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ABSTRACT

This paper deals with relations between Logic Programming and Attribute Grammars.
We use techniques designed for Attribute Grammars to eliminate run-time unification in
a subclass of logic programs, namely TYPOL specifications. TYPOL is a formalism for
expressing semantic specifications inside the CENTAUR Programming Environment. In
the current implementation of TYPOL, specifications are compiled into PROLOG code.
This code does not take into account the distinctive features of TYPOL.

We transform a static TYPOL definition into an equivalent Attribute Grammar, replacing
unification by attribute evaluation. Thus, we propose an optimized implementation of
TYPOL based on run-time efficient languages like LISP, C, or ADA. From this experiment,

we expect to find sufficient conditions to remove unification from execution of PROLOG
programs.

RESUME

Ce papier traite des rapports entre la Programmation Logique et les Grammaires At-
tribuées. Nous utilisons des techniques congues pour les Grammaires Attribuées pour
éliminer 'unification lors de 1’exécution d’une sous-classe de programmes logiques, les
spécifications TYPOL. TYPOL est un formalisme de spécifications sémantiques au sein
du générateur d’environnements de programmation CENTAUR. L’'implémentation actuelle
du langage TYPOL produit du code PROLOG 2 partir de spécifications TYPOL mais ce
code ne refléte pas les caractéristiques spécifiques du formalisme.

Nous transformons une spécification statique TYPOL en une Grammaire Attribuée é-
quivalente, remplacant ainsi le mécanisme d’unification par une évaluation d’attributs
sémantiques. Nous proposons une implémentation optimisée du formalisme TYPOL, dans
des langages efficaces comme LISP, C, ou ADA. Notre travail nous autorise & espérer
des résultats dans le domaine de PROLOG: trouver des conditions suffisantes permettant
d’éliminer I’unification lors de ’exécution de programmes PROLOG.

1This work is supported by CNRS-GRECO in Programming

N D PAPIER RECUPERE ET RECYCLE



1 Introduction

This paper discusses the relationship between TYPOL [11,12], a specialized logic pro-
gramming language, and Attribute Grammars (AGs) [25], having in mind to find classes of
TYPOL programs based on the general classification of AGs. Thus, we deduce for TYPOL
programs a specific, optimized, and unification-free resolution strategy.

TYPOL is a computer formalism for expressing Natural Semantics [21]. Such a semantic
definition is identified with a logic made of axioms and inference rules: reasoning with
the language is proving theorems within that logic. TYPOL is developed as a semantic
specification formalism for an interactive language-based editor, CENTAUR [5], at INRIA.

On the one hand, TYPOL programs, under certain conditions, can be viewed as a gener-
alization of Primitive Recursive Schemes introduced by Courcelle and Franchi-Zannettacci
[8]. On the other hand, TYPOL programs are merely logic programs manipulating typed
terms such as syntactic patterns. Following both approaches, a TYPOL domain can be
viewed as a many-sorted algebra (see definitions in section 3.1).

We use results expressed in two complementary related works (8,9] to:

* propose characterizations of some subclasses of TYPOL programs in terms of formal
properties of Primitive Recursive Schemes [16];

¢ give a refinement and an extension of the construction proposed in [9] that transforms
logic programs into AGs;

e give an execution scheme in the spirit of abstract interpretation which induces a
specific resolution strategy based on tree-walk AG evaluators instead of.the general
unification.

Deransart and Maluszynski (9] have already suggested a transfer of expertise between two a
priori independent formalisms, Logic Programming and Attribute Grammars. We extend
and apply this idea: TYPOL provides user-friendliness and expressive power; AG tech-
niques provide efficiency.

We wish to address three problems that occur during execution of TYPOL specifications.

1. Gaining the benefits of memory optimization from results in AGs should eliminate
the space explosion experienced in practice (some variables can be implemented as
global variables, or stacks as described in [23,20]).

2. Some AG evaluators provide incremental computation (e.g. the Cornell Program Syn-
thesizer [31]): changing a subtree in the parse tree leads to a minimal re-computation
of the attribute values. The massive use of unification is an obstacle to any incre-
mental facility.

