaussian data for the purpose of recognition of EEG signals [15].
Furthermore, d; g, even though non symmetrical, is well suited to quantification,
classification, recognition, and detection problems, at least in the domain of speech
processing [17]. This is also the case for classification [22] and recognition of EEG
signals once more, for which in [21] Kullback distance, Kullback divergence and
Bhattacharrya distance have been compared.

I1X.3.3. Itakura distance

dy(s;.8) 4 d;s (5, 8)

= min dIs (sl,asz)
a0

(59)
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From (55), we get :

2
sl/c

—

4
dI(sl, sQ=Log J-

-

[ %)

s2/ o,

and

2
(¢

c
dig (5, 8)= —% exp[dI (s, 82)] - Log —% -1

2

Using (48) as model for s; and s, we get:

T
dI(SI’ s2) =Log J
-7

2
e
A

e[,

dA
— (60)
21
2
(61)
O,
di
2%
(62)

This distance is also called log likelihood ratio because of its asymptotical expres sion in
the gaussian case[23] [48]. We refer to the next section for additional details.

II1.3.4 - Model distance measure

Also introduced by Ttakura [23], it is defined by :

A 2
* 2
o ? -2

(63)

where A, and A, are the normalized AR models for s1 and sp. It can be shown that

[17]:



dm (Sl ’ SZ)

li

2
o
Al

= exp (d;(s;,s))- 1 (64)

and thus d; and dj are completely equivalent . We also have :

d, = dg

This distance was introduced as an approximation for d; for d; small (cf. (64)). It is
always an upper bound for dj.

It is called a model distance measure because it measures how nearly the normalized
models or filters A, and A, are to being inverses (see next section).

A similar unnormalized model distance is given by :

c,/A2
=122
c,/ A 2
&2 o2 2
1 1
=—2-d (51’52)+(1'—§)
G, 0,
2 o
1> 2
== 4,6, 5) +d,, (], 0)
G,
2
But : g 2 6)
‘ dis(sl’sz)“;'z' m 81, 8)+dg (0], 0
2

thus : d[ g <=> dm
However d; 5 and d,, are not NN-equivalent .

The optimization of Idm according to (52) gives
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. 1 ,
d (s, s9=1- —— (66)
A2
Iz,
which can be shown to be a monotonic function of d,* , and thus :

d <=>d
m m

[11.3.5 - Symmetrized distance measures

A spectral distance measure d can be symmetrized by considering arithmetical or
geometricel means of d(s,, s,) and d(s, $y), namely by defining forq=1:

I 1/
a@ (sy,8)= 5 (ds, sz)q + d(s,, sl)q) ! (67)

d@ ig stronger than d.

A symmetrized version of Itakura-Saito distance was introduced in [16] and defined by

A 4D
dcosh(sl ’ SZ) é S (Sl ’ S2) (68)

where the terminology cosh (of the spectral difference measured on a logarithmic scale,

S
ie Log -S-l) comes from (54).
2 .

d,osp is related to a decibel scale [16] with the aid of the quantity D such that :

cosh(D) - 1 =dcosn
namely :

D= Log (1 + dcosh+—\/rdcosh(2 + dcosh))
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From (58), we conclude that Kullback divergence:

Ty (51, 8) B Ky (5,,5) +Ky (s, 8)

N N (b] ’ 52) Cosh (Sl ’ Q

N — oo

It can also be shown that [18] [36]

= (1) (2)

24,6y, 59 =B OF, Y
s, S
where YV and Y are two gaussian processes with spectral densities —S—let-s-g
2 5

respectively, and where P is the Ornstein distance [18] between processes already

mentioned at the end of section 1. For gaussian processes'X(l) et X with spectral
densities s; and s,, we have

px?V, x =20, 5)

where H? is Hellinger distance defined in (6). This leads to the following (simple)
relationship:

281 §,
d_ .. (5,8)=H (;-2-,-3—1) : (70)

1I1.3.6 - Summary of the equivalences

Many other symmetric distance measures may be defined by symmetrizing the
previously mentioned distances or by gain optimizing or gain normalizing the above
mentioned symmetrical distances.

