archives-ouvertes

Compiling temporal logic specifications into observers

Omar Drissi-Kaitouni, Claude Jard

» To cite this version:

Omar Drissi-Kaitouni, Claude Jard. Compiling temporal logic specifications into observers. [Research
Report] RR-0881, INRIA. 1988. inria-00075673

HAL Id: inria-00075673
https://hal.inria.fr /inria-00075673
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00075673
https://hal.archives-ouvertes.fr

%

Rapports de Recherche

e

T

LR

s

AT

T,

N° 881

X

s

ST T

COMPILING TEMPORAL LOGIC
SPECIFICATIONS INTO OBSERVERS

TSN

¢ TR

Omar DRISSI-KAITOUNI %
Claude JARD

uto

aine deVoluceau
‘Rocquencourt
‘BP105 -

JUILLET 1988

G

] Q] 5 a INSTITUT DE RECHERCHE EN INFORMATIQUE
- ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042-RENNES CEDEX
FRANCE

Téléphone: 99 36 2000

Télex: UNIRISA 950 473 F
Télécopie: 99 3838 32

" Publication Internie n° 421
18 Pages - Juillet 1988

Compiling Temporal Logic Specifications
into Observers

Compiler des spécifications exprimées en

logique temporelle vers des observateurs

Omar DRISSI-KAITOUNI and
Claude JARD

Abstract

An observer is an object which observes the interactions taking
place between different system modules during operation. It may com-
pare the observed interactions, also called trace, with the specification
of the system under test.

Temporal logic is used to specify the properties of the system under
test.

We present a new algorithm to translate such specifications into
observers. It is based on a classical derivation method. Our approach
is examplified by the specification of a reliable data transfer service
and its derivation into a trace checker.

Résumé

Un observateur est un objet informatique qui observe les interac-
tions qui se produisent entre les différents modules d’un systéme. Il -
a pour tache de comparer la suite des interactions observées, appelée
trace, & la spécification du systéme sous test.

Cette spécification se compose d’un ensemble de propriétés ex-
primées en logique temporelle linéaire.

Un nouvel algorithme pour traduire de telles spécifications en ob-
servateurs est présenté. Il est fondé sur une approche classique de
dérivation de termes. L’utilisation de l’algorithme est illustrée par la
spécification d’un service de transfert de données fiable, et la donnée
du vérificateur de traces correspondant.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
) (L A, 227) EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 I.N.S. A. DE RENNES (LABORATOIRE DE RENNES)

1 Introduction

We know that compiling temporal logic formulae insautomata is theoreti-
cally feasible. So, we propose a new and efficient algorithm to do that. It is
based on a derivation method, successfully applied by Brzozowski in 1964
to translate general regular expressions into automata.

We think that this algorithm can be used to build observers for testing
distributed systems. The concept of observer was introduced several years
ago (see for instance [Ayache 79, Molva 85]) in the area of distributed
system testing. An observer (also called “trace checker” in [Jard 83]) is a
module which observes the execution of the system under test (which may
be a system implementation or an artificial execution of some refined system
specifications) and compares its behavior with the (formal) specifications
given for that system. This concept allows for a clear separation of the test
sequence selection problem [Sarikaya 84, Castanet 86), and the detection of
any errors made by the system in respect to the specification. A survey on
trace checking is available in [Drissi 87]. It is implicitely assumed that an
observer cannot influence the system behavior in any way.

Figure 1 presents a global trace checking architecture to detect proper-
ties violations for a distributed system.

Since interactions at different access points are considered, the observed
trace is a global trace. The relative order of interactions at different points
must then be determined for checking global properties. In a distributed
system, this may be in general a difficult problem. However, there exist
practical methods to obtain a total order of all observed interactions. We
do not discuss in this paper about ordering concurrent interactions, and
how does it affect the validity of properties.

Our presentation is organized as follows. In section 2, we present our
temporal logic specification language and its application to the specification
of a reliable data transfer service. Deriving executable code from temporal
formulae was a difficult problem a few years ago, although theory was well
established. Section 3 presents and proves a practical algorithm to do it.
This algorithm was implemented as a software package and is used currently
to aid the specification phase. It produced the automaton associated to our
service example.