3. Currently, semantics of TYPOL and standard PROLOG are strongly related (depth-
first and left-to-right execution strategy). Our aim is to still express unification at

the TYPOL level while using pre-compiled unification-less strategies during execution
(see [4,22,8)).



This paper is related to other recent investigations: AGs and Logic Programming [17],
AGs as a mean of expressing algorithms traversing data structures [18] and replacement of
run-time unification in Prolog programs by term matching [26,14]. An adaptation of TY-
POL, named ULI-TYPOL, has been described in [32] to eliminate problems encountered with
PROLOG and provide an efficient implementation via automated AG evaluators. However,
unification is not provided in UI-TYPOL and UL-TYPOL defines a severely restricted sub-
class of TYPOL programs.

Section 2 outlines the TYPOL formalism, gives necessary notions and results concerning
AGs, and points out the major differences and similarities between these two paradigms.
Section 3 gives some characterizations of different subclasses of TYPOL programs and our
construction mapping TYPOL specifications to AGs.

2 TYPOL and Attribute Grammars

2.1 Inference rules in TYPOL

TYPOL is a computer formalism for expressing Natural Semantics [21] for Programming
Languages. By Natural Semantics, we mean a short, readable, and elegant mathematical
style based on a structural operational semantics approach [28]. This approach insists on a
natural deduction style in the sense of [29] and provides a proof-theoretic tool, with possible
non-deterministic computations.

TYPOL is well-suited to specify type-checkers, interpreters, and translators. Natural
semantic specifications are expressed in a relational and declarative style, and are straight-
forwardly executable. A user-friendly environment is now available for TYPOL program-
mers: a pretty-printer produces inputs for TEX (TYPOL examples shown here are produced
using this pretty-printer); a compiler, including a type-checker, produces PROLOG code
(executable under MU-Prolog [27]); a convivial debugger allows control of execution.

So, as a rule-based system executable with an inference engine, TYPOL may satisfy the
requirements of both language designers (readability, expressive power of the specifications)
and end-users (efficiency of the generated code).

For clarity, we give in this section an uncomplete presentation of the TYPOL formalism
(see section 3.1. for formal definitions and [11,21,12] for a detailed description).

In TYPOL, a semantic specification is an unordered collection of inference rules, driven
by the abstract syntaz of the language(s) under description. Abstract syntax is a O-many-
sorted algebra, where O, a set of operators, is a signature on P, a set of phyla.

Syntactically, TYPOL inference rules are similar to PROLOG clauses. Intuitively, if
all predicates of the clause body (named premises) hold, then the clause head (named
conclusion) holds, and the inference rule applies.

A rule with no premises is called an aziom.

Premises are an unordered collection of atomic formulae: sequents and conditions. Se-
quents express the fact that some hypotheses are needed to prove a particular proposition;
conditions express a restriction on the applicability of the rule. Both map to PROLOG
predicates.




To run a TYPOL program means prove an equation using inference rules and axioms
belonging to this program. Such an equation is a sequent.
The major specific features of TYPOL, compared with PROLOG, are:

1. Sequents have two parts: an antecedent (or inherited positions) and a consequent
(denoting synthesized positions) separated by the turnstile symbol (F);

2. The first argument of a consequent, the subject, is distinguished from the others.
By extension, the subject of a rule is the subject of its conclusion. Subjects are
abstract syntax terms (valid tree patterns w.r.t. their abstract syntax). Tree patterns
may contain variables, denoting subtrees; this makes it possible to simultaneously
describe the structure of the abstract syntax tree and refer to (select) its subtrees;

3. Sequents may have several forms (types) depending on the syntactic nature of their
subjects. In other words, sequents are typed;

4. Structural rules are distinguished from rules concerned with auxiliary computations
(e.g. the management of scope); these computations may be axiomatized with auxil-
iary rules, grouped into sets, referenced by a name (named sequents);

More formally, given @ an abstract syntax, given § a finite set of sequent symbols with
assigned arities and types denoting their sub ject (a term of ), inherited positions, and
synthesized positions, a TYPOL rule is a pair consisting of a conclusion and a finite set of
premises.

