N
N

N

HAL

open science

Experiment with auto and autograph on a simple case of
sliding window protocol

Gérard Boudol, Robert de Simone, Didier Vergamini

» To cite this version:

Gérard Boudol, Robert de Simone, Didier Vergamini. Experiment with auto and autograph on a

simple case of sliding window protocol. [Research Report] RR-0870, INRIA. 1988. inria-00075684

HAL Id: inria-00075684
https://inria.hal.science/inria-00075684
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075684
https://hal.archives-ouvertes.fr

InstitutNatonal
“deRecherche

en Informatique
et en Automatique

‘Domaine de Voluceau
Rocquencourt
o BP105
78153 Le Chesnay Cedex
France
Tel:(1)39635511

X Xy A AN A AN AR DN SIDEARTS S WAL S B BN O IR R A UR AN

Rapports de Recherche

N° 870

EXPERIMENT WITH AUTO AND

AUTOGRAPH ON A SIMPLE CASE
OF SLIDING WINDOW PROTOCOL

Gérard BOUDOL
Robert de SIMONE
Didier VERGAMINI
JUILLET 1988
U

Experiment with Auto and AutoGraph
on a simple case of sliding window protocol.

Experience en Auto et AutoGraph sur un
cas simple de protocole a fenétre coulissante.

Gérard Boudol Robert de Simone Didier Vergamini
INRIA Sophia Antipolis INRIA Sophia Antipolis CERICS Sophia Antipolis

June 15, 1988

Abstract

Auto is a system designed at manipulations inside the Meije process calculus. It constructs finite automata
from relevant terms, and then allow various observational *cross-sections® on the latter to help recognize their
good properties (or the lack of them). Autograph pends as its associated graphic interface, by which the user
may size terms as visual networks. It also helps depict the resulting automata, which adds the whole thing
immediacy. We shall conduct a sample study examplifying Auto and Autograph nowadays use, and raising
several further points in future enhancements.

Résumé

Auto est un systéme de manipulation dans le calcul de processus Meije. A partir de termes appropriés il cons-
truit les automates finis correspondants, puis permet des “coupes® observationnelles afin d’y mettre en lumiere
des propriétés souhaitées, (ou leur échec constaté). Autograph se situe comme son interface graphique, permet-
tant de saisir les termes comme des réseaux visualisés. Autograph aide aussi & dessiner les automates resultants,
ce qui facilite ’exploitation rapide des résultats. Nous voulons ici démontrer 'utilité actuelle d’Auto et Auto-
graph & travers un exemple, qui nous permetra aussi de soulever certains points indicatifs de développements
prochains.

N D PAPIER RECUPERE ET RECYCLE

1 Introduction.

We shall present in this paper a medium-size experience with the Auto and Autograph tools. They shall be applied
to a finite-state model of the Stenning protocol in order to assert its correctness.

Auto is a software tool based in Milner's process calculi theory, developéd at INRIA. It has been extensively
presented in [Ver87]. It allows one to specify networks of communicating processes as terms of an algebra, namely
MEIJE. It can perform constructions, reductions, equivalences of underlying automata in the bisimulation spirit
and provide partial views along abstraction criteria. All these preliminaries are supposed familiar to the reader
(see [Bou8s]).

Autograph is a multi-window graphic interface for Auto: as such it is directed at edition of labelled graphs of
course, but of networks of them also, in accordance with process calculi theory. This makes it somehow specific
and explains why we did not strive at preexisting graphical systems. Its main features are:

e graphical input by the user of both automata and networks, with -hopefully aesthetic— shortcuts in the
graphical grammar to help readability,

e interpretation of the drawings into the Meije algebra interfaced with Auto,

e user-guided output of automata produced by Auto, and soon by other softwares as well (specially the Esterel
RealTime language developed in the same project),

e a Postscript output for including drawings in texts.

The Stenning Protocol is a communication protocol, designed at ensuring proper transportation of messages
in case of underlying lines which may duplicate, loose or shuffle them. It uses an assumption on messages’ life
duration, so it can base itself on an acknowledge system running modulo a given number. It uses sliding windows:
this way messages eventually arrived ahead of the next one expected can be effectively taken into account.

