N

N

A practical exact motion planning algorithm for
polygonal objects amidst polygonal obstacles

Jean-Daniel Boissonnat, Bernard Faverjon, Francis Avnaim

» To cite this version:

Jean-Daniel Boissonnat, Bernard Faverjon, Francis Avnaim. A practical exact motion planning algo-
rithm for polygonal objects amidst polygonal obstacles. [Research Report] RR-0890, INRIA. 1988.
inria-00075664

HAL Id: inria-00075664
https://inria.hal.science/inria-00075664
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075664
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 890

T

A PRACTICAL EXACT MOTION
PLANNING ALGORITHM FOR
{ POLYGONAL OBJECTS AMIDST

f‘# POLYGONAL OBSTACLES

TN X TTR

Francis AVNAIM
Jean Daniel BOISSONNAT
Bernard FAVERJON

AOUT 1988

IR
RR.-.©8898x

A practical exact motion planning algorithm
for polygonal objects amidst polygonal
obstacles
Un algorithme exact pour la planification de
trajectoires d’un objet polygonal dans un
environnement polygonal

Francis Avnaim, Jean Daniel Boissonnat and Bernard Faverjon

INRIA
Centre de Sophia-Antipolis
Route des lucioles

06565 Valbonne

N! ! D PAPIER RECUPERE ET RECYCLE

Abstract:

Let I be a 2-dimensional polygonal rigid object (with m edges) moving amidst
polygonal obstacles E (with n edges) and let Pinis and Penq be two free placements
of I, where the interior of I does not intersect E. We investigate here the problem
of finding a continuous motion of I from Pjn;s t0 Pena, such that during this motion
the interior of I does not intersect E, or to establish that no such motion exists.
This problem is an instance of the well known ”Piano Movers’ Problem”. We have
shown in [2] that it is possible to compute an exact description of free space in time
O(m®n®log(mn)). We show in this paper that, using this description, a motion
can be found in time O(m3n®). The actual complexity of our algorithm in many
practical situations is much smaller. In particular, for the so called situation of local
bounded complexity often encontered in robotics, the complexity of computing free
space is O(nlogn) and the complexity of planning a motion is O(n). The method

has been implemented and experimental results are discussed.

Résumé:

Soit I un objet polygonal rigide ayant m c6tés évoluant dans un environnement
polygonal E comportant n c6tés. Soit Pyepart €t Piy: deux placements libres pour I,
c-a-d tels que Dintérieur de I n’intersecte pas les obstacles E. Nous nous intéressons
ici au probléme‘suivant: calculer, s'il en existe un, un mouvement continu entre
Pyepart €t Py de telle maniére que durant ce mouvement, Vintérieur de I n’intersecte
pas les obstacles. Ce probléme est une version du probléme général connu dans la
littérature sous le nom du probléme du "déménageur de piano”. Nous avons montrés
dans [2] qu’il est possible de calculer une description exacte de I’espace libre en temps
O(m3n3log(mn)). Nous montrons dans ce rapport que, utilisant cette description,
il est possible de calculer un tel mouvement en temps O(m3»n®). La complexité
de 1’algorithme est meilleure dans un grand nombre de situations pratiques. En
particulier, dans le cas du robot mobile la complexité du calcul de I'espace libre est
de O(nlogn) et celle du calcul d’un mouvement est de O(n). L’algorithme a été

implanté et les résultats expérimentaux sont discutés.

1 Introduction

We investigate here the problem of planning the motion of a 2-dimensional polygonal
rigid simply connected object I (with m edges) which is free to move by translation
and rotation amidst polygonal obstacles E (with n edges). More specifically, given
two placements Pjy;; and P.,4, we want either to find a continuous motion connecting
P;,;: and P,,q4 during which the interior of I avoids collision with E, or else establish
that no such motion exists.

