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FINITE VOLUME GALERKIN METHODS
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Abstract :

Finite volume TVD schemes derived for the Euler equations are ezxtended
to the Navier-Stokes system. The numerical diffusion introduced in the ap-
prozimation of the convective part is chosen through a total variation analysis
taking in account the physical diffusion. Two dimensional numerical simu-
lations are presented, using a pseudo time dependant implicit algorithm to

solve efficiently the steady equations.

METHODES DE VOLUMES FINIS GALERKIN
POUR LA DYNAMIQUE DES GAZ VISQUEUX

Résumé :

Un schéma volume finis pour la résolution des équations d’Euler est
étendu au cas des équations de Navier-Stokes. La diffusion numérique intro-
dutte dans approzimation du terme de convection est choisie a partir d’une
-analyse de variation totale, qui prend en comptie la diffusion physique. Des
stmulations numériques bidimensionnelles, obtenues grice ¢ un algorithme

implicite efficace pour le cas stationnaire, sont présentées.

* INRIA-Menusin Domaine de Voluceau Rocquencourt BP 105 78153
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I. INTRODUCTION

Finite volume schemes based on approximate Riemann solver for con-
servation laws, also called TVD (Total Variation Diminishing) schemes, have
received considerable attention in the last twenty years, (see, among others,
Harten [10], Van Leer [31], Yee [33]), and can be said to have reached a

satisfactory degree of achievement .

These schemes were successfully extended to multidimensional problems,
by reducing the equations to one dimension, through the finite volume for-
mulation, and applying the one dimensional techniques. This can be done
on unstructured meshes (Baba and Tabata [4], Dervieux [7], Stoufllet-Fezoui
[26)).

On the other hand, several research teams have studied such algorithms,
on structured meshes, for solving the Navier-Stokes equations. Some 3D
codes based on upwind schemes have been developped by Mac Cormack [4],
Hinel [25] and Chakravarthy [6], among others.

A particular class of very efficient schemes is that obtained by the com-
bination of a monotone flux formula, and of a second order extension through
monotony preserving interpolation, christened Monotonic Upwind Schemes
for Conservation Laws (MUSCL) by Van Leer ([32]). These schemes have
been derived in order to introduce a ”numerical viscosity” , which will provide
-automatic inforcement of the entropy condition, and to provide second order

accuracy, at least in regions of regularity.

To solve advection dominated nonlinear parabolic, or incompletely
parabolic equations as the compressible Navier-Stokes system, it is neces-
sary to use an approximation which will preserve the entropy condition, but
which will also provide sufficient accuracy in viscosity dependant zones, as
boundary layers or wakes. In other words, one must make sure that no more

L R and . N U L. -
diffusion than needed is added.

A model equation for compressible viscous gas dynamics is given by
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ou  0f(w)  0%u _
T 0w oe2 " (1.1)
u=1u(z,t) ER

where f is a regular function, not necessarily convex.

In our framework, a numerical scheme to solve (1.1) is made of:
. an approximation of the convection term 3 f/0z, combining
- a numerical flux function h = h(u,v) with h(u,u) = f(u)
- a MUSCL-like interpolation formula
. an approximation of the diffusion term

. an approximation of the time derivative.

In part II, we will outline the general framework of upwind TVD V
schemes for multidimensional gas-dynamics equations on triangular (tetré.-
hedral) meshes.

The numerical formulation relying on the approximate Riemann solver
proposed by Osher and Chakravarthy [16] and a multidimensional MUSCL
like interpolation will be presented. Van Leer, Thomas, Roe and Newsome
in [30] have analyzed in one dimension the influence of the choice of the
upwind flux formula for the convection part in terms of accuracy, and showed
that some flux-vector splitting gave a bad representation of the boundafy
layer.This will not be our topic; we will only give our arguments in favour of
Osher’s scheme.

The interpolation, through which second order, or even third order ac-
curacy for one dimensional problems, is reached, is also an important feature
of the scheme. In part III, for the one dimensional scalar viscous conserva-
tion law (1), we will try to derive conditions on the interpolation which will
' insure some kind of monotony property, and still allow sufficient accuracy.

In Part IV, we will extend the one dimensional scalar conclusions of
Part III to multidimensional systems, taking advantage of the finite volume
formulation.

In Part V, we will present different possible time discretizations, includ-

ing linearly implicit methods, and accelerators for the steady case. This is
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an extension of the algorithm proposed by Stoufflet [26] for the inviscid case.

Finally, numerical results will be presented and discussed in part VI.

II. GENERAL FRAMEWORK OF THE FINITE VOLUME
GALERKIN (FVG) APPROXIMATION

II.1. Mathematical modelling

Let  an open set of RN (N=2 or 3) and let I' = 9Q be its boundary
presumed to be smooth. The non-dimensionalized Navier-Stokes equations
governing unsteady flows of compressible viscous Newtonian fluids in their

conservative form are :

g’t’ +V. (pu) =0 (2.1)
6(‘;’:‘) +V.(pu®u) + VP = iv (D(x)) (2.2)
%f +V((E+P)) = —(v (uD(w)+=VT)  (23)
where

- p is the density and T the temperature,
- u is the velocity of the flow,

- P = (y — 1)pT is the pressure and E = 1 p ||u|]* + the total

..1 ’
energy
- Re is the Reynolds number and Pr the Prandtl number,

- D(u) is the non-divergent part of the stress tensor:

D(u) = Vu + Vu' — %V.u

The left hand side of the equations (1)-(3) constitutes the so-called Euler
system of equations governing flows of compressible inviscid fluids.

In the sequel, we consider domains of computation Q around an obstacle
B. Boundary conditions have to be added on the external boundary ', and

on the wall boundary I'g. We denote by n the outward unit normal to I'.
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We assume the flow to be uniform at the infinity, we prescribe :

P =P, U=Uxp, P =Py on ' (2.4)

On the wall VI‘B we assume the no-slip condition and either the adia-

baticity or a given wall temperature :

u=0 g—z =0 or T =Tven on I'p (2.5)

Fig 1

Let W = (p, pu, E) be the vector of conserved quantities ; we can rewrite
the system (2.1)-(2.3) as:

ow 1
=5+ VFW) = -V.N(W) (26)

where F and N denote respectively the convective flux term and viscous term.