This example was of particular importance to us as its present Meije modelisation made heavy use of parallelism,
mostly in between several -more than 2 !~ processes at a time. One then encounters a problem of parenthesizing
at the best. Treating this example greatly enlarged our intuition. We present some alternative workbenches at the
end of the paper.

2 Presentation of the problem.

The so-called Stenning protocol [Ste76] is a data-transfert protocol based on a sliding window philosophy. The
main interest of this protocol is that required assumptions on media are scarse: lines may duplicate, loose or even
deliver messages disordered, and the function of the algorithm is to straighten their low. The only basic need, as
used in the initial proof of correction, is that messages have a bound life duration: once emitted they are either
transmitted or lost before this delay has elapsed. One may then tag the messages, and then the corresponding
acknowledges, with modulo integer values in a certain range, so that these values do not outgrow in space the
contents of the messages themselves. Note that in return this requirement is strictly necessary, for no modulo
labelling could function while arbitrarily old messages could pop up back to the surface and be received at the
other end of the line !

We shall not describe formally the protocol in a given “programming” language, but rather assume some reader’s
acquaintance to it and recall its main features shortly, while its formalisation will be made precise for given window
sizes in the Meije modelisation.

There are sliding windows both at the emittor and the receiver. Those windows are intervals suitably chosen,
in relation with the modulo quotient. Messages and acknowledges may be emitted and received when inside of the
window, and also then reemitted on timeouts injonctions. Having a window as large as possible is of interest since
then the receiver may start buffering messages ahead of one that has been delayed or forced to be retransmitted.
Then a single acknowledge is sent, tagged with the index of the uppermost message received. It validates at
once reception of the whole previous initial segment of messages in the emittor window. The basic hypothesis for
correction is that the sum of the window sizes, plus the life duration of messages in the lines (we shall suppose
only one message is sent at a time) is less than the integer used as modulo. A more thorough presentation of the
protocol may be found in the litterature [Ste76].

3 Reduction to a given finite case

We shall now proceed with the description of the modelisation of a version of the Stennning protocol in Meije. We
choose window sizes of 2 for both the emitter and the receiver, which looked general enough. The life duration has
been set to 2 as well, in a sense which will be explained further while describing the lines. Care has to be taken,
since this notion (“life length”) in our asynchronous setting does not make much sense, just the same as it was
already vague and informal in the original presentation. For now we need just mention that this life duration will
be represented as the buffering power of the lines, that is the number of succesive messages a given preceding one
may survive to. This is the same quantity which was used in the original proof as well.

All these bounds being fixed leave us with a number of 6 for the modulo. The exhaustive proof by automaton
construction in Auto will let us check the validity of it, under the form of the protocol good functioning.

We shall now display Meije representations of the protocol components, as Autograph drawings. All figures
from now on shall be Postscript reprints from automata or nets as they are entered by the user, just slighty polished
by the system itself to enjoy the greater accuracy of the printed format.

4 The design of the emitter with AUTOGRAPH.

4.1 Automata

Since we have to label messages modulo a number greater or equal to 6, we chose to build a modular system
composed of 6 identical cells, each specialized in the processing of all messages and acknowledges stamped with
a given index. These cells are connected in a ring network. We simulate the mechanism of sliding window with
internal communications, alike tokens. There are three of them, figuring which cell is in the window, which should
read its message from the outside to be transmitted, and which has been acknowledged as well as possibly several
others at once. Figure 1 shows us the behaviour of these cells.

Figure 1: The cell of the emitter

The meaning of each signal is:

- In is the signal of input by the environment,

. Send is the signal sent to the medium,

- Ack is the signal sent by the medium as an acknowledge of the good transition of a message,

- the reception of Token allows a cell to take a message from the environment, this permission is then trans-
mitted by the signal NextToken,

- the reception of Window indicates that the cell is from now in the window where the acknowlegdes are
significant,

- the emission of NextWdow indicates that the cell leaves the window,

- PrevFree is an internal acknowledge transmitted to the preceeding cell in the window, from which it may
assume be acknowledged as well, if it needs to,

- Free is the reception of this internal acknowledge.

Some labels appear as products (possibly scanning several lines) of the aforementioned signals. Product here
means simultaneous (commutative) co-occurring.