M! ! D PAPIER RECUPERE ET RECYCLE

Figure 1: Global trace checking architecture

Generator Generator
1 2
Trace
‘ ‘ : Checker
Result

2 Temporal logic specification

The logical context provides an interesting abstraction (implementation
choices independence) and conciseness to describe properties of concurrent
programs. Temporal logic allows the specification of the temporal ordering
of actions (see [Pnueli 86] for a complete state of art).

Since we are interesting in deriving observers for implementations, we
consider the linear time version of the temporal logic. Specifications are
event-oriented specifications and interpreted only over finite computations.

Using this logic, a property is defined with :

e a set of observable events (actions) : these are generally communica-
tion events (e.g. primitives exchanged between the application level
and the protocol under consideration).

e a formula specifying an order relation between the occurrences of
these events.

Let us precise the definition of the logic.

2.1 Syntax

The set ¥ of temporal logic formulae is built of :

¢ a set of observable events E = {ey, ..., ¢, ...,e,} (atomic formulae) -

e the constants: T (true) and L (false),
e the classical boolean connectives : A (and) and - (not),
e some temporal operators : © (next) and U (strong until).

The well-formed formulae are obtained through applying the classical
formation rules (considering ® as a unary operator and U binary).
We shall use abbreviations :

e V (or), D (implies) and = are defined in the usual way,

e Vpe F,Op =~ 0O -p (weak next), O = TUp (eventually)
and Op = ~O-p (always).

2.2 Semantics

The logical formulae are interpreted over the finite computations (global
traces) of the system under test. We can range over naturals the different
actions of a computation C. Let C; be the part of C starting from the
** point, and C(i) the event occurring at this point. | C | denotes the
length of the computation. No simultaneous events are considered in our
model: there is exactly one occurrence of an event at each point of the
computation.

The validity of a formula ¢, for a computation C, is defined inductively
from a position ¢ <| C | of the computation. This is denoted by C; = .

CET always

CiEL never

C’;ha off C.'=C¥(VQGE)
Ci =~ iff ~(C(E) =)
CiEpAp' iff CiEpACiEy

CEQp if i+1<|C|ACumkEe
CikEelp' if 3,i<ij<|C|,CiE¢' AVki<k<jCilkep

We say that a computation C satisfies a formula ¢ if and only if ¢
holds at position O of the computation C. Since we are concerned with
the relations between automata and logic formulae, we force the empty

computation (written A) to be included in the models of our logic. This
will allow us to express boolean combinations of temporal formulae in terms
of automata compositions. This is an original aspect of our work.

Satisfaction of a formula ¢ by a computation C is then defined with :

Clko & Cokp if C#X
6(p) if C=2A

where 6(p) (true iff the empty trace satisfies) is recursively defined
as :

o(T)=T 6(1)
6(c) = L (Va € E)
6(~p) = ~6(p) §(p A p') = 6(p) A 6(p")
6(OQp) =1L §(plyp') = 6(p")

L

As usual, two logic formulae are said equivalent if they are satisfied
by the same set of computations. A formula which is satisfied by all the
possible computations E*(including the empty word) is a tautology. For
instance, we have always exactly one event at each time :

EOléen- /\ (anp)|vO-eE

a£BEE

£EVa

acE

where

¢ is true only for a non-empty computation (and thus §(¢) is always false).

Function § preserves the usual axioms of the linear temporal logic. Note
that for the finite case Op = O is not a tautology (this is false for unit
length traces).

2.3 Formal specification of the example
2.3.1 General description

We consider the service provided by a data transfer protocol. Such proto-
cols, as described for instance in [Stenning 76] or [ISO 86], secure an uni-
directional flow of data using a positive handshake on each transfer. Flow
control is provided by a window technique for acknowledgements assuming
that every transmitted message is numbered modulo k. The communication
environment may lose, duplicate or reorder messages.

A previous attempt to specify the properties of the example can be found
in [Richier 87] using the Xesar branching time specification language.

This section provides a linear time specification which is intended to be
almost complete as the associated automaton shows. We do not impose
any kind of synchronization to start trace checking.

2.3.2 Service specification

The service specification (also called external specification) describes the
behavior of the whole system as expected by the users of the protocol.
At this level, the system is considered as a black box with an input port
in; and an output port out; where the subscript ¢ represents the associated
sequence number. Observation of these events can be easily implemented by
the numbering function of the transmitter, and by the acceptance condition
of the receiver, for in; and out; respectively.
The (finite) set of observable events is then defined by :

E = {in,, out,}iefo..x-1)
The adding operator + is interpreted modulo k.