I1.2. General formulation of a variational method

We intend to give a general formulation of a variational method to ap-

proximate the system of equations (2.6).

5



We assume that  is a polygonal bounded domain of R3. Let T be a
standard tetrahedrization of Q and h the maximal length of the edges of the
tetraedra of T}.

Let V, be a discrete approximation space of continuous, polynomial in
each element of T scalar functions. .

Let W, be a discrete approximation space of piecewise continuous scalar
functions such that there exists a bijective operator S from Vj, to Wj,. (Note
that we can have Vj, = W, where S would be the identity operator onto V)

A general variational approximation involving the two spaces is derived:

{Find Wi € (Vi)™ such that V ¢5 € V,
(2.7)

D gnde + [ VFS@n)de = o [ VN r)onds
Q ke Ja

If T'y denote the discontinuity surface of a function g € W, and »
its outward unit normal vector, after integration by part, the formulation

becomes:

[ Find Wy, € (V3)" such that V ¢ € Vj,
oW,

E% bnda + / F(Wh)V(S(64))dz
7}

+ / F(Wh)v[S(én)]do + / FWi)aS@)de 259
rsm)

L[ N(Wh)V¢hdx+ [ N(Wa)ngndo

\ Re I Re Ji

where [g] represents the jump of the function g through the surface I'y.

Another formulation is obtained by a finite volume approximation of the

viscous term:



( Find W), € (Vi)™ such that V ¢p € Vy,
oWy

A _a_t_¢hdz+/nF(Wh)V(S(¢h))d”

| + / . FOm) @l + /F F(Wh).nS(¢4)do -

1 : 1
=% /ﬂ N(Wi).VS(phin)dz + -~ /F . N(Wh).v[S(¢n))do

1
+ 5 /r N(Wa).nS(¢n)do

IL.3. Three examples of application

We examine in this section three approximations lying in the space V}, of
continuous, linear in each element, scalar functions. For Euler equations, we
will show hereafter that these approximations are equivalent if we suppose
that fluxes vary linearly on each element also. Let {N;}; define the canonical

finite element basis of functions of V.

i) Consider the complete Galerkin formulation (case where V;, = W, S
= identity operator of V}) that we can find in [2], [13]:

{ Find Wy € (V1)" such that V ¢ € V3,
(2.9)

aﬂ‘ﬁhdw + / F(Wy)Vérdx + / F(Wp).népde = R.H.S.
o Ot o r
ii) the second formulation is that proposed by Jameson and al. [14]. The

space W, is defined by : Wj, is generated by the functions S(N;), where S is
defined below.

Let 7(S;) denotes the set of tetrahedra having S; as a vertex. The

construction of the operator S is made as follows:

Vi, S(N;) = ! on U T and S(N;)=0 elsewhere.
3 Ter(S1)



The resulting formulation is as follows :

Find Wy € (V1)" such that V ¢ € Vi,

Wb Nz + 3 / F(Wh).vido = R.H.S. (2.10)
T

a Ot Ter(Si)

iii)the third formulation can be found in [27). The space Wy, is defined

as follows:
Wi, = {vn € L®(2);vn = cste on each cell C;,VS; € m}

where the cell C; is the union of the subtriangles having S; as a vertex and
resulting from the subdivision of each triangle of T}, by means of the medians
(Fig. 2).

dCi

Fig 2

( Find W, € (V3,)" such that ¥V ¢, € V3,

/%Ngdz+/ F(W;.).V,-da+/F(Wh).ndcr=R.H.S (2.11)
a Ot 8C; r
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To show the equivalence in some sense of these formulations, let us
consider the case of the Euler equations (1/Re = 0), without boundary con-
ditions. |

For simpliﬁcé.tipn, we consider the two dimensional case with numerical
integration at the ﬁﬁdpoints of segments. For each element T € T}, we
denote By indices 1,j,k, the quantities evaluated at the vertices S;, Sj, Sk of
T; 8T;; the face containing vertices S; and Sj.

Formulation (2.9) becomes:

?—V—V-Ndz- > [F(M) +F(M)

o ot T;er(S:) 2 2 (2.12)
+F (W .;. Wk)] vy &ead) area(T)

Remarking that we have the identity
VNi(T)+ VN;(T)+ VN (T) =0 (2.13)

we obtain the equality :

ow
0 —ét_N dx =
v area@ [ p (Wit W) ona)+ F Wit Wi\ gnyT)
3 2 2
Ter
_F (m—’;—%) VN;(T)—F (V—VL“g—v—V—"—) .VN,,(T)}
(2.14)
Formulation (2.10) becomes :
B Nidz— Y F (V—Vﬂ;lvi) / ndo = 0 (2.15)
a Ter(S:) 6Tk
We have the geometrical equality in each element :
/ ndo = =2 area(T) VN;(T) (2.16)
8T
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and replacing (16) in equality (15), we obtain finally :

[ Briga- 3 LoD o (B oy
Ter (S )

+F (V—VL;—V-V—") VNA(T)
(2.17)

Finally, formulation (2.11) becomes:

%’:’—N.dz - E [/ F(W).ndcr+/ F(W).nda] =0
TET(S.) OC.jnT 8C.knT
(2.18)
where OC;; denotes the two segments of dC; joining at the midpoint of S;

and S;, as seen on Fig. 3:

3Sij

Si / Sj

/

Fig 3

Once again, it is easy to verify that :

JC o= ﬂ%(ﬂ[vzv,-(:r) — VN;(T)] (2.19)
giving the following formulation
ow area(T) { (W, )
ZNidz— Y ——1F [VN:(T) — VN;(T)]
a Ot Ter(S:) 3 2 ’
P W_i W. ~ N
[ +F (F557) IVN(T) - VN(T)]
(2.20)
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Since we suppose that the flux function F varies linearly on each element, we

have

5 : Vi, iz (2.21)

On the other hand, from (16), the following equality is valid :

> area(T)VN.-(,T):——;- > /(OT)_nda=o

Ter(S:) Ter(S:)

7 <Wi1 + Wi,) _ FW,) + F(Wi,)

since the integral of the outward normal n on a closed surface is equal to

Z€ro.

All formulations (2.14), (2.17), (2.20) can be rewritten as :

: 3_W _ area(T) W,'+Wk
| ¢ Nida Y. (S

).VN;(T)=0 (2.22)
Ter(S:)

This equality is easy to check for formulations (2.14) and (2.17). For the last

one, let us consider in details the evaluation of the terms.