Recall that we always have :

dl) = g
d* = d

d =4d
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The known equivalences between the above distance measures are summarized in the
following diagram [17] : ’

(1) @d‘ <—_,-'>d(1)* = —d' d* -d* <;>d'
q cosh m d=dg =>d, =0 m
i i
ey (n
dcosh— dIS @dm = dIS <i::>d’m
I
d,

Other results are described in [36] together with their c'onscquences on robustness
issues of linear predictive coding. '

II1.3.7 - The case of multidimensional gaussian processes

In [30] closed form numerically computable formulas were obtained for Bhattacharrya
distance, Chemoff distance, Kullback distance and Kullback divergence between two

r-dimensional gaussian processes YD and Y® . These expressions are in terms of the
two spectral densities matrices S;(A) and S,(A) corresponding to the two covariance
matrices sequences, and of the spectral density matrix M(\) of the diffference between

the process means.
For example [30] :

2 ky?, vV = J (trS'll o) [82 M-S, (7»)] - log S—ll (A) S,(\) -(217:
T

-

+j D2 m® sy o &
2

where

M(A) = (mkj ) k,j<r

-1
[a-05,0+050)] = 6, My e,
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IV. PARAMETRIC SPECTRAL DISTANCE MEASURES

In this section, we investigate the practically important special case where the spectra
are described by AR or ARMA parametric models. We describe the useful expressions
for many previously mentioned distance measures. The relationships between some of
them together with the possible problems related to the interaction between these
distances and the choice of parameters (and the way by which they have been
estimated) are also addressed. We mention some variants still currently introduced for
speech recognition systems performance improvement. Finally, we present some
qualitative results from comparative studies for distance measures.

V.1l - L,-NORM AND CEPSTRAL DISTANCE

In the last section (IT1.3.1), we indicated that the L, norm of the log-spectra difference
is a commonly used distance measure especially for speech processing. However the
main drawback of this distance d, is of computational nature, because it requires two
~ FFT, two logarithms and one summation. In this section, we show how it can be
efficiently approximated by an euclidian distance: the cepstral distance.

Given a pth order minimum phase filter, namely :

Alz) = i a,z" 7D

k=0
with ay = 1, having all its the roots inside the unit cercle, we define the cepstral

coefficients [16] by the coefficients of the Taylor expansion of the logarithm of the
filter transfer function, ie : -

k

Log A(z) =- c 2 (72)

k=1
They are also the Fourier coefficients of the log-spectrum, because:

oo

2 .
-jkA
Log ——-—-——-—-—G 2 = Z Ck [+ (73)
AEH P e



where = Log(cz) | as

c, =¢C

-k Tk

These cepstral coefficients may be estimated in two ways. The traditional first one
consists in two FFT starting from the filter impulse response :

R N
H@ & 55 Zé h 2z (75)

For a transfer function with poles only, the cepstrum can be obtained directly from the
impulse response coefficients hy by

n-1 K
c = (1- _rT) hk Coxt h, n>1) |

k=1 (76)
c,= h1

or from the linear prediction coefficients by :

1 1
n-1 K
c=-2a_- —C a l<n<p : (77
n n n k n-k
k=1
S .
Ca= - ot n Crk % pti=n

In order to obtain (77) - or (76) -, derive the two handsides of (72) with respect to z’ 1

and use (75).

Notice that the two resulting cepstra ("Fourier" or "parametric") are not identical [2].
The difference is due to the truncation of the signal over a finite time interval which is
done in a Fourier analysis and which produces a signal with poles only, whatever the
content (poles or zeroes) of the transfer function is. On the other hand, the "parametric”
cepstrum explicitely takes into account the hypothesis that the transfer function has only
poles. The consequences of these two choices on speech recognition systems will be

described later.
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More generally, the cepstrum of a minimum phase rational transfer function can be
defined [39] . In this case, the cepstral coefficients can be interestingly expressed as a

function of the poles (zk)1 ck<p and the zeroes (wg) [3911[34] :

=LY 23 v a0 78)

LU [ j=1

1<k<q

This formula is obtained from (72) by a residual calculus. A consequence will be
mentioned later.

The interest of the cepstral coefficients ¢, for computing the distance d, (53) is as
follows.

Using (73) and applying Parseval formula to d, (53), we get :

(1 <2) ‘
d, = 2 CH (79)

= (WD (2)) + 2 Z ((1) (2)
0

where the cg) (1=1,2) are the cepstral coefficients associated to the spectral density

S;.

Furthermore, the finite sums :

L) = 2 -y wap) (89)

o\ . 2
can be shown to be positive definite and to converge, when L. — oo, towards d..