During the execution process, pattern-matching on the subjects leads the construction
of a proof tree for a TYPOL equation. Clearly, every TYPOL program can be straightfor-
wardly simulated by a PROLOG program (and TYPOL equations turned into PROLOG
goals). However, executing such programs by the inference engine of PROLOG, we loose
a large part of TYPOL semantics, due to both the particular role of the subjects and the
relationship between antecedent and consequent parts in a TYPOL sequent (positions de-
pendencies are computed on the fly, at run-time, through the PROLOG unification).

We focus on TYPOL equations having the following property (well-oriented in the sense of
[32]):
A sequent is an acceptable goal-equation if:
* its subject is a ground term,
® its inherited positions are ground terms,
e its synthesized positions are variables. .

This additional hypothesis makes it possible to show that TYPOL equations are proved by
structural induction [6] on a many-sorted algebra using full unification.

TYPOL specifications are said to be data-driven [9): provided an acceptable goal, all
sequents used during the proof have their inherited positions instanciated to ground terms.

Let’s now illustrate our presentation with an example taken from semantic specifica-
tions expressed within the CENTAUR system [5].



Example 1: The ASPLE type-checker within the TYPOL formalism
ASPLE [13] is an Algol-like toy language with declarations of variables and simple state-
ments such as the assignment, the if-statement, and the while-statement.

pg F DECLS Qp pFsSIMS:¢

- begin DECLS STMSend : ¢ 1

pkdecls[]:p (2)

P F»DECL: /1 p1 F DECLS : p, (3)
p b DECL; DECLS : p2

The rule (1) expresses when an ASPLE program is well-typed: building an environment
during the declarative part and verifying that the statement part is well-typed, one can
conclude that the whole program is well-typed. The rule (2) is an axiom: an empty list
of declarations doesn’t modify the environment. At last, the rule (3) explains that the
elaboration of declarations proceeds left-to-right.

2.2 Useful notations on Attribute Grammars

Since Knuth’s initial paper [25], Attribute Grammars have been widely used in trans-
lation, compiler-compiler techniques and definitions for programming languages [22,33).
An Attribute Grammar is an abstract syntax O (a P-signature) augmented with seman-
tic definitions dealing with two disjoint finite sets of symbols: INH and SYN.
For each phylum X € P, we associate two disjoint finite sets of symbols: inkerited (INH(X))
and synthesized attributes (SYN(X)).
For each operator p € O,p : Xo — X1 --- X, semantic definitions describe local dependen-
cies between the values of attributes:
form 1 INH(X;) depend on INH(Xg) and SYN(X;)fori=1,...,n
form 2 SYN(Xp) depend on INH(Xj) and SYN(X;),fori=1,...,n

Let’s apply these notions to the example 1.

Example 2.1: The ASPLE type-checker within the AG formalism

Pin-DECLS := envg;

program — DECLS STMS; Pin-STMS := poyt .DECLS;
c.program := ¢.STMS;

DECLS — ; Pout-DECLS := p;,, .DECLS;
pin-DECL := p;, .DECLS;

DECLS — DECL DECLS; pin-DECLS; := pout.DECL;

Pout. DECLS := pous. DECLS;;

Evaluate an AG with respect to a parse tree can be viewed as decorating the nodes in the
parse tree with the values of attributes. The major area of active research in AGs is the
design of automatically-generated efficient attribute evaluators (see [10] for an annotated
bibliography). For this purpose, different subclasses (based on partial orders between at-
tributes) have been introduced, and associated membership tests have been developed (e.g.
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OAG (22}, l-ordered [4], FNC [8]). With these (mathematically well-founded) subclasses,
efficient (optimized, incremental) evaluators can be automatically generated by computing
at generation time an evaluation order on attributes.