If we rewrite (2.20), considering identity (2.21), we obtain :
%V-N;d:c— E areg(T)
f Ter(S:)
{%V‘l(svm(r)) +F (V—VJ—;—V—VE) YN(T))
— (F(W;).VN;(T) + F(W,,).VN,,(T))} =0

which gives:

ow area(T) VV,-+W;,> _
A o Nidz > 3 F( 5 VNi(T)

Ter(S;)

+1 5 @@ ;) wN(T) + FW).TN(T)) = 0
2 Ter(S;) 3
(2.23)

If we look at the last term, we note that for a given vertex S;, F(W;) appears
each time S; is vertex of an element of 7(S;), so appears twice. Let T; and

T;» denotes these adjacent elements.
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k!

Fig 4

Let S and Si+ denote the remaining vertices of these elements as in
Figure 2.

The last term can be rewritten as :

K=1 3 MQ(F(W,-).VN,-(T) + F(W).VN:(T))
2 Ter(8;) 3
3 (=B onm) + 5D oma )

JEK(¥) 3 3

TeK(5) 3

]
(RN

+ 7oy (-T2 oz - T Bonyay) |

But, we know that

area(T; area(T;
-2t TN, 1) - L8y n,(x

=l nda—% ndo =0

4 J(8Ti ) 4 J(8T )
It gives :

5 3 rony-2eldon ) - 2w )
JE€EK(3)
-y _greald) [F(Wj);F(W*)] YNA(T)

TeK (i) 3

K

i
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Reporting expression K (in (2.23), we obtain equality (2.22).

This shows the equivalence of the three formulations in the inviscid linear

case.

Similarly, we can show the eqﬁivalence of the two -approxima.tions in the
viscous case, when the diffusion operator N is linear. Nevertheless, significant

differences appear in the non linear case, or when upwinding is introduced.
I1.4. Upwind formulation for the Navier-Stokes equations

We return to the third formulation (2.11) that we will use in the sequel
with the alternate approximation of the R.H.S. given in (2.8b).

The numerical integration of the viscous terms of the RHS is carried out
in a centered way.

’I‘he_ scheme will be completely defined if we precise now which approx-

imation is used to compute the left hand-side integral in (2.11).

Let us introduce the following notations :
Fi;(U) =F(U). / vido
855

P;(U) =Fi(U). / Viedor + FY(U) / viydo
885 89;;

=V.F(U). vido
8Sij

Problem (2.11) has the following formulation:

( Find W3 € (Vi)™

OWh .dz + 2/ F(W,,)u.da+/ F(Wy).ndo
< Q ot jex(i) 85Nl

1
+/ FW.nda:—/ NW.V-+—-/NWh.nda'
| Jos;Are (Wh) Re Joc; (W) Re Jr (W)
(2.24)
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Upwinding is introduced in the computation of the convection term
through the numerical flux function @ of a first-order accurate upwind scheme
by :

F(Wh).V.‘dG’ = H'(Jl) = ¢F.'j(vVi! W’J)
8S;;

where W; = Wi(S;) and W; = Wi(S;).

The numerical flux function used in this study is the Osher approximate

Riemann solver [15):

1 \ 4
WUV = 5B+ Fs V) = 5 [ IPsomlaw 229)

where the integral is carried out along a path piecewise parallel to the eigen-
vectors of Pi;j(U).

The numerical integration with the upwind scheme, as described pre-
viously, leads to approximations which are only first-order accurate. We
present a second-order accurate MUSCL-like extension without changing the

approximation space:

(Find W), € (Vi)™

‘9W"d + 3 HP+ / F(Wh).ndo
< jenti) 8C;nT, (23)

+/ F(Wy).nde = R.H.S.
8CiNTeo

H.-(,?) = &p, (Wi;, Wyi).

The arguments W;; and W;; are values at the interface 85;; interpolated
using upwinded gradients as described below.
We define the downstream and upstream triangles T;; and Tj; for each

segment 5;S; as shown in Fig. 5.
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Fig 5

Let the centered gradient be (Fig 3):
VWi; = VW|ry, = VWirs,

The values at interface needed to compute the flux H,~(J-2) are now given by :

1- 1
Wi; = Wi + Li; ( 2 KVWIT,-,- + -Z KVVV.',') .S;S;

1-« 1+« (2.4)
Wji = Wj = Lji | ——VWlr; + ——VWij | .55

where the parameter & can be chosen to select the degree of upwinding in the
interpolation and L;; and L;; are the limiting matrices, which are introduced
to reduce numerical oscillations of the solution and to provide some kind of
monotonicity property.

A good procedure in term of accuracy is to use limiters on characteristic
variables. For this, we compute these variables by the transformation taken
at midpoint of the segment. If we denote by II;; the transformation madtrix

corresponding to P;; (W Sit5; , the values at interface are now given by :
j 2

1- 1
nVWIT,-,. + '—-i-—'c'VWij) SiS;

4

1—-« 14k
YWlr, + =

Wi; = Wi+ H;ch.'jH,-—jl (
(2.5)

Wii=W; - H;jLCJ','H,-_jl ( VI’VJ‘,‘) S5iS;

where Lc;; and Lcj; are diagonal matrices.
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I1.3 Boundary conditions
‘Wall boundary :

The no-slip boundary condition and the given wall temperature are im-
posed strongly. This is an advantage of such a vertex centered approximation.

No pressure extrapolation is carried out.
Inflow and outflow boundaries :

At these boundaries we suppose the flow to be advection dominated, and
so we have to select a precise set of compatible exterior datas, depending on
the flow regime and the direction of velocity. For this purpose, a plus-minus
flux splitting is applied between exterior datas and interior values. More
precisely, the inviscid part of the boundary integral is evaluated with the use

of the following flux-splitting
/ F(Wh).ndo = P (Wi)Wi + Prmy(Wi)Weo
8C;Nleo
where

Pio(W) = F'(W). ndo
8Cinl'oo

III. ONE DIMENSIONAL SCALAR ANALYSIS.

We first consider a one-dimensional scalar conservation-diffusion law :

2
%‘*‘—f() 6%:0

—~
(71)
—

Nt

u = u(z, 1), €>0

f is a real function, not necessarily convex.