In order to initialize the emitter, we must let the two first cells already lay inside the window, same as we must
enable the first cell to take its input from the environment. During this initialization step, it is wise to let all
previous acknowledges labelled in these cells be ignored, so that the starting point will exactly simulate the meet
of an hypothetical preceding warm-up round. So we add the system two starters, dedicated respectively to the
proper initiation of cells one and cell two. number 1. We first focus on the behaviour of starter 1, recalled in figure
2:

- the starter emits asynchronously Window and Token to the cell,

- the acknowledge from the line are filtered by the starter so they can be transmitted only after it has trans-
mitted Window and Token.

Figure 2: First starter.

The behaviour of the second starter, shown in figure 3, speaks for itself.

Window! me?.
Ack!

Figure 3: Second starter

4.2 The emitter network.

The six cells and the two starters are lined in a same network (see figure 4): by doing so, we put implicitly their
corresponding Meje terms in parallel and we restrict the signals of the global system to only those appearing on
the ports of the surrounding box. The communication are figured by the strings connecting ports of several boxes:
call “wire” a connected part of ports for the string attached relation, then all the signals on a same wire —or
“equipotential”- are renamed into the same name. This name is internal (restricted) if the wire is not connected
to the external box.

4.3 The global system.

The global system for the emitter is obtained from its specification in AUTOGRAPH in three steps:
- the design is translated in a Meije term,

- using AUTO, the term is translated in an automaton, using the exclusion function, in which we declare all
signals of the emitter to be mutually exclusive (we then get a CCS type of parallel). The purpose of the
exclusion function is to build an automaton structurally along the syntax of the term, while propagating to
subterms the constraint it was given, thereby diminishing the number of transitions from the very start.

tarterl
Windo®) A I Send
ek Toke Tok
°l extToken
Pfevl’ree‘
EmCell
Windo‘i
[Free NextWdow
L) C
m4
mel) © O
foken ProvFres
ck Wind.
Inl EmCell S
¢ :‘I " N, WA
NextW
dsead k-
exlTobn Proe
em
&)
X
PrevFree Window §
&
NextWdo!
EmCell A
;‘okm Free
NextTokel;
& 2
Window AgX Ak 3
n o
tarter2_ TQ " ?
2 s
me” Th2 em2

Figure 4: The emitter

- the system is minimized against observational equivalence using the function obs.

Annex A shows the AUTO session of this computation, as well as any other we shall encounter from now on.
The size of the final emitter is 18 states and 120 transitions.

5 The design of the receiver with AUTOGRAPH.

5.1 The automata

The receiver is conceived much alike the emitter, with its 6 cells structure. Signals are slightly different:

In is the signal of input by the line,
- Send is the signal sent to the environment,

- the reception of Token allows a cell to output a message to the environment. This permission is then
transmitted to the next cell by the signal NextToken,

- the reception of Window indicates the cell entered the window, where now acknowledges are significant,

- the emission of NextWdow indicates the cell leaving the window.

Four other internal signals are here to ensure an acknowledge is sent, which is exactly the further acknowledge
up the window where receptions of messages were met.

- NextOk is a signal sent by a filled cell, ready to output its message.

- Ok is the name it is received as in the next cell, which then acknowledges either itself or the preceding one
according to whether it bas got its own message bufferized or not.

- PrevOk is a broadcast message which start scrutation for acknowledgeable cell starting from the one which
holds the token allowing output of message...

- Ack,PrevAck, NextAck allow a cell to choose —according to its state and the Ok signals received— which
acknowledge to send back.

The dubious reader can of course simulate by hand a few steps of the receiver.

Ok?. Ok?.
PrevAck! In? Ack! p Il;‘::toAkc’l?('

NextOk!

Figure 5: The cell of the receiver

5.2 The receiver network and its underlying global system.

Figure 5 Shows us the behaviour of these célls, and figure6 displays the receiver as a net, with starters and wires.
It ressembles greatly the emitter. Still one should note the broadcast message PrevOk, where the equipotential is
formed by a reunion of names rather than by pulling strings. We defer explanation of this until the lines description.

Alike the emitter, the A UTO session in A records the receiver construction. It counts 24 states for 180 transitions.

6 The transmission media: Meije models

As mentioned earlier, the Stenning protocol with its modulo numbers acknowledges simply could not work without
a proper life length assumption on messages sent (i.e. they die before a certain time has elapsed). This is obvious,
since then any old message with a stamp index equal to a new one inside of window could be substituted from a
dormant line cell, which is bad manners. Then no finite representation of the lines could be tempted also.