1. Inistial specification :

This part of the specification is arbitrary and depends only on the
instant of the beginning of the observation period. We do not impose
any constraint on that.

2. Input sequence spectfication :

(P;) The input numbering is strictly increasing modulo k, e.g tn;,;
is always preceded by in;.

Vi€ [0..k—1], O [(in,- AOtni,) DO (ﬁ(V z'n,-)lfin.-+1)]

sef0..k-1]

(P;) The input numbering is unambiguous, e.g in; is possible if and
only if the previous #n; (modulo k) has been transmitted and
delivered.

Vi € [0..k — 1], O [(§n: A OOin:) D O-(—outlling)]

3. Output sequence specification :(same as input changing in; in out;)

4. Specification of the transmission :

(Ps) Every transmitted message is delivered in a finite delay.

Vi € [0.k — 1], O [ing D Oouty]

(Ps) Since we do not impose any constraint on the beginning of the
observation, some requirement is needed to synchronize the output
specification on the input one. The following property expresses that
the two sequences in;..out;..tn;y;..out;;; and N4 q..0ut;..outiyy
are the only valid orders.

Vi€ [0..k — 1],

O[(¢ni A Ooutiyy) O [(—ingiloutyyy) = (-out;loutsy,)]]

We claim that the conjunction of these (6k terms) temporal logic proper-
ties provides a complete specification of the protocol service (the associated
automaton is shown in section 3.5).

3 From temporal logic to finite state ma-
chines

3.1 Theory

The theory of linear time logic was linked to the automata theory twenty
years ago [Kamp 68]. We are concerned with the following proposition.

Proposition 3.1.1 Let L be a set of finite computations. The followsng
two characterizations are equsvalent :

L is definable by a temporal logic formula o (£ = {C | CEv})

L is accepted by a counter-free automaton.

Let us present our notation :

a deterministic finite state machine is a tuple (@, A4,p,49,F) where Q
is a finite set of states, A is a finite set of elementary actions, p is the
transition function (from Q x 4 to Q U {@}), F is a subset of states, called
terminal states, and ¢q is the initial state.

In this definition, p describes the effect of the execution of an elementary
action a. For a state ¢ € Q, p(q,a) # 0 indicates that performing action a,
when the automaton is in state g, leads it in state q = p(qg,a).

We extent the function p in the usual way on sequences of actions :

Vg€ Q, p(q,)) = q
Vo€ A*,Va € 4, p(gq,0a) = p(p(q, 0),a)

The language accepted by a deterministic finite state machine is the
language L defined as :

L={le A | p(qo!) € F}

Since counter-free automata [McNaughton 7 1] are a subclass of finite
state machines, the theory allows to consider the finite state machine A,
associated to a formula ¢ defined by :

L(A,)={C€eE | Ck¢}

8

Proposition 3.1.1 was first applied in [Manna 84] to synthetize synchroniza-
tion skeletons of protocols from their temporal logic specification.

Proposition 3.1.2 A boolean combination of temporal formulae may be
characterized by an automata composition:

Vo,0' € F, Aoy = C(Ap)y Apngt = Ap N Ay
("C” denotes the complementation function)

Proof proéeeds directly from the propagation of the boolean operators
by the satisfaction relation at point O for non-empty computations and by
the é-function for the empty one.

3.2 Derivatives of temporal formulae

The term “derivative” was first introduced in [Brzozowski 64] in order to
derive deterministic automata from general regular expressions. We adopt
a similar presentation for temporal formulae.

Definition 3.2.1 Given a formula ¢ and a finite sequence s, the dertvative
of © with respect to s is a formula D,p such that :

VteE', t=ED,p & stk=op

This defines a class of formulae which are all equivalent. D,y repre-
sents any formula of that class. Derivation provides for calculating the
satisfaction relation, using proposition 3.2.1.

Proposition 3.2.1 Satisfaction may be characterized by the emptyness ac-
ceptation of a derivative.

Vse E*',Vpe 7, sl=p & 6(D,p)

This proposition follows the definition 3.2.1.
Derivation may be calculated using the following propositions 3.2.2 and
3.2.3.