This problem has been attacked from both practical and theoretical points of
view in the literature. The only solutions that have been implemented use heuristic
approaches: in [8] an approximation of the set of free placements (the so called free
space) is computed and then a path is searched. Due to the approximation done,
we are not guaranted to always find a path if one exists. In [3] the motion of I is
restricted to be a sequence of pure translational and pure rotational movements [3].
Here again, we are not guaranted to always find a path if one exists. The first exact
solution to the problem is due to Schwartz and Sharir [11]. The complexity of their
algorithm is O(n®) in the case that I is a line segment (a ladder). This algorithm is
rather involved and, according to the authors themselves, several technical delicate
issues are ignored. Recently, Kedem and Sharir [7] improved on this result in the
case that I is convex. The complexity of their algorithm is O(mnA(mn)log(mn)),
where A(¢) is an almost linear function of q. The improvement is obtained by only
computing a judicious subset of the set of free placements, namely a set of edges on
its boundary. This is sufficient to find a path if one exists but the computed path
may be very unsatisfactory in practice since, during the motion, I keeps at least two
points in contact with E. ™~

In this paper, we propose a rather simple method to handle the general case
where I may be non convex. Our algorithm makes use of the exact description of the
boundary of free-space obtained in [2]. This description consists of a set of "faces”
that are portions of ruled surfaces. There are O(m>n3) faces in the worst case. The

faces and their adjacency relationships can be computed in time O(m3n3log(mn)) in

the worst case and much faster in many practical situations [2]. For example, when
the number of vertices of I is small (and thus can be considered as a constant) and
when, in addition, the edges of E are not concentrated near each other compared
with the diameter of I —a situation refered to as of local bounded complexity [12]-
the boundary of free space is computed in O(nlogn) time. In this paper, we show
that this description can be used to solve the motion planning problem. The time
complexity is in the worst case proportional to the number of faces which is O(m3n3).
For situations of local bounded complexity, the time complexity is only O(n). An
important aspect of our method is that the motions produced are searched in a 2-
dimensional variety thus allowing to locally modify and optimize them. The method

has been implemented and experimental results are discussed.

2 Representation of the boundary of free-space

Let I be a 2-dimensional polygonal rigid simply connected object with m edges
moving amidst a set F of polygonal obstacles with a total number of n edges. We
assume that the complement of F is a bounded polygonal region (this is always
possible by enclosing obstacles in a sufficiently large rectangle) (see Fig. 1). Free-
space FP is defined to be the closure of the subset of [0,27[x R? consisting of all
placements (8, %) satisfying RgoTz(I)NE = () where Ry denotes rotation with center
at the origin and angle 6 and Tz denotes translation by vector #. A placement of FP
is called a free placement. An élgorithm has been described in [2] which computes
a complete description of the boundary BFP of FP. This description consists
of a disjoint union of ”faces” and of their adjacency relationships. Each face is a
portion of a ruled surface generated by a line segment P(6)Q(#) when 6 ranges in
a subinterval [@min,0mas) of [0,27[(see Fig. 2). Points P(8) and Q(f) are of type
(8, £(0), g(8)) where f(68) and g(@) are analytic functions of 8. Each face is a set of
placements involving a given contact between I and F (i.e., a given vertex of I in
contact with a given edge of E or a given vertex of E in contact with a given edge

of). There are O(m3n3) faces in the worst case.

Each face is bounded by at most four edges; two edges are (portions of) the
curves P(6) and Q(#) for @ € [01inyOmazr). The two others are the line segments
P(0min)Q(Bmin) and P(0pm4z)@(0maz), which may be reduced to points. Two faces
are adjacent if they share an edge or a portion of an edge. In the sequel, we will
represent BFP by a graph called the boundary graph of FP and denoted by G.
The nodes of G are the faces of BFP and its edges join adjacent faces. It is shown
in [2] that the size of this graph is O(m3n®) and that it can be computed in time
O(m3n3log(mn)) in the worst case.

In many practical situations, the number of faces composing the boundary of F'P
is much smaller than in-the wbrst case. For example, when the number of vertices
of I is small (and thus can be considered as a constant) and when-, in addition, the
edges of F are not concentrated near each other compared with the diameter of I —a
typical situation in robotics refered to as a situation of local bounded complexity—
the boundary of FP has O(n) faces and can be computed in time O(nlogn).

The intersection F'Py, between F'P and the plane 0 = o (for any fixed orientation
fp) is a polygonal region which is the set of free placements when I can only move by
translation with fixed orientation . It is shown in [1] that such a polygonal region
has O(m?n?) edges in the worst case and can be computed in O(m?n?log(mn)) time.
Moreover, any of the connected components of F Py, has O(mna(mn)) edges where
a(mn) is the functionnal inverse of Ackermann’s function, and thus is extremely
slowly growing [9]. It is plain to compute the boundary of FPy, from graph G in

time O(m>®n3) (a better result will be given in Section 4.3).