Let’s focus now on the FNC subclass (Strongly Non-Circular), introduced by (24],[8] and
implemented by [19]. As shown in [8], any Attribute Grammar in the FNC subclass can
be transformed into a recursive tree-transducer [15] (namely a set of Primitive Recursive
Schemes, p.1.s.) by a transitive closure algorithm on local dependencies to compute potential
global dependencies. Intuitively, each synthesized attribute s is computed by a function
taking as arguments any subtree t and inherited attributes that s may depend on.

More formally, we consider a function 7 : P x SYN — II(INH)

(named argument selector), defined as follows:

7(X,a)=0if a ¢ SYN(X)

7(X,a) CINH(X) ifa € SYN(X) '
The transitive closure algorithm computes the minimal closed argument selector v, for all
operators and synthesized attributes.
The characterization of the FNC subclass is given by the next theorem from [(16]: An
AG is Strongly Non Circular iff 7o is non circular.

Primitive Recursive Schemes stand for a functional subclass of logic programs. They are
evaluated with a noetherian rewriting system based on a tree pattern-matching instead of
the general unification mechanism [16].

Notice this transformation partly eliminates the low-level notation style of AGs definitions.

Let’s apply this transformation on our example.
Example 2.2: The ASPLE type-checker within the p.r.s. formalism

¢(program(DECLS, STMS)) = ¢(STMS, poui(DECLS, envg))
Pout(deds[ ]1 pin) = Pin
Pout(decls|DECL, DECLS], p;,,) = Pout(DECLS, pout(DECL, Pin))

2.3 Relationship between TYPOL and AGs

We show here in an informal way that TYPOL and AGs (namely Primitive Recursive

Schemes) are closely related.
A TYPOL rule maps to a set of Primitive Recursive Schemes (as shown later). Tree patterns
are described in the same way, with variables denoting subtrees. Synthesized attributes
are expressed in the TYPOL consequent part, whereas inherited attributes compose the
antecedent part.

Primitive Recursive Schemes are specified in a functional style, instead of the rela-
tional style of the TYPOL formalism. This difference is obviously minimal: a relational
implementation of Primitive Recursive Schemes in PROLOG is described in (2,17].

However, there is a major difference between TYPOL and Primitive Recursive Schemes.
The TYPOL formalism is based on the tupling of multiple Primitive Recursive Schemes to
build a single TYPOL rule (see [17,18] for related works).

6
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More formally, given a minimal closed argument selector 70(Xo,a) (for pe O,p: Xo —
X;-+-X, and a € SYN(Xo)), we define the so-called global argument selector T’ as follows:

TX)= U  (Xo,0)
a€e SYN(Xo)

This formulation suggests several remarks:

1. TYPOL specifications are more compact than the corresponding AG and more user-
friendly than the corresponding Primitive Recursive Schemes;

9. Primitive Recursive Schemes are based on the notion of minimal argument selector.
When tupling synthesized attributes, TYPOL also tuples inherited attributes and the
corresponding argument selectors are no longer minimal; moreover they can introduce
a false circularity inducing a (non necessary) least fix point process resolution;

3. the evaluation process is different: in the current implementation of TYPOL, PRO-
LOG provides one single left-to-right pass over the parse tree instead of the standard
multi-pass attribute evaluation: unification propagates upward the remaining com-
putations, after actually evaluating non-instantiated variables.

3 Eliminating run-time unification

We focus our attention on a subclass of TYPOL programs that specify static semantics.
By extension, we call such TYPOL programs static programs. We need first to introduce
a formalism that describes TYPOL programs and we give characterizations of several sub-
classes of TYPOL programs. Next we present the major result of this paper: a two-step
construction that transforms, under certain conditions, a static TYPOL program into an
equivalent AG. Then, according to properties of this underlying AG, we can directly use
AG techniques to implement TYPOL specifications without any unification mechanism.
Within the scope of this paper, we focus on the practical aspects of our transformation
and on implementation issues for the TYPOL language. For instance, an ASPLE type-
checker implemented in LISP with a global variable denoting the environment p can be
automatically generated from TYPOL specifications.