From the original specification on, it appears the genuine timescale for this delay is the number of messages
sent afterwards, which measure the capacity for reordering. From this was borne the idea of modelling this aspect
in Meije as a bound on the capacity of media bufferisation mechanisms, so that a given message has to be let off
the line before the one that is sent the n*? afterwards can be allowed in. As communication in between the medium
and both the emitter and the receiver are synchroneous, this induces that the message has to be received or purged
through the medium before new ones (a certain row later) may be emitted. Significantly, this condition is exactly
the one that is needed to ensure a finite state modelisation for the whole system.

Thus, both the forward and backward media consist in here of two connected cells, according to the sizes chosen.
Messages first embark for the first cell, from which they pass on to the second ones, after which they fumble out
of the line itself. During their stay inside the line, they may be variously, and perhaps duplicatively, adressed to
the receiver. The various possible connexions result in various hypothesis, each raising to a new possible medium,
counting:

o perfect lines,
e lines that may only loose messages (apart from transmitting of course),

e lines that may loose or duplicate messages,

6

mré,] N \ .]
Send PrevAck PrevOk Nex{ack ACK B s
SIn de SioxtToken 3 oul'
m Tokeny Send
PAck o extOk PrevOk ©
’N tAck ol h RecCell
exIAC e
] extWdow
Wmdo‘ PrevAck<
10k Nex(Token NexiWdow i Token Ok,
mr}
= Newok Nesthck s
PrevAck PrevOk Ok Token NextToken extOk Nexi |
P Ack
NextWdow b4

indow

o

NextWdow NextToken

Figure 6: The receiver

e lines that may only duplicate messages,
e lines that may duplicate or permute messages, and finally
e worst lines, that is these that may loose, duplicate and permute messages altogether.

One should bear in mind that permutations or loss of messages should not impair the previous life length hypothesis,
while they still make sense inside of if.

We shall now present the graphical description of all those lines, in the automatically produced Postscript
format. We need comment further on specific drawing conventions that were adopted in Autograph in order to
ease the reading of the drawing, that tended to be cramped with too many strings connecting ports. The actual
conventions allow a mixed use of strings and explicit renamings which we feel satisfactory. Satisfaction here simply
means that we do not draw too many strings connecting ports at boxes from different levels of inclusion. The gain
is best seen at figure 12.

We call equipotentials the various sets of inter-communicating ports in between two boxes levels. An equipo-
tential may of course consists of all the ports that belong to the same connected component for the relation of
pulling a string in between ports, but one may also give names to equipotentials, by labelling one of the string of
a given connected component, and so all such equally labelled components belong to the same equipotential. Note
that a given port labelled o with no string tied to it does belong to the a equipotential, while a port named o
with a string pulled to it (which itself is not named a !) does not ! This last sentence, which may be rephrased
as: “a port with no string attached is a connected part on its own”, sums up all there is to care about writing
equipotentials. ‘

An equipotential may concern one or several ports of the outsider box, in which case a renaming, either
alphabetic or not, is performed. If no such ports are involved, then an implicit restriction is assumed on the
equipotential.

For the time being the translation into Auto tries and reuses preexisting ports names wherever possible, self-
generating a few others for internal use. What will come next is a clever parenthesizing algorithm, that produce

Figure 7: The c:ll in a line.

binary parallel operators with the least chances of cor~binztory explosion upon intermediate constructions. I* was
a major purpose of the case study exposed here to gaia insight into which informations were utterly useful for this
splitting. All lines use the same line cell (see figure 7). »

The actions branded em; represent the input of message ¢. The actions branded push, represent the ongoing of
message ¢ further along the line. It leaves the cell emnty. The actions branded mr; represent the output of message
t towards the receiver. It is non-destructive and leaves the cell unchanged.

mr2 m3 1
pushl
push2

push3 nr3

LineCell ~ FOohS % > &6
pushS

Y 7N
puwhd L Ay
mré

Figure 8: The perfect line.

To build a perfect line (see figure 8), all ports named mr; are restricted, as so the sole exit is by being pushed
out of the second cell into the receiver. No loss possible indeed.

We build the loosing line (see figure 9) same as first case, but for a sucessive filtering automaton, which may
either pass on the message to the receiver, or keep it for itself, that is loose it.