3 Computing a free path

Let P = (B;ni,,X;n;t,}";n;t) and Pepd = (Oend> Xend, Yend) be two free placements
of I. We want to find a continuous obstacles avoiding motion of I between P;,;
and P,,q. This is equivalent to searching a curve inside F P joining P;ni; and P.,q.
Such a curve is called a free path from P;y;; to P.,q. We successively study the three

following instances of the problem (with increasing difficulty):

5

1. Pjnis and Pe,q belong to the same face of BFP.
2. Pinit and Pepq belong to the same connected component of BFP.

3. Pinit and Pepnq are in general position.

Case 1: Let f be a face of BF P and A and B two points of f. As f is a ruled surface

swept by a line segment P(6)Q(8), A (resp., B) is completely defined by an orien-

tation 64 (resp., #p) and a real a4 (resp., ag) such that P(64)A = aAP(OA)Q(H,;)

(resp., P(#B)B = apP(0p)Q(65)). It is plain to observe that the curve I' defined

1&.':-'

6 — 64
O — 84

T = {M(0), P(O)M(8) = (a4 + (0B — an) YP(8)Q(8),8 € [04,05]}

passes through A and B and lies entirely inside face f (see Fig. 3). Thus I is a free
path between A and B. Notice that if face f corresponds to contact C, this contact

will be maintained all along T.

Case 2: When P,;; and P,,; belong to the same connected component of BFP

(but not to the same face), we can search in the boundary graph of FP a sequence
S of faces fy,-+, f such that f contains P, fi contains P.nq and f; is adjacent
to fiy1 (¢ =1,---,k—1). Let us consider two faces adjacent in the sequence S, say
fi and fi11. We associate to f; and f;4; a point P;i+1 belonging to the two faces.
If fi and fi41 are adjacent by a segment, P;;y1 is simply the middle of the segment.
If they are adjacent by a portion of curve ranging from 6, to 8, , P;;41 is the point
on this curve corresponding to ﬂ%ﬁl (see Fig. 4). Thus the sequence S yields a
sequence of points Pinit, P12, "+, Pk_1k, Peng such that Pj,;; and P2 belong to fi,
Pi_1i, Piiy1 belong to f; (fori=2,---,k—1), P, and P.,4 belong to fr. As any two
consecutive points in that sequence belong to the same face it is possible to compute
a curve between them lying on that face (Case 1). Thus the concatenation of theses

curves is a free path between P;; and P.,4. This path is entirely contained in BF P

and thus corresponds to a motion where I remains in contact with E. Clearly, the
dominant step in the above procedure is the search of a sequence of faces of BFP.
This search can be done in time proportional to the size of the graph, which is in

turn proportional to number of faces of BF P (see Section 2).

Case 3: In that case, Pt and P.ng belong to the interior of FP. Due to the
fact that the complement of E is bounded (see Section 2), FP is also bounded.
Let us denote by F P (resp., FP"%) the connected component of FP containing
Pivit (resp., Penq). The boundary of FP™t (resp., FP®%) has several connected
| components, one of them enclosing the others. We call it the external boundary of
FPinit (resp., FPe™%) and denote it by FP:%! (resp., FPnt). There exists a free
path from Pinis to Pepg iff Pinit and P.,q belong to the same connected component of
FP, ie., iff FP™t = FP*™_ As in Section 2, let F'P; be the set of free placements
for a fixed value 8 of the orientation of I. Let us call U™ (resp., U°"?) the union
of the boundary of FP™™* and of the polygonal region FP,, . (resp., the union of
the boundary of FP** and the polygonal region FPy,_,). As FP'.’“;‘ (resp., FPe"9)
is bounded and connected, there exists a continuous path in U™ (resp., U°"?)
which joins point Pj;; (resp., Penq) and the external boundary of FP™t (resp.,
Fperd), Indee&, let D be any half line lying in F Py, ,, with P;p;; as its endpoint. Let
S = {81 = Pinit,S2,"*,Sk-1, 5k} be the sequence of the intersection points between
D and the boundary of FP™ sorted along D. Note that S; belongs to F Pt The
interior of any segment S;S;4; is either inside F Pt or outside FP™®, Let S;Si41
be a segment such that its interior is outside FP™#*. As FPi™* is connected, there
exists a path a;;41 contained in the boundary of Fpinit joining S; and S;41. Thus the
concatenation Cjp;; of 5152, 23,5354, Sk—3k-2 ®k—2k—1, Ik—15k 18 a continuous
path joining Pini; and Si. Similar arguments show tha,t there exists a continuous
path Ceng in U™ and a point S} belonging to FPsuch that C,pg joins P,,4 and
.. If there exists a path in FP joining Pinit and Penq then FP™t = Fpend thys