3.1 Definitions

We borrow from [9] the notion of safe direction assignment (related to the concept of
input-output directionality in [30]) to give a formal definition of TYPOL programs.

Definition 1: Given § a finite set of sequent symbols with assigned arities and types, we
define a direction assignment: S — {1,1}, as a mapping of the arguments of each sequent
symbol into inherited and synthesized positions.

Definition 2: Given a TYPOL rule and a direction assignment for, we call input positions

(resp. output positions) the inherited positions of its conclusion and the synthesized posi-
tions of its premisses (resp. the synthesized positions of its conclusion and the inherited

7



positions of its premisses).

Definition 3: A direction assignment is said to be safe if, within each TYPOL rule, each
variable in an output position occurs in some input position.

Definition 4:

A TYPOL program is a 7-uple T =< 5,0, P, F,R,D, E > where:
S is a finite set of sequent symbols with assigned arities and types;
O is an imported abstract syntax;
P is a finite set of predicate symbols with assigned arities and types;
F is a finite set of functor symbols with assigned arities and types;
R is a set of TYPOL rules constructed with S, O, P and F;
D is a safe direction assignment,
E is an acceptable goal.

We can give an algebraic view of a TYPOL program as a many-sorted algebra: M(S U
O U PU F). Notice a PROLOG program defines a one-sorted algebra M(P U F). This
major distinction between these two working domains leads our construction in next section.

Definitions 5:

A TYPOL program is decreasing if, for each of its inference rules r, subjects of the premises
of r are proper subterms of the subject of r.

A TYPOL program is linear if, for each of its inference rules r, synthesized positions of

premises of » have no common variables.

A TYPOL program is deterministic if, at each step of a proof, only one inference rule can
apply.

A TYPOL program is pseudo-deterministic if all its inference rules have different subjects
(this does not exclude non determinism within auxiliary sets).

Definition 6: We call global argument selector and we note I'(Xj) the set of all inherited
positions of the conclusion of the rule whose subject is p and p: Xg — X;---X,,.

Definition 7: A TYPOL program is non circular if its argument selector is non circular.
Otherwise, this program is pseudo-circular and requires an unification process during exe-
cution.

As an immediate consequence of the previous definitions and formal properties studied
in [16], we formulate useful propositions and remarks.

Proposition 1: All decreasing non circular TYPOL programs are equivalent to Primitive
Recursive Schemes, assuming a splitting of the global argument selector into minimal ones.

Proposition 2: For all decreasing non circular TYPOL programs, the associated resolu-
tion relation is noetherian. Moreover, if the TYPOL program is deterministic, this relation



is also confluent (as in example 1).

Remark 1: For a decreasing pseudo-circular TYPOL program, there may exist a splitting
of its global argument selector into non circular minimal ones. Such a TYPOL program is
thus equivalent to a set of Primitive Recursive Schemes (as in example 3).

Remark 2: If such a splitting does not exist, the TYPOL program expfesses a real least
fix point and is equivalent to schemes with fix point introduced by [6].

We give now the definition of Conditional AGs (CAGs). This extension of AGs is named
in [9] Functional AGs as opposed to Relational AGs, two extensions introduced to supply
the relational power of logic programming to AGs. Intuitively, CAGs are standard AGs
augmented with semantic rules that make it possible to express some conditions concerning
values of the input attributes.

Definition 8: A CAG is a 4-uple < O, ATTR, R,T > where:

O is an abstract syntax;

ATTR is the union of a family of finite sets of symbols ATTR(X).
For each phylum X € P, ATTR(X) is the union of two disjoint sets INH(X) and
SYN(X);
For each operator pe O,p: Xo — X;--- X,
INPUT(p) = INH(Xo) USYN(X;),i=1,...,n;
OUTPUT(p) = SYN(Xo) UINH(X;),i=1,...,n.