We define a regular mesh and apply the finite volume scheme defined in
section II to (3.1).
We denote by h the mesh size, by «; = jh , j € Z, u; = u(z;).
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The i th'equation is

( Ou;
Ftl+
1] @ u+ 2@ - 90 = o) + Q4 02 =)

Ujp1 — Li,ili((l — ) (uj42 — wjp1) + (L + &) (Uj41 — 4)) )

—®( uj_1+ %——1'((1 — &) (uj—1 — vj—2) + (1 + €)(y; — ¥j-1)) ,

= (L= R) (501 = ) + L+ )y = w5-1)) ) |

€
{ —":E(Uj.q.l - 2’&,‘ + 'uj_l) =0

(3.2)

For simplicity, we have denoted by r; (resp. l;) the right limiter L; ;41
(resp. the left limiter L;;_;). .
The numerical flux function @ verifies ®(u, u) = f(u); it will be supposed
to be monotone, i.e. ®(v,w) is a non increasing function of w and a non

decreasing function of v. For example, & can be the Enquist-Osher flux
formula ([8],[9]):

so,0) = LOEIO) 2 [ a1 (339

but our study is more general.

The scheme (3.2) is defined by two parameters: the right and left slope
limiters, and the parameter k defining the extrapolation. Note that the
slope limiters r; and ; are different. However, if one wants to have the same
treatment of forward and backward discontinuities, r; and I; must be linked,
see equation (3.25). ‘

The purpose of slope limiting is to provide some kind of monotony or
TVD property [10] ; it has received considerable attention in the recent years
(28], [16], [32], [29]. However, all these studies are designed for the inviscid
(¢ = 0) equation. Our point is to derive a condition for total variation

diminishing taking in account the physical diffusion term edu/dz? .

17



Following Osher [15), Osher and Chakravarty [16], Harten [10], Sanders

[24], we will write our five point scheme as

fg—;i' - Cj+1,.A+u,- + DJ__%AUJ = 0 (34)

where
A"’u,- = Ui — U (3.5.a)
ATy = uj —uj—1 (3.5.0)

Cj+1 = Ciya(Uja2, U1, 45, uj-1)

D;_1 = Dj—l,-(uj+1,uj,uj—1, uj-2)

The following result, due to Osher, Chakavarthy and Sanders, will be

our starting point.

Theorem 1 :

C;.22 0
it { i+

d
then —TV((u)<0

where TV (u) is the total variation of u.

Proof :
1 1 +
TV(u) = 7; XJ: |u,-+1 - u,-l = -’;;ajA Uj
1if A+u,- >0
where aj =

-11if A+uj <0
4 rviw
d.t \ rd

1 d
= 7{ Z 7] 'Et'A"'uj

J

1
“h Zaj [CJ'+§A+“J'+1 = (Djt3 +Cjp3)ATu; + Dj+-}A+uj—-1]
1
= -,: Z [(“J'-l - ai)Cj-;.% + (aj+1 - aj)Dj“"a' A"'uj
j

18




d
—"" <
dtl V(u) <0

because

(@j-1—a;)A%y; <0 and  (aj41—aj)Aty; <0

Q)
Following Osher [15], we find from (3.2) that :
Ciyz = %[ ®( uj + %((1 - k)A”uj + (1 + k)Aty;),
l; -
Ujg1 = 'L';i((l —&)Atuj + (1+ £)ATu541) )
—2( u+ (1 - WAy + L+ R)A ), (3.6)

4’-((1 —K)Aty; + (1+£)A"y;) ) ] A'*'u

€
+

D;

-3 =

1 .
-’;[ ®( uj + 1Z—((l - K)Ay; + (14 &)Aty;),

- LL((I —k)AYu; + (1 + K)A™y;) )
-@( uj-1+ "L_((l — K)ATujo1 + (1+£)ATy;-1), (3.7

1
A"uj

- 74L((], - n)A+uj + (1 + K)A_uj) ) ]

iz

For a Lipschitz continuous flux ¢, we will define a local Peclet number
by:
a.-h

where g; is the Lipschitz norm of ¢ in a neighborhood I; of u; of chosen size,

19



i.e.

_ ) — @2,z

a; = Max {sup sup #(3,2) - $(2,2) ,
z€l; \ y,2€l; y—z
y#z
z,y)— ¢z, 2
sup | sup ¢(z,y) — ¢(z, 2) }
zel; | y,2€l; y—=
y#2

a; > 0 because of the monotony of the flux function .

Note that if the equation is linear, i.e.

f(u) = au
then
$(v,w) =atv+a"w
where al
+_axja
)
and
a; = |aj

and the definition of the Peclet Number is the usual one.

Going back to the general case, we denote by

6: = Atuj
I A"‘u,-

and we take
I = (uj — kA" uj,u; + kAt u;)

where k is a chosen positive parameter.

The limiters r and | are taken to be functions of §, as usual.

ri =1i(8) i =1(65)

We have the following result:

20
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Theorem 2. Let 8 € [0,1].

If When 6; >0 or § < it
14+«
4 inof (k,0(1 + 1/2v;)) é;
<r < 3.16
O_r,_ (1 - &)+ (1 + K)§; ( )
k=1
When 6,~5——1+n

4 inf ((k = 1), (1= O)(1 + 1/25-1)) 4 1y

0<n < x—1)— (L+ K)5;
and When §6; > 1 +T
4 inf (k,0(1 +1/2v541))
I < 3.18
0sl< (1-=x)é+(1+x) (3.18)
When 2% < ;< 0
o< < 4 inf((k—1),(1—8)(1+1/2y)) 6 (3.19)

(k- 1)6; — (1 + &)

then C; i+d and D; j+1 are positive numbers; the scheme defined in (3.1) is
T.V.D.

6 is a chosen parameter; with # < 1, one can avoid the necessity to put

the limiter to zero at extremas.