FPinit and FPe™ have the same external boundary. Moreover, as this external

boundary is connected, there exists a path Ces¢ contained in it that joins S and
St.. The concatenation of Cinit, Cezt and C.,q is a continuous path from Pj,;; to
P.,.4 contained in the union of BFP,FPy, . and FPy, ,. Figure 5 illustrates such a
construction (for clarity, D and D’ have been taken to be coplanar). In conclusion, if
there exists a path in FP joining Pinit and Penq, then there exists a path in the union
of the boundary of FP,FPy,, and FP;_, joining P and P.,4. Reciprocally, any
path in the union of the boundary of FP,FP;,,, and FP,,, joining Pinit and Peng
is clearly a path in FP joining Pinit and Pepgq.

" We can deduce from the above discussion a method to compute a free path joining
and FP,

P;ii and P.,q. First we triangulate F'Fy Let Tp,,,, and Ty, , be the

init end”’
adjacency graphs of the two triangulatidns. Each edge of the boundary of one of the
two triangulations belongs to a face of BFP. Let t be a triangle of a triangulation
having an edge e belonging to a face f of BFP. We create an adjacency relation
between f and t. Doing so for all possible triangles, we merge the graphs G, Tj, ...
a.nd'Tgm , and achieve a new graph G*. As any triangle is a portion of a ruled surface
(a plane) which accepts exactly the same description as a face of G, the resulting
graph G* is a graph of faces such that P;;; and P,,q belong to faces of it. Moreover
the existence of a free path from Pj,;; to P.,q is equivalent to the existence of a path
in G* from the triangular face containing Pjni; to the one containing P,q. Thus
searching a free path when P,,;; and P.,q are in general position reduces to Case 2
using graph G*.
We briefly describe the computation of a motion:
1. Deduce from graph G the polygonal region F Py, ,,. Compute a triangulation
of FPy, , yielding a graph Tin;; of triangular faces. Merge Tini: and G by
making an adjacency relation between a face ¢ of Tini and a face f of G iff an

edge of ¢ belongs to f.

The same is done for P4 yielding a final graph G*.

2. Search the two triangular faces fini; and fenq containing respectively the points

Pipnit and Pepy.

. 3. Search in G* a sequence S of faces f1,+ -, fi such that fi = finit, fv = fend and
f; is adjacent to fiy; (i = 1,-+-,k —1). Compute the corresponding sequence
of points Pinit, P12,y Pr—1ks Pena. If this search is unsuccessful, return "no

path”.

4. Compute the k curves I'y,---,T such that Ty is a curve inside f; joining the
points Pin;; and Py, T is a curve inside f; joining the points P;_i; and Py

(i =2,---,k—1)and T} is a curve inside f; joining the points Pi_1 and P.,qg.

5. Return the path obtained by concatening Iy, -, T, -+, Tk.

Complexity ahalysis Let K;,,,-t' (résp., Kmd) be the number of edges composing
the boundary of FP;,, (resp., FP,,,) and F be the number of faces of BFP. Let
K be the sum Kinit + Kend- The complexify analysis is done in function of K and
F.

1. FP,,,, is computed in time O(F) using graph §. As FPy,,, has at most
O(Kinit) edges, Tinit can be computed in O{Kini: log Kinit) time. Similarly,
T..q can be computed in O(Kenglog Keng) time. Merging the graphs Tinis
and G takes O(Kin;) time and merging the graphs T.nq and G takes O(Kend)
time. Therefore, the final graph G”* is computed in time O(Kinit log Kinit +
Kenglog Keng + F) =O(K log K + F).

2. The localisation of Pinit and P.,g m their respective triangulation takes O(K’)
time since they are O(K') triangles in each triangulation. The final graph G*
has O(F) edges, thus a searching a path in G* takes O(F) time.

3. The computation of curves I'; takes O(F) time.

We sum up the above results in the following proposition :

Proposition 1 A jree path between Pjniy and Pe,q can be computed in time

O(KlogK + F).