R is the union of a family of semantic definitions and semantic rules.
For each operator p: Xg — X; .- X,

e semantic definitions express the computation of OUTPUT(p) according to both
forms presented in section 2.2;
e semantic rules express conditions between values of INPUT(p);

7 is an interpretation: the resulting domains reached during the computation of the at-
tributes.

Notice that in a PROLOG implementation of CAGs, this extension is straightforwardly
supported by the unification step; otherwise, CAGs are not really suited for computational
applications.

We also need the auxiliary notion of selectors defined in [9]. A selectoris a partial operation
on terms: for a given term ¢ of the form f(,,---,1,) the selector s;f(¢) is defined to be ;.

3.2 Transformation Algorithm

We describe here our construction: in a first step, we design a CAG from a TYPOL
program and in a second step, and with some additional hypotheses, we implement a CAG
with an equivalent standard AG without conditions.



We focus on the practical aspects of our transformation such as characterization of
several subclasses of TYPOL programs and their optimized implementation using AGs,
rather than theoretical aspects such as semantical equivalence between TYPOL programs
and AGs. .

Since TYPOL programs define a particular subclass of logic programs, our construction
relating TYPOL programs and AGs differs from the construction given in [9] for two aspects:

1. the syntactic nature of the subjects of TYPOL programs allows us to keep such pat-
terns to design the underlying abstract syntax of the equivalent CAG. Thus, our ap-
proach avoids tedious steps in the contruction proposed by Deransart and Maluszyn-
ski;

2. as Deransart and Maluszynski use a one-to-one correspondence between clauses and
productions rules of the context-free grammar, their construction does not exclude
non determinism. We must consider only pseudo-deterministic TYPOL programs
to make sure that any attribute is defined by only one semantic definition. Non
determinism in auxiliary sets is simply mapped into non determinism in computa-
tion functions. However, we can transform any TYPOL program into an equivalent
pseudo-deterministic one: if two inference rules have the same subject, we merge
them together, transfering non determinism of inference rules to a (possible) non
determinism of the functors used in the inference rules.

Now, we define the construction:

Construction 1: from TYPOL programs to CAGs

Let T =< 5,0,P,F,R,D, E > be a decreasing pseudo-deterministic TYPOL program, we
construct a CAG G =< O,ATTR, R,T > defined as follows:

1. O is the abstract syntax imported in 7.

2. The set ATTR is the union of inherited and synthesized positions of all phyla in
P; the attributes are named from the positions of the arguments in the sequents:
ATTR(X) = {X.i/i=1,---,n}.

3. For each rule r, semantic definitions are constructed as follows:

e For each output position @ of r, let ¢, be the term at this position. For a
variable z in t, let b be an input position including z. Denote by S;b the set of
all composed selectors s such that s(t,) = z. The semantic definition for a is of
the form:

a=a(t,)

where « is a substitution assigning to each variable z in ¢, the term s(b) for
some s € S;b.

e For each pair of different occurrences of a variable z at input positions b, and
b, of the rule r, we construct the condition:

s1(b1) = s2(b2)

where s; and s; are the selectors corresponding to the considered occurrences of
z in the terms at the positions b; and b,.

10
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4. T is the underlying interpretation of predicates of P and functors of F, augmented
with the interpretation of used selectors.

Proposition 3: Let T be a decreasing pseudo-deterministic TYPOL program and let G
be the CAG obtained by Construction 1. The proof trees of T are isomorphic to attributed
syntax trees of G.

The proofis based on the two required properties: if the TYPOL program is non-decreasing,
semantic definitions may be neither in the form 1 nor in the form 2; moreover, if it is not
pseudo-deterministic, several definitions of the same attribute may be generated.

Remark 3: If the TYPOL program is also linear, the resulting CAG does not include
any condition: it is a standard AG and AG techniques are directly usable to implement
TYPOL programs. On the other hand, if the TYPOL program is moreover non circular,
the resulting AG belongs to a rather trivial subclass of AGs.