Proof :
We Will prove the result for D-_;a., the demonstration for Cj+% is absolutely
similar.

hDj -1

[ ¢ ( %— [(1—-Kk)A"u; + (1+K)AY Y] . 'Uj)

A‘ U;
( +-l:l[(1-—n)A uj—1+ (1 + K)A%uj] v,) ]
+ <
h
where v; = u; — %’- (1 = k)A%u; + (1 + £)A™u;)
Using (3.18) and (3.19), it is easy to see that v; € ;.
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Let us suppose that A~ u; = Atu;_; > 0, then from (3.16)

uj-1 + 114:}‘ [(1-&)A™ vy + (1 + &)AYuj_,]

(3.20)
S Uj—1 <+ 6 (1 + 2Vj—1) (u_,- -— u,-_l)
by (3.17)

: 1
u,-+% [(1 -K)Au; +(1+ n)A*uj] > uj—(1-6) (1 + 21/,'-1) (uj—uj-1)
. (3.21)

If uj_; + 54‘—1 [(1- £)A=uj_1 + (1 + K) A uj_,]
(*)

< u+ % [(1= K)A~uj + (14 K)A% ]

then using the monotony of ¢ and the positivity of ¢, we have D-_é > 0.

If not, we use the Lipschitz continuity of ¢ with respect to its first
variable. Using (3.16)

u;—1 + IJ4~—1 [(1 - K)A—Uj_l + (1 + IC)A+'UJ'_1] € Ij-l (322)
as uj + % (1= ®)A™u; + (1 + )A% u;]
| <uj_ + rl4;l [(1 - fc)A‘u_,-_l +(1+ oc)A"’uj_l]

we have also, using (3.17)
u; + % [(1 - )A~u; + (1 + &)A%y;] € I;y (3.23)
From (3.20) and (3.21), and the negation of (*)

0 <Sujms+ L1 [(1- A w51+ (L+K)AYy; ]

= (s + 2 [0~ a0 + (14 m)Ats]) <

2L’j_1

consequently
028 (u+ L [(1- W)A~w; + (L + m)A y] , o)

ro_it _ . - \
- (u,-_l + JZ— [(1-r)A"uj_y + (1 + K)AYuj1] v,-)

> _aﬂ_A—uJ.
- 2Vj_1
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and using (3.8),

Djy2 0

If A~u; < 0, the proof is absolutely similar , obtained by changing the

sign of all the preceding inequalities.
()

Another condition is usually imposed to the extrapolation: one wants
the forward and backward discontinuities to be treated in the same way; this

induces a symetry condition:
ri (1= K)AT + (L +6)A}) = L (1 +)A] + (1 - K)A})
i.e.

ri _ l+e+(1-k)b
L~ (1-k)+(1+k)s

(3.25)

which must be verified by the limiters for values of § corresponding to

discontinuities, i.e. 6 close to 0, or é very big.

Equations (3.16 - 3.19) plus condition (3.25) give an explicit criteria to
select limiters among the numerous ones proposed by different authors (see
[28] for a review), or to derive new ones, maybe more compressive in the

viscous case.
The most currently used limiters are
- for the fully upwind scheme (x=-1)
. the ”Superbe limiter” due to Roe [21].
 r(6) = Max{0, min(26;, 1), min(6;,2)} (3.26a)

1(8;) = Max{0, min(2, 6;), min(1, 26;)} (3.26)
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. which is a particular case of the ” ¢ limiters”

r(6;) = Max{0, min(¢é;, 1), min(;, ¢)} (3.27a)
1(8;) = Max{0, min(¢, ;), min(1, $6;)} (3.27b)
1<4<2

¢ = 1 is the min mod limiter.
. The Van Leer limiter [32]

(3,28aj

(%)= 1+ 16
1(&) = 1+ s (3.28b)
- for Fromm’s scheme (k=0)
. the Van Albada limiter [29]
26;
r(6;) = 1(6) = T+e (3.29)

If we suppose the unlimited scheme to be second order (resp. third

order), we must have to keep the second order except at critical points,

r(z) =1+ 0(lz - 1)) (3.30a)
(z) =1+ 0(Jz — 1)) (3.300)
resp. ,
r(z) =14 0(jz — 1]%) (3.31a)
I(z) =1+ 0(|z - 1) (3.31b)
It is easily seen that the preceding limiters all v verify the hypothesis of

theorem 2, whatever the value of v, so that they all are unnecessarily diffusive

in the viscous case.



Now that we have found the constraints that the slope limiters must
verify for the scheme to the T.V.D., we will investigate the influence of .

It is clear that the ” numerical diffusion” increases when the slope limiters
decreasé; but x also has an influence.

Our study will be based on truncature error, and comparison with exact

solution, so we will use a scalar steady convection diffusion equation:

Uy — €Uz =0 (3.32a)
u(0)=0 (3.32b)
u(l)=1 (3.32¢)

a>0,e>0

In the unlimited case, equation (3.2) is

1+ 1-2 1-
% [ 4 'c(um —u;)+ 1 n(u.- —uj_1)~ 1 n(u.’-x - u.--z)]
4 (3.33)
—p(i = 2w+ uia) =0

Assuming (u;); to be the interpolation of a regular function : u; = u(:),
(3.33) is equivalent to:

36=1,, € un

au; — euj + h? (a 12 % 1% ) +0(A%) =0 _(3'34)

taking the second derivative of (3.32a), we obtain :

auj’ = eu;” (3.35)

so that, from (3.34), we have third order if :

2

=5 (3.36)

K

It appears that although the approximation of u is only second order,
third order can be obtained in this linear scalar steady case because the errors

due to convection and diffusion eliminate each other when k = 2/3 .
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The exact solution of (3.32) is :

)= s @)

replacing u; by u(z;)= u(ih) in (3.33) we obtain that, to have nodally exact

results, we must have :

(2P0 )- (=)0 o

if we denote by v the Peclet number,

y=2 (3.39)

( 3.28) gives
2 (cothv — 1/v)
1 — exp(-2v)

kK=1-

(3.40)

where coth is the hyperbolic cotangent. We have

{n(u) — 2 {n(u) — -1

v — 0 v — o

We find again that when the mesh size tends to zero, the highest order

approximation is obtained with x = 2/3.

From this study, we conclude that in a boundary layer situation like that
defined by (3.32), the best result are obtained with « given by (3.40), or by
a cheaper approximation, at least for small values of the Peclet number. (If
v is bigger than say 2 or 3, there is no possibility to calculate the boundary
layer anyway).

Similar results were obtained by Hughes and Mallet [11] ; they studied
the same equation (3.32) and concluded that only a fraction of the inviscid
numerical diffusion had to be applied in the viscous case, depending on the

Peclet number, in a way very much alike to (3.40).