Proposition 3.2.2 If o ts a temporal formula, the dertvative of p with
respect to a sequence a of unit length can be found recursively as follows :

D, T=T D, 1l=1

Dya=T D,f=L(NBEE, a#p)
Dy = -D,p Da(‘P A ‘Pl) = Datp A Doy
D,Op=pA¢

Da(pUp') = Dap' V (Datp A €A pUp')

The proof is obvious for the constants, atomic formulae and boolean
formulae using the properties of the satisfaction relation.

The U-case is deduced from the (O-case since we can establish the equiv-
alence :

o' =o'V (e A ply')

The ©-case requires more attention and is proved by the following equiva-
lences, given a sequence ¢ :

t=EDaQp & atEQp
tEp A(t#2)
tEpAtE¢
tEeAE

tse

Let us note that D,¢§ =T.

Proposition 3.2.3 The derivative of a formula @ with respect to a finite
sequence s can be found recursively as follows :

Ya€ E D,,p
Dyp

D.D,p
7o)

o

10

The proof follows the definition 3.2.1.

Since D, and § can be calculated for any formula p, we are able to decide
if a given computation s satisfies a given formula . This is established by
proposition 3.2.1.

We shali point out in the next paragraph that we can calculate a priori
all the derivatives of a formula ¢.

3.3 Construction of A,

Definition 3.3.1 Two temporal formulae p and ' are said boolean-equivalent
if they are equivalent according to the boolean caleulus considering pure tem-
poral sub-formulae (rooted by a temporal operator) as atoms.

Propositional equivalence can be easily recognized by a classical decision
procedure (e.g. in translating —(p = ¢') into disjonctive normal form and
verifying contradiction in each term). It does not imply equivalence, since
two formulae may be equivalent and not recognized as boolean-equivalent.

Proposition 3.3.1 Every formula ¢ has only a finite number of non-
boolean-equivalent derivatives. All the distinct derivatives can be calculated
considering sequences of increasing length.

This is proved by induction on the length of the formula, in the annex
of the paper.

Proposition 3.3.2 From all the previous propositions, we can calculate
the automaton

A‘p = (QsA’p,quF) N
¢ The set of actions A is the set of observable events E,

® The set of states Q is the finite set of the non-boolean-equivalent
derivatives of p,

11

e The transition function is determined by the ezistence of a derivative
Vi, € Q,Va € E,
¥ = p($,a) & Js€E* ¥ =D,p A ¢! = Doy,
o The initial state qq 15 , and a state ¢ is a terminal state iff 6(¢).
Note 1: Enforcing the test of equivalence using proposition 3.3.3 reduces
the number of distinct derivatives.
Note 2: Since we can decide if £(A,) equals to L(Ar), the automaton

construction provides a decision procedure.
Note 3: An algorithmic description is given by figure 3.

Proposition 3.3.3 There is equivalence between © and pV —£ if the empty
word satisfies .
VoeF, 6(p)=> p=pV €

Proof :
o 6(p Vv E) © 6(p)
e Vs€Et skEpVv-teskEyp

3.4 Example of derivatives

In order to illustrate the derivation process, we give here the automaton
and derivatives of a sub-formula of our service specification.

Let us consider the following property (general form of P;).

E = {in;,out;}
© = O [(m. A OOZTL.) D) Oﬂ(ﬁout.-Uin.')]
5(p) =T
Dy, = [(Oini Vv €) D (=(—outilling) Vv —€)] A
(O [(ini A OOtni) D O~(—outlling)] v ¢
6(D,‘n'.(p) = T
Dourp = 0O|[(ini A OOIn) D O~(—outllin,)| v ¢
= ¢ (detected equivalent)
Dt’n;"n."p = 1
Diniout;p = ¢ (detected equivalent)

12

Figure 2: The P; automaton

C. a [(Fn: A OO1n;) D O—(-outlliny)|Q) [; I @ initial state

out_i @ terminal states

in_i out_i
[(Ging v =€) D (~(~outillin) V ~€)] A)
(O [(m, A O()m,) D> O-(-outillin;)] v ~¢|

The automaton is shown in figure 2.

3.5 Generating observers

The algorithm above has been implemented as a software package written
in Pascal. We give here some hlnts which allowed us to reduce the time
and space complexities.

Temporal logic formulae (in which or- and and-formulae are considered
as n-ary) are represented by trees. Derivatives of some pure temporal for-
mulae are kept during the computation to avoid re-derivation of previous
terms, since the derivation rules can produce trees having common parts.