For the duplicating and loosing line (see figure 10), all push; i the second cell are wired to an invisible action, so
they be lost falling outside range. Connections with the receiver appear only through mr; messages from the second
cell, thus asserting both duplication and keeping of order. Note the mr; mesages from the first cell are implicitly
restricted since, although they share names with ports involved each in an equipotential on the second cell, these
equipotentials themselves bear no names J, (as otherwise they would on the strings).

»

.’

”»

2

LineCell

Figure 9: The loosing line.

Figure 11: The duplicating line.

The duplicating line is the same as the previous case, except now push; messages are turned towards the receiver
in order to exit the line, so that no loss remains (see figure 11).

LineCell

‘Figure 12: The shuffling and duplicating line.

For the shuffling and duplicating line (see figure 12), all output ports (in a sense informally understandable)
are wired to the external mr; messages tuned to the receiver.

Figure 13: The worst line.

The worst line is the same as the previous one, but for the push,; messages, which slip off sight (see figure 13).

7 The global net.

It is straightforwardly pictured as its Autograph representation (see figure 14).

The main problem, as far as translation is concerned, is to correctly set parenthesis, linking the emittor either
with the forward or the backward line. Here certainly the intuition fails. We tried both approaches and the
contrasted results -with all sorts of lines— appear in the sequel. They show a drastic advantage of the combination
emittor/backward line upon the other solution: in this case both halves get reduced by observational equivalence,
while in the other case they do not! ‘

For each type of lines we first give the figures (time of construction and size in states/transitions) for the lines
themselves, putting together the two cells as prescribed. Then we unravel the numbers for the alternative nets.

10

Figure 14: The global net.

Figure 15: The specification.

11

All final resulis comes down onto the same automaton, in fact. This automaton, considered as a goal for
specification, can be best obtained by wiring the emittor straight into the receiver. It is a four slots buffer, as cells
from the emittor may preempt their messages in advance. We used Autograph to output it graphically in figure
15 (using a feedback from Auto with a menu function called explore). The positioning of states is man-made
with progressive exploration of next neighbours as the system progressively encounters them. This may seem
disappointingly crude, but we certainly did not want to get pointlessly involved into automatic displays of graphs.
Here again, treatment of examples like Stenning protocol will expectingly provide hints towards realistic, insightful
partial machine assistance.

Figure 16 shows all the size and computation time of the automata obtained by AUTO on a computer Gould
PN9080. In each column we indicate the size of the system before and after reduction and the global time of both
construction and reduction. We can see that it is better to put together the emmitter with the backward line than
with the forward line because each “half” of the net is reduced in the first case giving a much smaller global system.,

EM+BackL REC+ForwL | global EM+ForwL REC+BackL global

Perfect 43 774 162 | 1032 162 540 774 774 1032 1032 5364
Line 84 || 2676 666 | 3564 762 2184 5268 5268 7884 7884 24972

41 sec 79 sec 30 sec 56 sec 69 sec 934 sec

Loosing 43 774 180 | 1032 174 414 774 726 1032 978 1392
Line | 142 |} 4836 | 1314 | 6108 | 1350 2316 || 10416 9642 | 15588 | 14622 9378

58 sec 90 sec 18 sec 89 sec 204 sec 247 sec

Loosing 37 666 180 888 174 414 666 636 888 858 1014
Duplicating | 144 || 4674 | 1314 | 6084 | 1350 2316 8958 8442 | 13404 | 12822 7002
Line 52 sec 71 sec 31 sec 75 sec 182 sec 136 sec
Duplicating 43 774 162 | 1032 162 540 774 774 1032 1032 5436
Line | 126 || 3306 666 | 4572 762 2184 6024 6024 8892 8892 32022

: 53 sec 69 sec 42 sec 46 sec 82 sec 1149 sec
Shuffling 43 774 342 | 1032 282 552 774 774 1032 1032 8442
Duplicating | 168 || 3540 | 1356 | 4800 | 1326 2268 6780 6780 9900 9900 48000
Line 64 sec 99 sec 43 sec 87 sec 126 sec aborted

Worst 43 || 774 324 | 1032 294 414 882 726 1176 972 3366

Line | 234 || 5682 | 2316 | 7320 | 2154 2382 || 13260 | 10974 | 19620 | 16344 30246

73 sec 110 sec 21 sec 74 sec 129 sec aborted

Figure 16: All the results obtained by AUTO.