In the worst case K = O(m?n?) and F = O(m3n®) thus the worst case com-
plexity of the computation of a free path between Pini and Penq is O(m3n3). For
situations of local bounded complexity K = F = O(n) thus the complexity of our

motion planning algorithm is O(nlogn).

4 Final remarks

4.1 Computing pseudo-optimal motions

Computing a free path from Pjnit to P.nq has been reduced to a simple search in a -
graph. If the edges of these graphs are valuated by some real numbers, we can find
a shortest path according to these values. The value associated to an edge joining
two nodes can be, for example, the euclidean length of the corresponding curve.
Depending on the choice of the unit respective lengths on the axis z,y and on axis
6, the resulting path will minimize preferably the translational movements or the
rotational movements of I. This technique does not yield theoretic optimal paths
but these paths appear to be reasonable in practice.

Searching such a pseudo optimal motion takes O(M + N log(N)) where M is the
number of edges and N is the number of nodes in the graph [6]. As M = N = F,
a pseudo optimal motion can be found in time O(Flog F + Klog K) = O(Flog F)
which is O(m3n3log(mn)) in the worst case.

Furthermore, an important aspect of our method is that the produced mo-
tions can be locally modified and optimizied. Indeed, we have at our disposal a
2-dimensional variety (represented by graph G*). Although we have only used a
finite set of curves in this variety (a 1-dimensional subvariety) to search a motion.
Once a motion has been computed, we can locally improve this motion by relaxing
the positions of the points Pii + 1 on their respective edges (see for analogous point

of view [4].

10

4.2 Motion along a reference trajectory

In some applications, a point of reference on I is required to move along a given
polygonal line while I may rotate around this point. Let k be the number of segments
composing the polygonal line. In that case, we need only to compute the faces cor-
respondihg to the vertex-edge contacts involving the point of reference (which plays
the same role as a vertex of I) and the k segments of the polygonal line. Refering
to [2], it is easy to see that the computation of these faces takes O(km?n?logmn)

time and thus searching a free motion takes O(km?n?) time.

4.3 Repeated queries for transiationnal motion planning

Our description of FP can also be used to find repeated translationnal motions.
This is done by constructing an appropriate data structure which allows efficient
queries. To each face f of BFP corresponds an interval [0min,0,;.,;z] denoted by I;.
We denote by T the set of all the intervals corresponding to the faces of BFP.

We want to compute ffom boundary graph G of FP the boundary of the polyg-
onal region F'Py,. Let K be the number of edges composing FPy,. Any edge e
belonging to the boundary of F Py, belongs to exactly one face f of BFP. More-
over, the interval Iy contains orientation y. Reciprocally, let f be any face in BF P
generated by the segment P(8)Q(6) when 6 ranges in Iy, and assume that 8 belongs
to Iy. It is clear that P(8)Q(6o) is an edge belonging to the boundary of FPy,.
Thus the set of edges composing the boundary of F Py, is trivia.ily deduced from the
set Lg, of faces defined by: '

Ly, = {f € BFP,6y € If}

Note that Lg, has exactly K elements.” We store the intervals of L in a segment
tree [10]. This takes O(F log F) time as there are F intervals in L (note that this
does not increase the time complexity of the computation of graph G). Then using
this segment tree, we compute in time O(K + log F') the set Lg, and thus the set

of edges composing the boundary of FPs,. To get a complete description of the

11

boundary of FPy,, it remains to compute the adjacency relationships between these
edges. This is done in time O(K log K) as follows. Each endpoint of an edge of
the boundary of FPj, is labelled by a double-contact (see [2]). Thus, after sorting
these edges with respect to their endpoint ’s labels —which takes O(K log K') time-
we can easily compute in time O(K’) the adjacency relationships between the edges
of the boundary of F.Py,. In cohclusion, the boundary of F' Py, is computed in time
O(K log K +log F). Searching a translationnal motion between two points of F Py,

can then be done within the same time bound.

4.4 Implementation

The search of a motion has been implemented in C on a Sun workstation. Examples
of free spaces and motions are shown in Figure 6a, 6b. The table below sums up the

experimental results:

Exp. results | I | E | Faces | Computing FP (s) | Computing a free path (s)

Fig. 6a 10| 12| 613 ~ 270 ‘ 0.5

Fig. 6b 6 | 12| 285 92 0.3

The program consists of approximatively 15000 lines of C, including the com-
putation of FP and the computation of a motion. First experiments have shown
that computing FP is the most costly part of our method. It can be considered as
a pre-processing,.