We now propose the following schemes for the nonlinear equation (3.1):
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.We use (3.2) where « is calculated from (3.40), at least for small values
of v (big values of v will yield & % -1, so we can limit the lower value of x to
0, or even to 1/3) ; in (3.40), we use v = f'(u)h/2¢ where u is the midpoint
of the considered interval (i.e. Uiy to calculate <I>,~+42.).

.We limit the extrapolation, using the value of k obtained in the preced-

ing step, and » calculated by (3.8), and one of the following formulas:

- ”extended superbee”:

. 486; if 6 < 1
R (O’mm <1’ (1-n)+(11+n)5,-)) J
™ [min (1 + &) + (1 — £)5:) ,45)]
1-x)+ (1 +k) if ;> 1
(3.41a)

1-x+(1+k)6j
1+ + (1= K)bj

where s = inf (lc, 1+ —L) (3.42)
2v; -

1;(65) = r;(5;) (3.41%)

The parameter k defines v; ; usually k = 1 to avoid a too complicated
evaluation of v;. This is the most compressive limiter that will match the
TVD conditions, it has the disadvantage that it is not equal to 1 in a neigh-

borhood or é; = 1, impeaching third order accuracy.

(Y ] . (8 ]
e 20

2 2

1 E—

[X] Le 20 [ “ EY] .e 10 20 19 [X) i

Fig.6a Fig.6b
extended superbee function of & extended superbee function of é
2
k=-1Lv=0.5 n=§,u=0.5
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It does verify the symmetry condition (3.25) .

- ”third order superbee”

4s6;

' i if §; <1
m“(o’m(1’(1-n)+(1+~)6,-)) =
ri(s;) =41 if 1<6 < 4-(1-x) (3.43.0)
™ == 14+«
48 . 45 — (1 - k)
> =
T+t ms 142771,
1 if 1>6> _1+s
1;(8;) = .(6')1—n+(1+n)6j 48— (1 - k)
I e+ (1-x)55 if not
(3.43.)
where s is given by (3.42)
Fig.7b

Fig.7a
3rd order extended
superbee function of é

k=-1vr=05

superbee function of §
2

= §,V=0.5

K

This limiter preserves third order, but doesn’t verify the symmetry con-

dition (3.23) for §; close to 1.
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Just as the superbee limiter, the ¢ limiters can be extended to in "ex-
tended ¢ limiter” and ”extended third order ¢ limiter”. ¢ = 2 gives back the
superbee. ¢ limiters with ¢ just under 2 are useful for systems, as we will

see; ¢ is then a kind of security factor.

-” k limiter” ,
It depends on the viscosity through the value of « only. It is an average
of Van Leer’s and Van Albada’s limiters, derived to be more compressive for

high values of x than for low ones.

if 6; <0
4 0 J —
| 46;
ri(8;) = ax (1—-r)+46 +(1+ n)&Jg )
46;
{ (1-r)(1+6)+ (1 +x)(1+63) _
if not
(3.44.0)
1-k)6; +1+x
lj(&j) = ( ) z r,-(65) (3.45b)

1—k+(1+K)6;

Fig.8a Fig.8b
klimiter function of § klimiter function of 6
2
k=-1vr=05 n=§,u=0.5
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This limiter is less compressive than the two preceeding one, but has

smoother variations.

IV. EXTENSION TO THE MULTIDIMENSIONAL NAVIER
STOKES SYSTEM

The usual way to reduce a two or three dimensional system to a scalar
conservation law is:

- projection of the equation on the direction normal to the boundary

of the cell, through the finite volume formulation. One obtains then a one
dimensional system.

- diagonalization of this system.

We will restrict ourselves to the two dimensional case for simplicity but

the generalization to 3D is straightforward.

The Navier-Stokes system, in matrix form, reads :

%—Vt" + V.(F(W)) = V(D(W).YW) =0 (4.1)
D(W). YW = —N(w)
(). Re \rv)

D(W) is an 8 x 8 (15 x 15 in 3D) matrix. The finite volume formulation,

as explained in section II, is based on:

d ~
5(/0‘ W)+ ):)(/63“ F(W)'V‘_/eas,..y"D(W)'VW) =0 (42

JEK(i I

in which we have dropped the boundary term, and where F is some approx-

imation of F, v; the outward unit vector to 8C;, vi = (Viz, Viy);

VW = {VV’ -’B\ (4.2)

\w,y)

v; DIW). VW = (vie D1 (W) + V,'yDQ(W)).VW (44)
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Viz D1 + viy D3 is a (4 x 8) matrix .

One way to apply one dimensional theory is to consider the one dimen-

sional system obtained by two local projections on the normal direction:

ow ow:- 0 ow
ot +An(” ) on - on (Dn(” ) on ) =0 (45)
_O(F(W).n)
where A, = W (4.6)

and  Dp(W) = v2Dyy (W) +vevy (D1a(W) + Doy (W)) + 2 Daa(W) (4.7)

D) = (DI(W)) _ (Dn(W) D12(W)) 48)
- Dy(W) D33 (W) Daa(W) .

Then, it is easy to see that there is an invertible matrix P, which diag-

onalizes the convection operator, and symmetrizes the diffusion operator.

P~ lA,P = diag (u.v,uv,urv+c,urv—c) (4.9)
L 0 —y/x=ii _ /a1 L
Pr 2 Pr 2 Pr
P-'D,P = — - X ’ X (4.10)
=— -1 -1 —1 .
TR | VT A 0 A+3 i+ E
-1 -1 -1
~-ViTE 0 i+ i+
P l=
=1 0 i i
2 : 2 2
=1 =1 v+Cvy v=Cvy
7 ¢ ~V 7 Ve 2 2
/;7%; (u2 + 02) /1_;_1 (Vyu - vyv) H+(v=uz+5,vﬁ H—(V:"‘2+Vu”)c
(4.11)
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H=
P
P=
—1 y2442 _ —1 _
VR Ee e 5y
7_L1 (Vov — vyu) ;?.T”y - ?3'1"’1‘ 0
_v,-.u-Cw,,u + :1521 (34’:1:2 ,1’) ":‘(151!“(0 v,‘—glélzvlc Jgﬁ]_.
”e“é‘”u” + 157_21 (u’izv’) —'VI+1(—:1"£C _V“-}-IEM[C %ai
(4.12)
The eigenvalues and eigenvectors of P~1D, P are:
(/=
Y
0
A1 =0 = 1 (4.130)
v2y
1
\7E
0
1 1
Ay = PE reg = 0 (4.13())
0
(°)
0
4
Az = rg=| L (4.13¢)
3pRe V2
1
\ 72/
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\
o
3=