8 Conclusions

We conducted an experiment with Auto and Autograph on the well-known example of the Stenning protocol, and
proved that its functioning remained unaltered while changing communication media amongst several. The results
were established only for fixed values of the parameters since the techniques rely on finite automata constructions.
Although one may feel it is a strong limitation, one should alredy suspect the usefulness —certainly underestimated
in the previous example~ for analysing systems which need not be correct at all ! One may then reduce them, get
partial views on them (by tracing some signals) and graphically explore their states space, until figuring what goes
wrong.

One may also compare a realisation with its implementation, as we showed all along. Now the tool should be
developed towards a better diagnostic of non-equivalence in case of failure. Here is certainly a motive for animation
in Autograph. Separating temporal logic formulae could certainly also be considered.

Other future directions include the extension of the tools to other algebrae, like Lotos for instance. A possibility
of user-defined algebra is even foreseen, using Ecrins for semantic definition of operators by conditional rewrite
rules. Extensions in the realm of shorthand notations, like linked structures of processes parametered on concrete

12

/]

indexes ~arrays, rings, so on ...-, would also be beneficial. But at they stand, we feel Auto and Autograph to be
of great help in formulating and analysing any problems of finite state nature concerned with process algebra.

References

[Bou85] G. Boudol.
Notes on algebraic calculi of processes.
In K. Apt Editor, editor, Logics and Models for Concurrent Systems, Springer-Verlag, 1985.

[Ste76] N. V. Stenning.
A data transfert protocol.
Computer Networks, 1:99-110, 1976.

[Ver87] D. Vergamini.
Vérification de réseaux d’automates finis par équfvalences observationnelles: le systdme AUTO.
These de doctorat, Université de Nice, 1987.

13

A The Auto session.

AUTO
Version 1.2 (Janvier 88)

@ load “EmCellMetro*;
€ parse EmCell =

meijeO> let rec

meije0> {8t_0 = Token?:st_1 + Window?:8t_2 + Ack?:st_0 +
meije0> Free?:st_0

meije0> and

meijeO> st_1 = Window?:8t_3 + Ack?:st_1

meije0O> and

meije0> 8t _2 = Token?:st_3

meije0> and

meijeO> 8t_3 = In?. NextToken:st_4

meijeO> and

meije0O> 8t_4 = Ack?.PrevFree.NextWdow:st_0 + Send:st_4 +
meije0> Free?.PrevFree.NextWdow:st_0}

meijeO> in 8t_0;

EmCell : Process of meijeO

time = 0.66s8
Q@ file ./EmCellMetro.ec loaded.

time = 0.08s
Q@ load "Starteri®;
Q@ parse Starteri =

meijeO> let rec

meije0O> {st_0 = a!:st_1 + bl:st_3 + al.b!:st_2
meijeO> and

meije0> st_1 = bl:st_2

meije0> and

meijeO> 8t_2 = d?.c!:8t.2

meije0> and

meijeO> 8t_3 = a!:st_2)

meijeO> in 8t_0;

Starterl : Process of meijeO

time = 0.46s
Q@ file ./Starteri.ec loaded.

time = 0.06s
Q@ load "Starter2®;
@ parse Starter2 =

meije0O> let rec

meijeO> {8t_0 = al:st_1
meijeO> and

meije0> 8t_1 = d?.c!:st_1)

meije0> in st_0;
Starter2 : Process of meije0

time = 0.28s8
€@ file ./Starter2.ec loaded.

time = 0.08s

@ load "EmitMetro®;

Q@ parse Emitter =

meijeO> % local signals sig_1 sig 2 sig. 3 sig._4 sig. b
meije0> % 8ig_6 s8ig .7 sig_8 sig_0 sig_ 10 sig_11 in