Compared to the traditional approaches discretizing F P, our method has the
important advantage of being exact. This means that very ”difficult” paths (see
Fig. 6a, 6b for examples) can be found. Moreover, the program is rather simple and
the computing times and the complexity of the description of FP (number of faces)
compare favourably with others approaches. For example, to solve the problem
shown in Figure 6b, we have stored a graph with 270 nodes while Faverjon’s method

(5] requiers to store a graph of 10000 cells. It seems impossible to solve the problem

12

shown in Figure 6a with approximate or heuristique methods.

5 Conclusion

We have shown that, using a complete description of the boundary of free space
FP(i.e., the set of all free placements for a polygonal object I (with m edges) which
is free to translate and .to rotate but not to intersect another polygonal object E),
it is possible to compute a free motion for I between two free placements, if such a
motion exists. We compute first and once for all the boundary of FP. This prepro-
cessing takes O(m3n®log(mn)) [2]. Then each free motion is computed in O(m>n®)
time. As we get a complete exact description of the boundary of free space, it is
possible to compute many different motions between two free placements, according
to diferent criteria. Last but not least, the algorithm has been implemented and first
experimental results are very hopeful. The immediate application of our algorithm

is the motion planning for a planar mobile robot moving amidst polygonal obstacles.

References

[1] AVNAIM F., BOISSONNAT J.D., Simultaneous containment of several poly-
gons, 3rd ACM Symp. on Computational Geometry, Waterloo (June 1987).

[2] AVNAIM F., BOISSONNAT J.D., Polygon placement under translation and
rotation, LNCS N. 294 Springer Verlag pp.322-333 (1988). To appear also in
RAIRO Informatique théorique et applications 1988.

[3] BROOKS R.A., Solving the find-path problem by good representation of free
space, IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC-13 pp.190-197,
(March-April 1983).

[4] CHANDERJIT BAJAJ, MOH T.T., Generalized unfoldings for shortest paths.
The international journal of Robotics Research vol. 7 number 1 ISSN 0278-3649
MIT press (Feb. 1988).

13

(5] FAVERJON B., Obstacle avoidance using an octree. In Proceedings of IEEE
Int. Conference on Robotics and Automation (March 1988).

[6] FREDMAN M., TARJAN R.E., Fibonacci heaps and their uses uin improved
network optimization problems. In Proc. 25th IEEE FOCS, pp.338-346, (1984).

(7] KEDEM K., SHARIR M., An efficient motion planning algorithm for a convex
polygonal object in 2-dimensional polygonal space, Tech. Rept. No 253, Comp.
Sci. Dept., Courant Institute, (Oct. 1986). ‘

[8] LOZANO-PEREZ T., BROOKS R.A., A subdivision algorithm in config ura-
tion space for findpath with rotation, IEEE Trans. on Systems, Man and Cy-
bernetics, Vol. SMC-15 No 2, pp.224-233 (1985).

[9] POLLACK R., SHARIR M., SIFRONY S., Separating two simple polygons by
a sequence of translations, Discrete and Computational Geometry 3:pp.123-136

(1988).

[10] PREPARATA F.P., SHAMOS M.I., Computational geometry: an introduction,
Springer Verlag, (1985).

(11] SCHWARTZ J.T., SHARIR M., On the piano movers’ problem: I. The special
case of rigid polygonal body moving amidst polygonal barriers, Comm. Pure

Appl. Math., Vol. XXX VI, pp.345-398 (1983).

[12] SIFRONY S., SHARIR M., A New Efficient Motion Planning Algorithm for a
Rod in Two-Dimensional Polygonal Space, Algorithmica 2, pp. 367-402 (1987).

14

ARRANAREEE RN RN AN RN NN A RN AY

~af>

LR RN RN AR RRRRR RN

Figure 1: Polygon I and obstacles E

emaz‘

P6) Q(8)

omin

Figure 2: A face of BFP -

15

Figure 3: Curve T joining two points on a face of BFP

16

_Figure 4: Common point of two adjacent faces

17

—fe - o -

D ‘ P, end

Figure 5: A path from Pjns¢ to Peng

18

end

Figure 6a: Free space (perspective and top view), free motion

20

s g

T

i

Figure 6b: Free space (perspective and top view), free motion

Imprimé en France

par
I’ Institut National de Recherche en Informatique et en Automatique

)