Moreover, experiments with speech signals [16] have shown that, for small values of
L, d(L) is closed to d,. The usual values for L are p and 2p.

Therefore, as far as spectral distance measures are concerned, the "good" euclidian
distance is between the cepstral coefficients ¢, (77) (and not between the autoregressive
coefficients a, !). Furthermore, the cepstral distance is experimentally better than the
euclidian distance between the reflection coefficients [2] [51]. We shall discuss further
this point in the paragraph IV 4.
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Moreover, from (78) and (80), we conclude that, for causal spectra :

: 2

L

1 2k Dk

fu= Y, = 2 @2 - AP0 (81)
k=-L k i=1

where z? ) G=12,i=1p) are the poles of the spectrum s;. This shows that one can

be very far from a true spectral distance when one tries -in an intituively "natural” way -
. to measure the deviation between two spectra with the aid of an euclidian or absolute
value distance between the poles (or the Fourier spectrum lines).

A last important remark about the cepstral distance concerns the interaction between
parameter estimation and distance. Actually, it seems that the distance d(L) (80).is not
to be used when the AR coefficients (ay) used in (77) are estimated with the
autocorrelation method [3].

[V.2 - DISTANCES d;g AND d;

We now consider the parametric formulation of the Itakura-Saito distance djs (54) and
Itakura distance dj (60) ; then we present a variant of dj and we describe the link
between dj and the model validation tool introduced in L.5.

A parametric expression of the distance dyg has already been given in (56). From (61)
and (56) we get for dy :

™ (a
_ P
d, (s;»s,) =Log 2

1
. _ (82)
az R;l) a,
= Log —
Gl

Notice that, if from (62) d; is a distance between models, from (82) it is rather a
distance between a model a, and a signal (y) summarized in its autocorrelation matrix

2
R;l) and "residual energy" O, 47).



The dissymmetry of T;i) (aj) with respect to i and j - embarrassing for solving the

problem inverse of linear prediction - is also met in d; and dig and reflects nothing but
the known dissymmetry of Kullback distance (see (58)).

The distance dy is widely used in speech recognition systems, but its main drawback -
as for many other distance measures - is its lack of robustness in presence of noise,
especially if the learning step has been done with non noisy speech signals. For this
reason, a weighted Itakura distance was recently introduced [46]. The weighting is
done with the aid of Atal perceptual filter, which gives higher weights to spectral
deviations around peaks than around valleys of the spectrum, and these weights are
adapted according to an estimated signal to noise ratio. More precisely, the distance is
(compare with (62)) :

(83)

where A'1 (ej A) = A, (o e:j )‘)

1) -jpA
pa;)e”)

=1+aa

1y -jA
(l)eJ + o+ O

and 0 <o <1 allows to increase the band pass width.

This filter has also been used in order to improve the performances of the cepstral
distance (80) [35].

Finally, let us conclude this paragraph with a link between dj (82). and the model
validation tool introduced in 1.5. This tool, initially designed for the validation of the

AR part of a multidimensional ARMA process, looks like (82) in the special case of a
scalar AR(p) process. Indeed, keeping the index 1 for the signal and 2 for the model,

define : 6;F= (a1 ap) ie a§= (1 61;) (41) becomes :
Z = X
= O+ Oy 6)

where ¢§ = (Yo o yk_p) . We then deduce :
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2.2 &),

. (1)) R( ) ;18 the Toeplitz matrix used in (45), and where the

where Y (I)T ((1) “

. (1) . .
covariances T, = are the empirical covariances.

On the other hand, in the local framework of small deviation and with the notations of
1.5., one can assume that :

R(Gz) o, R(l)

(42‘.)’“{1;1611 becomes :

<1)| (1) (1) leRg)l)az

2
%y
which reduces to :
(1)
a, R "a,
=t (84)
]

. where R W=
P

differs from the Toeplitz matrix R;l)only via the first coefficient which is equal to 0;1)

and not 1.

IV.3 - SOME OTHER DISTANCE MEASURES

- IV.3.1 - Variants of the cepstral distance

Let us first consider variants of the cepstral distance d, introduced in (79). [52] [25]
[35] introduced several distance measures based upon the derivative of the phase
spectrum - namely the group delay - rather than the logarithm of the spectrum which, at
Jeast for speech signals, propagates over several formants the delay which may exist
only on one formant [52].
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Let us consider the Taylor expansion of the phaée o(z) of Log A(z). From (72) :
o™= c, sin@) 85)
k=1 . _
Thus the expansion of the group delay is :

-j oo - .
¢,(M = M = Z k C, cos (k)\,) ' (86)
dA k=1

Introducing as a new spectral distance the quantity :

a=]o- ],

Yegnanarayana [52] suggests to use the following euclidian distance :
2 =, n @2
o ) - (86)
k=1

where L has to be chosen higher than the order p because the convergence of the serie
(86) is slower than that of (80).