14

&

meije0> ((Starter2 [Window /a,me2/d])

meijeO> //

MELJ@O> Kokokkok ok ok ok ok ok ok ok ook ok ok o Kok Kk bk kR ok ok k Kk kR kR Rk
meije0> (((EmCell [sig_1 /NextToken, NextToken /Token, em2
meijeO> /Send, In2 /In, ¢ /Ack])

meije0O> //

meije0> (EmCell [sig.5 /NextToken, aig_i /Token, sig.4 /

meije0> NextWdow, sig_3 /Window, Free /PrevFree, sig_2 /Free,
meije0> em3 /Send, In3 /In, me3 /Ack]))\Free\sig_i

meijeO> //

meije0> (EmCell [sig_8 /NextToken, sig_b /Token, sig._7 /
meije0> NextWdow, NextWdow /Window, sig_2 /PrevFree, sig_6 /
meije0> Free, emd4 /Send, Ind /In, med /Ack]))\sig_ 2\sig 6\NextWdow
ML OO %ok kdkok kb kok ok ok ok koAb ok ok Kok Aok Kk kb R kb Rk Kk k&
meijeO> //

meljel> Ywdkkkkdkkxkkkkkiiokkkdkibkkkhdkdkdkbkbkkdokihkiokdokkhkkkkkkkkkk

meije0> ((EmCell [sig_3 /NextWdow, & /Window, sig 9 /
meije0> PrevFree, PrevFree /Free, emi /Send, Ini /In, c¢ /Ack]
meije0> //(Starteri [Token /b, me1/d]))

meije0> //

meije0> (((EmCell [sig_11 /NextToken, sig_8 /Token, a /

meije0> NextWdow, sig._4 /Window, sig_6 /PrevFree, sig_10 /Free

meije0> , emb /Send, Inb /In, meb /Ack])

meije0> /1

meije0> (EmCell [Token /NextToken, sig_11 /Token, Window

meije0> /NextWdow, sig 7 /Window, sig._10 /PrevFree, sig 9 /

meije0> Free, em6 /Send, In6 /In, me6 /Ackl))\sig_11\sig_10))\Token\sig_9\a\c
meijao) x**********************************#****t*t****************

meije0>)\sig_8 \sig._7 \sig_6 \sig_4 \sig_3 \NextToken \PrevFree \Window \c;
Emitter : Process of meije0

time = 2.64s8
Q@ file ./EmitMetro.ec loaded.

time = 0.10s

@ set Emit = exclusion (Emitter,
(] {{In1, emil, mei ,

(-] In2, em2, me2 ,

[} In3, em3, me3 ,

(] In4, em4, med ,

Q InS, emb, meb ,

(] In6, em6, me6 }});

Emit : Automaton

time = 46.54s

ge= 1

]

@ set EMIT=obs Emit;
EMIT : Automaton

time = 0.508
€@ display it short;
size = 18 states, 120 transitions, 19 actionms.

time = 0.18s
Q@ load "RecCell";
€ parse RecCell =

meije0> let rec _
meije0> {st_4 = Send.NextToken!.NextWdow!:st_0 + In?:st_4 + NextOk!:st_4 +

15

meije0> PrevOk?.NextAck!:st_4

meijeO> and

meljeO> st_3 = In?:8t_4 + PrevOk?.PrevAck!:st_3 + PrevAck!:st_3
meije0> and

meijeO> 8t_2 = Token?:s8t_4 + In?:8t_.2 + DOk?.Ack!:st_2 +

meije0> PrevOk!:st_2

melije0> and

meijeO> st_1 = In?:8t_2 + Token?:8t_3 + Ok?.PrevAck!:st_1
meije0> and

meije0> 8t_0 = Window?:st_1 + In?:8%t_0}

meije0> in 8t_0;
RecCell : Process of meijeO

time = 0.86s
@ file ./RecCell.ec loaded.

time = 0.108
@ load “Starteri™;
@ parse Starterli =

meije0> let rec

meije0> {st_0 = a':st_1 + bl:gt_3 + a!.b!:8t_2
meije0> and

meije0> st_1 = b!:st_2

meije0> and

meijeO> 8t_2 = d?.c!:8t_2

meije0> and

meije0> st_3 = a!:st_2}

meije0O> in 8t_O;
Starterl : Process of meijeO

time = 0.468
@ file ./Starteri.ec loaded.

time = 0.06s
€@ load "Starter2"”;
@ parse Starter2 =

meijeO> let rec

meije0> {st_0 = al:st_1
meijeO> and

meije0> st_1 = d?.c!:8t_1)}
meije0> in 8t_0;