A lot of time is spent to test boolean-equivalence. In order to improve
this procedure, we generate for each formula, the associated disjonctive
normal form. Testing equivalence between normal forms is then straight-
forward.

The final program is 2500 lines length. It compiled the specification for
k equals 2 in 15 seconds, and produces a 24 states automaton. The minimal
equivalent automaton is shown in figure 4.

Let us comment the example. An interesting feature of the method was
to consider that the observation could start at any time of the execution
under test. This simplifies (a bit) the temporal specification although it
would be difficult to synthetize directly the automaton.

The complementarity between the behavioral and logic based approaches
to the specification was already advocated in [Graf 86]. Our experience

13

Figure 3: Text of the algorithm

type evt_type = scalar_type;
state = record
num : integer; — unique id of a state —
fml : temporal_formuls; — associated formula in a coded form —
term : boolean; — true if terminal state —
end;
edge = record
source,destination : integer;
evt : evt_type; — label of the edge —
end;
var Edges : set of edge init 0;
States : set of state init {(0,,6(p))};
number : integer init 1;
function ezists_boolean_equivalent (f: temporal_formula; var gq : state) : boolean ;
— ’same’ refers the same syntactic structure —
— ’boolean_decision’ is a boolean decision procedure —
function boolean_equivalent {f,f’:temporal_formula): boolean ;
begin
if same(f,f’) then boolean_equivalent := true
else if 6(f) and same(f’,f v-£) then boolean_equivalent := true

else boolean_equivalent := boolean.decision(f = ')
end

begin
ezists_boolean_equivalent := false;
all z in States do
if boolean_equivalent(f,z. fml) then begin

exists_boolean_equivalent := true ;9 := z end
end

procedure succs (d : state),
var y : temporal_formula; g : state; a : edge;
begin
all ¢ in E do begin
y := D.(d.fml);
if not ezists_boolean_equivalent(y,q) then begin
g.num := number; ¢.fml := y; q.term := 5(y);
States := States U { ¢ } ;
number := number +1; succs(q) end;
a.source := d.num; a.destination := g.num; a.evt := e;
Edges := EdgesU { a } end
end
main
suces((0, 9, 6(10)))

14

Figure 4: The data transfer checker

in0 9

O: terminal states

@ : initial state

enforces that noint of view : temporal logic seems better suited to the de-
scription of global properties. The associated automaton may be very large
since all the interleavings of possible events must be considered. In con-
trast, machine based formalisms are interesting to characterize situations
where there exist tight relationships between events, such as sequencing or
precedence properties. This is often the case for local properties.

15

Executing the automaton as a trace checker is straightforward. This
could be part of an integrated system for observation as presented in
[Groz 86).

4 Conclusion

We tried to explore a new approach to design observers. Observers are
derived from the temporal logic specification of some system properties.

The translation has been implemented and works with reasonable per-
formance.

Obviously, finite non-counting automata are a rather restrictive class
of observers. We think however that they could provide interesting skele-
tons for real observers. It will not be difficult (from the point of view of
the observer generation) to extent the input logic language. Quantifiers
and predicates on parameters associated to the observable events may be
introduced.

Such compiled observers could be useful for protocol test centers to an-
alyze (possibly off-line) complex traces produced during a test phase. The
knowledge of the formula associated to the current state of the automaton
may provide a kind of explanation when an error is detected.

Mixing logical and behavioral techniques for specification is a challenge.
We contributed to that direction for the finite case. Our experience is
that programming the translation between logic and automata provides a
significant aid to describe service properties of protocols. We can then
compare two different points of view of the same specification.

N

5 References

[Ayache 79 | IM. Ayache, P. Azema, M. Diaz, Observer: a Concept for
On-line Detection for Control Errors in Concurrent Systems, 9th Int.
Symp FTC, Madison, June 1979.

[Brzozowski 64 | JA. Brzozowski, Derivatives of Regular Ezpressions,
JACM, Vol. 11, Nu. 4 (October 1964), pp. 481-494.

16

[Castanet 86 | R.Castanet, R. Sijelmassi, Methods and Semi-automatic
Tools for Preparing Distributed Testing, VI IFIP WG6.1 Workshop,
Gray Rocks, Montreal, June 1986, North-Holland, Gv.Bochmann and
B.Sarikaya ed.