A4 = Y rg = Y — 1 (4.13d)

ReP - =
piRePr 2
y-1

\ V27)

In the steady case, it is even possible to diagonalize |An]|™ D,, the

eigenvalues are :

1 1 a+bt\/la-b)2+¢2
2

pRelu|’  pRe
. 2Pr 1 1 1 y-1 1 1
th = b:— —— ,
T e=3 <Iu+cl+lu—cl)’ W[t 2 (lu+cl+lu—cl)

co2Pr( 1 1 )
R MTE

To choose the extrapolation parameter and slope limiter locally, it is pos-
sible to use the results of III applied to each of the characteristic component

Vi of the steady linearized equation:

'An,—lAnU,:v = 4n|™ DU zr = 0 (4.14)
aiViz -~ € Viz-@ = 0
— (4.15)
t=1,4

where q; is an eigenvalue of [4n]"14, (@i = £1) | and ¢; is the corresponding

eigenvalue of |A,|~1D,.

However, as the diffusion matrix D is not block-diagonal, i.e. as cross
derivatives appear in the diffusion term, this analysis breaks down when
these cross derivatives are of importance . It is also ous numerical experience
that this manner of extending one dimensional results to multidimensional

equations is not satisfactory because the diffusion is under estimated.
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This is why, following, among others, Roe [22], we use an alternate
projection, in which the physical viscosity is estimated as the ratio of the
diffusion flux to a reference flux: for each characteristic direction, for each

vertex S;, each j € «(2), we compute, for the four characteristic fields,
max (|(wss)(S), l(wa)(Sp)  for k=1,2
ap = § max ([(u.i)(S;) + C(S)l, [(w-s)(S) + C(S5)])  for k=3
max (|(u.24)(Si) — C(Si)l, I(w.s)(S;) = C(Sj)l)  for k=4

(4.16)
and Wit W, Wit W;
1 [ () & () )
€ = — (4.17)
Re Iy (W,-.;W,-) Wi-W;
* ——
1SiS;li
where [; is the corresponding left eigenvector.
We then calculate the Peclet number :
—_—
_ axllSiSil (4.18)

261,

and the corresponding & from (3.40), the corresponding limiters L}‘j (resp.
L¥;) from one of the formulas (3.41), (3.43) or (3.45), (resp. (3.42), (3.44) or
(3.46)) in which (see Fig 3):

I (w) VW;; .SiS;

&F = —r (4.19)
e (B5%5) Wi, 5:5;

i (22 YW, 55
6.7k = v s\ (420)

i k—————‘-) VW;; S S;

We then carry out an extrapolation similar to (2.28) :
J VV.J W; + H,JE',lJHU (VW.'J'.S.'SJ') + H,JE?JH,J (VW'TJ.‘..S.'SJ')

lW,._W IL; BRI (vw,. S,S,)—H,,E’H (VW|T,, SiS;
(4.21)
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with

= diag — , k=1, ...,4) (4.22a)

kl ICk

c,.

>~

i
“H

S

= diag

= diag (L" 1o o, ...,4) (4.22b)

) (4.22¢)
. 1+&
EJ?,- = diag (Lt,-,- . ko

Both the extrapolation parameter k and the slope limiters are defined

k=1, ...,4) (4.22d)

locally, and for each characteristic field ; the extra computational cost is rea-
sonable, since both the eigenvectors {; and the diffusion flux v.(D(W).VW)
are already calculated. Formula (3.40) can be replaced by a cheaper function,

to avoid the computation of exponentials.

V. RESOLUTION ALGORITHM

The spatial discretization procedures described in the previous sections
lead to semi-discretized formulations which has to be integrated until they
reach a steady state.

An explicit version can be derived by using a diagonal mass-lumped

maitrix: (S)
aera(S;
D = diag | ———*
8 [ At;
in the time derivative term integration. ,
The time step At; can be set equal to constant for first-order accurate
time integration, or taken equal to the value matching a local stability con-

dition for steady state computatlon

The resulting scheme is given by:

DWWt —wp), == 3 H.-‘,-”(W,:')— / F(W])ndo
JEKG) 85Nt 5.1)

Z / N(WR). V,d0'+ —_ N(Wy)ndo
JeKG) 85:;nT
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We can also use a multistage time stepping scheme ; the stability con-
dition would be less restrictive. An interesting study on the use of such time
integrators combined with upwind approximations can be found in [MHL] in

the inviscid case.

All these explicit schemes are easy to implement, but generally give slow
convergence to steady-state because the associated stability conditions lead

to the use of small time-steps.

In order to get rid of these too restrictive conditions, one attempts to
design implicit algorithms. In that direction, a linearized procedure for each
term is applied on equation (5.1), once we have replaced Wi by Wi+l

Firstly, the convection term is treated as follows:

HD (W)
is linearized as
HP(WP) + Ji;6Wp
with @
dH;:
Jij = ==
aw
and
WP = W,:"“ - wp (5.2)

The computation of such a J acobian matrix considering the complex-
ity of the term H'g_z) would be too complicated and too costly. So, three
simplifications in this evaluation are made :

- The matrix J;; is replaced by dH,(jl)/dW relying on the first order
accurate approximation.

- We do not linearize the Osher approximate Riemann solver but we use
the simpler Steger-Warming flux splitting. One can find in [20] a possible
Jjustification of this point.

36



- We only retain in the evaluation of the Jacobian matrix the "homoge-

neous” part of it.

It means that the approximate Jacobian is given by
Jij = PE(WP)SWP + P (Wi)swp (5.3)

The viscous internal term is linearized in a straightforward manner as

=S / N wde+ [ S W) wswiae| (5.4

The numerical integration is performed as described in the previous
sections. Details on the computations of the matrix dN/dW(WP).y; are
given in [23].

The convective (resp. viscous) boundary integral is linearized similarly
as the convection internal (resp. viscous) term.

For degrees of freedom belonging to the wall boundary, as Dirichlet
boundary conditions are imposed, the matrix is loaded in order that the
increment SWJ satisfies the linearized Dirichlet boundary conditions.