Starter2 : Process of meije0

time = 0.28s
@ tile ./Starter2.ec loaded.

time = 0.06s
@ load "RecMetro®;
€ parse Receiver =

meije0> (
meijeo) %****#*******************‘*************************##i*******
meije0> (((C(RecCell [sig 7 /NextWdow, sig_8 /NextOk, sig 9 /

meije0> NextToken, b /Window, NextOk /Ok, NextToken /Token,
meije0> outi /Send, rm6 /PrevAck, rmi /Ack, rm2 /NextAck])

meije0> //(starterl [In /c, mri /d, NextToken /al))\In
meije0> //
meije0> ((RecCell [c¢ /In, sig_4 /NextWdow, sig_10 /NextOk

meije0> , sig_ 11 /NextToken, NextWdow /Window, sig_8 /Ok, sig 9
meije0> /Token, out2 /Send, rmi /PrevAck, rm2 /Ack, rm3 /
meije0> NextAckl)// (Starter2 [mr2 /d, NextWdow /al))\c)\sig_8\sig._9)

16

N

meije0>
meijeO>
meijeO>
meije0O>

meije0O>
meije0>
meijeO>
meije0>
meije0>
meije0O>
meijeO>
meije0>
meijeO>
meijeO>
meijeO>
meije0>
meije0>
meijeQ>
meijeO>
meije0>
meije0>

meije0> ;

Receive

time =
Q@ file

time =
Q@ set R
Q

8 0 6 6 6

Recep :

//
(RecCell [mr3 /In, sig_1 /NextWdow, sig_5 /NextOk
, 8ig_6 /NextToken, sig.7 /Window, sig_10 /O0k, sig_11 /
Token, out3 /Send, rm2 /PrevAck, rm3 /Ack, rmd /NextAck]))\sig._.7\sig_11\sig_10

x**
l/
%**
(C(((RecCell [mrd4 /In, Window /NextWdow, sig_2 /
NextDk, sig_3 /NextToken, sig_4 /Window, sig_ 5 /Ok,
sig_6 /Token, out4 /Send, rm3 /PrevAck, rmd4 /Ack, rmb /
NextAck])
//
(RecCell [mr6 /In, b /NextWdow, Ok /NextOk, Token
/NextToken, sig_1 /Window, sig.2 /0k, sig_3 /Token,
outs /Send, rm4 /PrevAck, rm5 /Ack, rm8 /NextAck]))\sig_3\sig_2)
//
(RecCell [mr6 /In, out8 /Send, rmb /PreviAck, rm6 /Ack
, rml /NextAck]))\Ok\Token\Window
%***********************************#***************************
J\sig_6\sig_B\sig_4 \sig.l \b \PrevOk \NextWdow \NextOk \NextToken

r : Process of meije0

2.72s8
./RecMetro.ec loaded.

0.06s8
ecep = exclusion (Receiver,
{{cut1, rmi, mri ,

out2, rm2, mr2 ,

out3, rm3, mr3 ,

out4, rm4, mrd ,

outb, rmb, mrb ,

out6, rm6, mr6 }});
Automaton

time = 39.12s

ge= 1
@

@ set RECEP=obs Recep;

RECEP :

Automaton

time = 0.56s
@ display it short;
size = 24 states, 180 transitions, 19 actiomns.

time = 0.20s

@ load
@ parse
meijeO>
meije0>
meije0>
meije0>
meije0>
meije0>
specif

"specdemo”;
specif =

(EMIT[mri/emi,mr2/em2, mr3/em3,

mr4/emd,mr5/emb, mré/ens)
//
RECEP[mel/rmi,me2/rm2,me3/rm3,
med4/rm4,me5/rmb, me6/ rmé]

Y\mel\me2\me3\me4\meb\me6\mri\mr2\mr3\mr4\mr5\mr6;

: Process of meijeO

17

time = 0.66s8

Q
]
@ set specif = obs exclusion(specif,{{Int, In2,In3,In4,In6,In6,
. Q outl, out2,out3, out4, outs,outs}});

-specif : Automaton

time = 5.208
Q@ display it short;
size = 30 states, 48 transitions, 13 actions.

time = 0.228
Q
¢ file ./specdemo.ec loaded.

time = 0.06s

Imprimé en France
ar
I’ Institut National de Recherche en Informatique et en Automatique

Y