Now, we can formulate the major result of our work:

Proposition 4: Let T be a decreasing linear pseudo-deterministic TYPOL program and
G be the equivalent standard AG. If G belongs to the FNC subclass, there exists a split-
ting of the global argument selector into minimal non-circular argument selectors. Thus,
TYPOL specifications can be executed without any unification (as described in example 3).

Example 3: From regular expressions to deterministic automata
This example describes how to build a finite automaton from a regular marked expression
(see [1,3] for the detailed algorithm).

The syntax of regular expressions over a set of input symbols is, as usual:
aziom = E end
E:=0|e|I|E+E|E-E|E* where endis an endmarker symbol;
Definitions .
L(E) denotes the language generated by a regular expression E.
first(E) = {a | av € L(E)}
followg(a) = {b| vabv € L(E)}
6(E) stands for true if the empty string belongs to L(E);
otherwise, §( E') stands for false.

The TYPOL inference rules compute inductively the value § and two sets simultaneously,
the set p of pairs of the form <a,followg(a)> and the set h, the first set of E. These three
components define the automaton that recognizes the given regular expression.

11



end - E:<ty, 1y, 13>

1
F axiom(E) :<ty,t2,13> (1)
sk1: <1+s,1, false> (2)
Sk e: <g,0, true> (3)

sk E, :<p1,h1,61> S|"E2:<pz,h2,62>

4
SFEL 4+ E;:<p1-pa,hy-hy by V82> ()
SkFE;: <p2,h2,52> h2U62 ‘SFE;: <p1,h1,61> (5)
SFE “E:<p 'p2,h1 U é; +ha, 61 A 83>
h-skE:<p,h,6>
(6)

Sk E*: <p,h,true>

Construction 1 applied to the previous TYPOL rules results in a standard FNC AG. This
AG is expressed within the p.r.s. formalism, assuming a renaming of attributes, as follows:

p(aziom(E)) = p(E, end) p(+(E1, Ez), s) = p(E1, $) - p(E?, 5)

h(aziom(E)) = h(E) h(+(Ey, E2)) = h(E}) - h(E-)

§(aziom(E)) = §(E) . 8(4+(Er, ER)) = 8(E1) V(ER)

p(sym(),s) = <sym, s> P(-(E1, E3), 8) = p(E1, h(E2) US(E3) - 8) - p(Ea, s)
h(sym()) = sym h(-(E1, Eq)) = h(E1)U(E,) - h(E>)

é(sym()) = false . 8(-(E1, E2)) = 6(E1) A 8(E)

p(e(),8) = o p(+(E),s) = p(E, h(E) - 5)

h(e()) = o h(x(E)) = h(E)

8(e()) = false 5(x(E)) = true

This standard AG is now evaluated as follows: during a first bottom-up pass, § and h are
both computed and loaded in some particular nodes of the parse tree; then, in a left-to-
right pass, p is computed. Thus, the least fix point expressed in the rule (6) is no longer
solved with the underlying unification step but implemented with attributes evaluation. Of
course, this is exactly the evaluation mechanism described in [1].

Now let us study the case where the CAG resulting from our construction 1 contains
conditions. We agree with Deransart and Maluszynski: from a practical point of view,
CAGs are not directly usable in computational applications. Qur construction 2 is then a
practical contribution on CAG evaluation. We propose a simulation of the evaluation of
any CAG having certain sufficient conditions in terms of standard AGs. We don’t focus
here on the formal transformation between CAGs and standard AGs.

Intuitively, our transformation algorithm consists in orienting conditions to induce an
evaluation order between two a priori independent attributes. This evaluation order must
be compatible with the evaluation order provided by the underlying standard AG. We break
the condition rule with two intermediate attributes: the first one is an output attribute that
propagates its value to the second one, an input attribute. Therefore, the computation of

the second attribute must take into account this new information concerning its linked at-
tribute.
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Construction 2: from CAGs to standard AGs

Given a non-circular CAG G =< O,ATTR, R,T >, we construct a standard AG G’ =<
O,ATTR’, R',I' > defined as follows: '

1. ATTR’ is ATTR augmented with the attributes introduced during the construction
of R’ as follows:

2. For each operator p : Xo — X;--+X, for which a condition is expressed between b;
and b; (input attributes of X; and X;). Since the underlying standard AG is non-
circular, it exists a partial order between b; and b;. Let b; be computed before b,.
We introduce two new attributes z and y for X; and we replace the condition by the
following semantic definitions:

z = 81(b1)
y = fecond(s;(b1) = s2(by), ba, L)
where 1 is the overloaded undefined value on attribute domains.