Once this linearization procedure is done, the implicit formulation is

given by:

M (WP) (Wp+t - wp) = HPWp) = / F(WD)ndo
. R 88;;n
JEK(i) 4
. . (5.5)
— n . — n
+ Te J-GEK(,-) /83.-,- NW).vido + Re Jos e F(Wi)ndo

where M(W}) is the sum of all the constructed Jacobian matrices.

This matrix is a sparse block 4 x 4 matrix (5 x 5 in 3D) without any

simple structure.
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In the inviscid case, nodewise collective relaxation iterative methods to
solve the system (5.5) have proved to be very efficient in this unstructured sit-
uation [26]. We use the same technique which can be Gauss-Seidel relaxation

or Jacobi for vectorization purposes if any.

Larger time steps then for explicit methods can be used in thjs implicit
approach. At the end, the effficiency of the method is verified, despite that it
is only a quasi-Newton procedure because of the drastic simplifications made -

in the evaluation of the Jacobian.

VI. NUMERICAL RESULTS

We first compared the results of the unlimited scheme (ri=1;=1) for
* different values of k. A transonic flow at a mach number of M., = 0.85 and
a constant Reynolds number of 500 was computed on an undermeshed grid
(3114 nodes), for & = -1 and &k = 2/3. On figure 9, the iso-Mach lines are
compared. The fully upwind scheme (k = —1, 9b) yields more numerical
viscosity as can be seen in the wake, while the third order scheme (r = 2/3,
9a) allows spurious oscillations behind the schock, although very weak, but
gives a better result in the wake and, though less obvious, in the boundary
layer. This confirms our statement that different values of are needed in
different zones, depending on the local Peclet number.

The history of convergence in the case of k = 2/3 is presented on fig.
10 ; (10 a) shows the logarithm of the residual versus the number of time
steps for the explicit scheme, (10 b) is the same for the implicit scheme, (10
c) is a comparison of the two schemes in terms of CPU time on CRAY II.
Machine-precision convergence is achieved in 150 time steps or 120 seconds
by the implicit scheme, while the explicit scheme takes 1200 time steps or
240 seconds to reach a residual superior to 0.001. For a steady calculation,
the use of the implicit scheme divides the needed CPU time by more than 10,

although the expected Newton-like quadratic convergence is not achieved.
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The viscosity dependent «,together with the unlimited scheme was used
to compute the same flow on an adapted mesh, still rather coarse (fig. 11,
2970 nodes), and on a thinner mesh (fig. 12, 5712 nodes). The mesh, the
1so-mach lines and the pressure coeflicients on the body are compared. It
can be seen that a good solution is obtained on the smaller grid, although

quite coarse.

To compare the limiters, a hypersonic flow over a flat plate was com-
puted. The mach number is M., = 10, the Reynolds number Re/m = 5.10°,
the length of the plate is 2, the temperature at the inflow is 83,5K the tem-
Perature at the wall is 525 K; Sutherland’s law is used. A first computation
was made with the « limiter, and the viscosity dependant k. The mesh (fig.
13 a, partial view), speed vectors (fig. 13 b), pressure coefficient (fig. 13 ¢)
and skin friction coefficient compared with laminar boundary layer theory

results (fig. 13 d) are presented.

There are about 15 nodes in the boundary layer. The shock at x = 0
is captured ; no oscillation is seen. The agreement with theory is excellent;
the same flow was computed with the Van Albada limiter and & = 1/3,
giving extremely similar results (not shown), so we consider this result as a
reference, and use a coarser grid. The same flow is computed on a mesh with
8 nodes in the boundary layer, using £ = 1/3 and the Van Albada limiter
for the non linear fields, and the viscosity dependent « with the x-limiter
for the contacts. The & limiter was experimented to be too compressive for
using on the nonlinear waves. Figure 14 shows the speed vectors. Figure 15
is a comparison of skin friction obtained on the preceeding grid (full), using
k = 1/3, Van Albada limiter for the four fields (long broken), using for the
contacts the ”third order ® limiter”, with ® = 1.6 and the viscosity dependent
& (short broken), or the  limiter and viscosity dependant & (broken doted).
Figure 16 shows the skin friction on the second half of the plate, for schemes
which all use & = 1/3, Van Albada limiter for the nonlinear fields, and the
viscosity dependent  for the contact discontinuities. It is seen that the

“extended superbee”, or "extended & limiters”, are too compressive, even
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for a contact, but that both the & limiter” and ”third order extended @
limiter” with & ~ 1.6 give results in agreement within one or two percents
with our reference result, at least on the second half of the plate. This is an
improvement over the k = 1/3, Van Albada limiter, which gives more than
10 % error. .

Another hypersonic computation was performed around an ellipse : the
Mach number is My, = 8, the Reynolds number is constant and worth
Reoo/m = 1000, the angle of attack is & = 40°. The mesh and iso-Mach
lines are shown (fig. 17). There is no overshoot at the shock and with the
implicit scheme, the after body flow can be computed without any special
treatment ; this cannot be achieved with an explicit code. The mesh was
adapted by an automatic local mesh refinment algorithm, due to C. Pouletty
[19] and B. Palmerio [18].

An easier calculation was performed to compare the convergence of the
explicit and implicit codes : fig. 18 shows the convergence history for a
flow around an ellipse at a mach number of 4, for the explicit and implicit
scheme.The mesh has 1378 nodes (not shown).It is seen that the implicit

scheme allows schock capturing with a courant number C = 100

IV. CONCLUSION

A numerical scheme to solve the compressible Navier-Stokes equations
on unstructured meshes, based on a "TVD” finite volume formulation, has
been obtained, by extending a method first derived for inviscid gas. We have
obtained a condition on the limiters for the scheme to be TVD, taking into
account the physical viscosity. Different limiters have been proposed which
match this condition, and compared from a numerical point of view. The
upwinding also depends on the local amount of physical viscosity. It has been
shown that laminar boundary layers can be calculated with our scheme, on
a a i

An efficient algorithm has been proposed for the steady case, which

allows cheap computation of very stiff problems, as hypersonic flows on ge-
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ometries with rear body. Really unsteady flow remain a challenge because of

their computational cost.
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fig. 11a : 2970 Nodes, 5764 Elements (partial view)
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