More generally, in [25] Itakura recently suggested to use an euclidian distance based
upon a "smoothed" group delay, namely upon wy ¢, where

s ~k2/ 212
<]

w, =k (s=20)

k
The coefficient k® is used for isolating the spectral peaks but also for equalizing the

spectral envelop. The term e K212 i ysed for cancelling the cepstral components with
high order k. '

Finally, still more recently [35] introduces spectral distances based upon the cosine of
the angle between two cepstral coefficients arrays - with ¢q excluded -, which are more
robust than the euclidian distance between these two vectors with respect to the
presence of noise : '

]clr(l - cos”B)
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and

where ’ cos B= ,

C; is the vector of the cepstral coefficients CS) (k>0) (j=12) ; and where j =1 is

again the "test" and j = 2 the "reference".

Other weightings, by the inverse of the variance of the ¢, computed during the leamning
phase, have been investigated in [8].

IV.3.2 - A divergence between conditional laws

As an end point for this incomplete catalogue, let us mention a special distance used for
signal segmentation [3]. This "distance” is based upon Kullback divergence between
the conditional 1aws p; (yn | ¥p-1 --o» Yn.p) Of the observed signal (y,) computed for
two estimated gaussian AR(p) models (j = 1,2) long-term and short-term respectively.
The reasons for this choice are explained in [3]. The particular point here is that the
resulting distance is : ‘

' 2
efll)eglz) 1 Oy 6(1)2 1 o
L+ —=] 2 3
T3 7 e A (87)
. o, © Gy} o} 20, ‘

(where the ES )are the innovations of the two filters).

Thus this distance is actually a random variable, which turns out to have high
sensitivity with respect to spectral changes in speech signals.

An interesting practical property of (87) is that the quality of the resulting segmentation

. . : . . i) i) .
is better when the identification methods for computing cglj ) and fi are approximated

Jeast squares than when they are exact. We have no theoretical explanation for this
stange parameters/distance interaction (see also the remark at the end of IV.1.).
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Iv4 - COMPARISONS OF DISTANCES AND PARAMETRI-
ZATIONS

Many comparative studies for distances, and also for choices of parametric
representations, have been conducted in the field of speech recognition, but also in
other domains [21] [51]). The oldest ones are probably due to Atal [2] who already
noticed that the cepstral distance (80) is better than the euclidian distance between the
reflection coefficients. These results were conforted for example in [20] and [12],
where the cepstrum (73) obtained by Fourier analysis - in the so-called mel scale -
seemed to lead to a better distance measure than the parametric cepstrum computed by
(77), maybe because of consonants; moreover, in this study, the cepstral distance d,
appeared to be better than the Itakura distance d;. (Notice that they cannot be compared
in the table of I1.3.6). Similar conclusions concerning the cepstrum have been obtained
in the recent work [8].

Other comparisons have been done in [38], with different weighting variants introduced
for speech signals ("spectral slope",...).

Recall that the variants of d; or d, introduced respectively in [46] and [25] [35] have
been compared to the original distance djord, . '

It is not easy to draw a synthetic picture from these comparative studies, even for the
only domain of sp€ech recognition, because their experimental conditions are highly
variable (sets of reference signals used for learning and of test signals used for
recognition). '

Recall that the most fundamental comparative analysis has been conducted by
Matsuyama [36] [17] and is partly summarized in the table of paragraph IIL.3.6.
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V. CONCLUSION

From this whole set of studies concerning distance measures arise some elements
leading to a kind of conclusion about the distance measures to be preferred in pracucc
Actually, from (10), (11) for r = 2, (17), (58), (69) and (70), we conclude that
Kullback divergence J (8) and Hellinger distance H (6) take a key part for proving
complex theoretical results as well as solving applied problems. Furthermore, it is quite
stimulating to find out that the same tools are preferred by theoreticians and practicians.

oy

In addition to J and H, we also recommend to use d, (79) in practice, because of its
euclidian nature.
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