3. the interpretation Z' is 7 augmented with interpretation of the fcond function.
This construction suggests several remarks:

e our notion of intermediate attributes generalize the notion of conditional attributes of
the GAG system [23];

o following terminology of Maluszynski and Komorowski [26], we can apply straightfor-
wardly our construction in the TYPOL domain to transform any truly non circular .
TYPOL program into an equivalent linear one, assuming that positions inducing the
non-linearity are pre-saturated (input positions are evaluated to ground terms); in
that case TYPOL specifications can be executed with a single mechanism of pattern-
matching, instead of a general unification. Such a transformation is illustrated in
example 4;

e if the condition concerning pre-saturated positions in not verified, our transformation
leads to a standard AG augmented with an explicit unification function. Disconnect-
ing the unification mechanism from other attributes evaluation, we propose a mixed
strategy : optimized evaluation techniques for attributes not involved in unifiability
conditions and a specific unification handler for other attributes. Such a strategy is
needed to execute the Mini-ML type checker expressed in the TYPOL formalism [7].

Example 4: unification-free overloading resolution in ASPLE

This example comes from the ASPLE type-checker [13] augmented with subprogram dec-
larations (possibly overloaded) specifications and overloading resolution specifications for
subprogram calls. To specify this extension, we introduce TYPOL rules that update the
environment p during elaboration of declarations. We also add some non-linear rules to
verify the statement part (namely subprogram calls) is well-typed.
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type.of
p F mD:t prEXP:t

1
pF ID:= EXP (1)
type-of
p F DD:it-m pF ACTUALS :m (2)
p F ID(ACTUALS) : ¢

o the first rule deals with assignment statement and the second one with the function-
call statement;

o type.of is a named sequent that specifies how to find the type of an identifier in the
environment;

e t denotes the result type of a function and m the types of the arguments of any
subprogram,;

o the underlying CAG given by Construction 1 on these rules can be sketched as follows:

O assign o fcall (o]
O EXpP O oIp ©0 O ACT ©

¢ if identifiers are overloaded, failure cases are early detected, because of the unification
mechanism. ~

Construction 2 transforms the two previous TYPOL rules into the next two linear rules:

type_of
p F mD:t ptFEXP:t (1)
pH ID:= EXP
type-of
pt F DD:t'-m p,mF ACTUALS : m/ (2)
p,tF ID(ACTUALS) 1t/

This transformation suggests several remarks:
¢ these TYPOL rules are unification-free: they can be executed with term matching;

o type_of, with an additional argument ¢, is a named sequent that finds a possible type
U of an identifier in the environment, and verifies equality of the two instantiated
variables ¢ and t';
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* the underlying standard AG given by Construction 2 on these rules can be sketched
as follows:

O assign . o fecall [o)
OOEXPO 0]D°° O O ACT ©

e the efficiency provided by the unification mechanism in the starting example is pre-
served by the type constraint propagation: failure proof subtrees are not explored
during overloading resolution.

4 Conclusion
As a temporary conclusion to this work, we expect from further developments:

¢ an improvement of the performances of the CENTAUR system and a better pro-
gramming environment based on the analysis and the classification of the TYPOL
programs;

* an extension of AGs (and Primitive Recursive Schemes) to the Dynamic Semantics
in the spirit of TYPOL programs;

o some results for the compilation and the translation of PROLOG programs, consid-
ering a PROLOG program (annotated with a direction assignment) as a TYPOL
program concerned with an abstract syntax to be defined;
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