[Drissi 87 | O. Drissi-Kaitouni, C. Jard, Deriving Trace Checkers for Dis-
tributed Systems, research report INRIA nu. 635, March 1987, 17

P.

[Graf 88 | S.Graf, J.Sifakis, A Logic for Description of non Deterministic
Programs and their Properties, Information and control 68, 1-3, 1986.

[Groz 86 | R.Groz, Unrestricted Verification of Protocol Properties on a
Stmulation using an Observer Approach, VI IFIP WG6.1 Workshop,
Gray Rocks, Montreal, June 1986, North-Holland, Gv.Bochmann and
B.Sarikaya ed. :

[ISO 86 | ISO/TC97/SC21, Guidelines Jor the Application of Formal De-
seription Techniques to OSI, September 1986.

[Jard 83 | C.Jard, G.v.Bochmann, An Approach to Testing Specification,
The Journal of Systems and Software, 3, pp. 315-323, 1983.

[Kamp 688 | HW.Kamp, Tense Logsc and the Theory of Linear Order, PhD
Thesis, 1968, UCLA.

[Manna 84] Z.Manna, P.Wolper, Synthesis of Communication Processes
from Temporal Logic Specifications, ACM Trans on Programming
Languages and Systems, Vol 6, Nu 1, January 1984, pp. 68-98.

[McNaughton 71 | R.McNaughton, S.Papert, Counter Free Automata,
MIT Press, Cambridge, Mars 1971.

[Molva 85 | R. Molva, M. Diaz, J.M. Ayache, Observer: a Run-time
Checking Tool for Local Area Network, V IFIP WG6.1 workshop,
Moissac, June 1985, France, North-Holland, M.Diaz ed.

[Pnueli 86 | A.Pnueli, Application of Temporal logic to the Specification
and Verification of Reactive Systems: a Survey of Current Trends,
LNCS 224, 1986, pp. 510-584.

17

[Richier 87 | JL. Richier, C. Rodrigez, J. Sifakis, J. Voiron, Verification
in Xesar of the Sliding-window Protocol, VII IFIP WG6.1 workshop,
Zurich, May 1987, Switzerland, H; Rudin, CH. West ed.

[Sarikaya 84 | B.Sarikaya, Test Design for Computer Network Protocols,
PhD thesis, March 1984, School of Computer Science, McGill, Mon-
treal.

[Stenning 76 | VN. Stenning, A Data Transfer Protocol, Computer Net-
works, 1(1976), pp. 99-110.

6 Annex

Proof of proposition 3.3.1

First part of the proposition :
By induction on the number of basic operators of the formula 1, noted N.
Let A, be the set of distinct derivatives (A, = {D,p | s € E*}).

1) N=0
Yisl,Toreec E
A.L = {—L}, AT = {T}’Ac = {_L,T,C}

2) let us suppose that Vip € 7 with numbers of operators less than N ,
A, is finite.
case 1l ¢ = —p
Ay is finite since Vf, fe Ay = fe A,

case 2 Y = A’
Vs € E*, Dy2%bp = D,p A D,p'

Thus
Ay={fAg|fEA, geA}

Since A, and A, are bounded, Ay is finite.

18

case 3 ¢ = plp'
Vey, 1, ...,, € E

Degeleg..en¢ = Dcocl..enﬁol \ (Dcoel..e,.‘p A
(Del..e,.‘P’ \ (Del..e,.‘P A
(Deg..c,.SO' A (Dcz‘.e,.‘P A

.(Ben—lcn(p’ Vv (Den—xcn(p A
(Den'V (Dep A €) ..)))

D, has 2n terms of the form Dyp and D,p'.

Since these terms have finite non-boolean equivalent forms, boolean
reduction is possible. Reduction deletes redondant terms.

D,y is then boolean equivalent to a function with a finite num-
ber of variables. Thus Ay is finite.

Second part of the proposition :
Let us consider the sequences s of increasing length.
Suppose that :Vip,p' € 7,

ds,t € E*, |s| = |t| A D,p boolean equivalent to Dyp'
We can conclude that
Va € E*,D,s boolean equivalent to Dy’

This proves that when an equivalence is detected, it is not necessary to
derive with respect to a longer sequence.

a

19

Imprimé en France
ar '
I' Institut National de Recherche en Informatique et en Automatique

ISSN 0249 -6399

e

L7

