N

HAL

open science

An iterative Euclidean algorithm

Paul Camion

» To cite this version:

‘ Paul Camion. An iterative Fuclidean algorithm. RR-0844, INRIA. 1988. inria-00075709

HAL Id: inria-00075709
https://inria.hal.science/inria-00075709
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075709
https://hal.archives-ouvertes.fr

RECHERC
QUENC!

HE
RT

I

Rapports de Recherche

AN ITERATIVE EUCLIDEAN
ALGORITHM

Paul CAMION

MAI 1988

AN ITERATIVE EUCLIDEAN ALGORITHM

Paul Camion

INRIA
Domaine de Voluceau, Rocquencourt, B.P. 105
78153 LE CHESNAY Cedex - FRANCE

ABSTRACT

On the basis of the results by JL. DORNSTETTER [3] showing the
equivalence between BERLEKAMP's and EUCLID's algorithm, we present an
iterative Euclidean extended algorithm. We show how all polynomials obtained
by the classical extended Euclidean algorithm are actually automatically
produced by that iterative process.

In sum, an algorithm is given which is as economical as BERLEKAMP's for
decoding and which is proved to perform decoding of alternant codes by the
simple argument used for the EUCLIDEAN algorithm.

Finally a result of BERLEKAMP's [1] is exploited to reduce by another half
the degrees of all polynomials involved in the decoding process in the particular
case of binary BCH codes.

UN ALGORITHME D'EUCLIDE ITERATIF

RESUME

En nous fondant sur les résultats de JL. DORNSTETTER [3] qui démontrent
1'équivalence de l'algorithme de BERLEKAMP et de celui ' EUCLIDE, nous
présentons un algorithme d'EUCLIDE étendu itératif. Nous montrons comment
tous les polyndmes obtenus dans 1'algorithme d'EUCLIDE étendu classique sont
produits automatiquement dans le processus itératif.

En résumé, nous donnons un algorithme qui est aussi économique que celui
de BERLEKAMP pour le décodage et dont la justification pour le décodage des
codes alternants est celle de I'algorithme d'/EUCLIDE utilisé a cet effet.

Finalement, un résultat d¢ BERLEK AMP est exploité de facon a diviser une
nouvelle fois par deux les degrés des polynomes utilisés dans le processus de
décodage dans le cas particulier des codes BCH binaires.

Keywords : iterative, algorithm, Euclidean, decoding, alternant code.

. NDPA PIER RECUPERE ET RECYCLE

1 INTRODUCTION

In a recent paper [3], JL. DORNSTETTER showed how BERLEKAMP-
MASSEY iterative algorithm (shortly B-M iterative algorithm in the following)
for decoding alternant codes can be derived from a normalized version of the
Euclidean extended algorithm. He shows how polynomials oj(x) and mi(x)

processed in the B-M iterative algorithm are the reciprocals of polynomials
Ui(x) and Vj(x) occuring in the Euclidean algorithm with the general relation

(1) UiRg- ViR =(-1)iRj,

for two given polynomials R.1 and R, with deg Rg < deg R.1 and where the R;,
Uj, Vi are related by the Euclidean division :

(2) Ri-1 =Qi Ri+ Ri+1 , deg Rj+1 < deg Rj
3) Ui+1 =Qi Ui + U1, Vis1 = Qi Vi + Vi.q,
with the initial values
4) U.1=Vp=0, Up=V.1=1.

JL. DORNSTE'ITER shows that ford =deg Uj :
() oi(X) = Xd Ui(X-1), i(X) = Xd-1 V; (X-1).

He shows hows the B-M iterative algorithm avoids constructing explicitly
polynomials R, i=1, 2, The needed coefficients of polynomials

Qi, i=0, 1, ... are obtained while processing ¢ i (X), i (X), i=1, 2, ...

together with intermediate polynomials of which the degrees increase from
zero to the final degree. This is why the Euclidean algorithm needs roughly
twice as many operations as the B-M iterative algorithm in the case of decoding.
We here transform the BERLEKAMP-MASSEY iterative algorithm as
presented by JL. DORNSTETTER into successive versions of an iterative
Euclidean algorithm.

Since we know that the B-M iterative algorithm operates reciprocal
polynomials, what is shifted to the left should be here shifted to the right in a
corresponding iterative Euclidean algorithm. But when two polynomials are
involved, shifting one of them to the right before a linear combination gives
essentially the same result as shifting the other to the left. That is what is done in
the first version of the presented iterative Euclidean algorithm in which the
sequenceR 1, R 2, ..., Rj, of remainders are obtained, each one beeing

_2.

shifted to the left by a well known dj; number of positions. Here the logical tests

are those introduced by JL. DORNSTETTER. They are here used to operate the
sequence of divisions (2) in an iterative process. Sections 3 and 5 give a detailed
proof of the process.

Next we transform that iterative Euclidean algorithm in order not to
construct the remainders R j but only the needed polynomials U, i=I, ... of
"small degrees". We then introduce a last modification in the process to obtain
the normalized Euclidean algorithm which as shown by JL. DORNSTETTER
is the one that exactly corresponds, elementary operation to elementary
operation, to the B-M iterative algorithm.

The result is that we obtain an iterative process in which every operation is
understood as an elementary step in the sequence (2) of divisions. That process
is automatical with logical tests on the number j of iterations already undergone

and on the nullity of the content of a given fixed register. Moreover it is as
economical as the B-M iterative algorithm.

2 INTRODUCING ITERATIVE STEPS IN EUCLID'S ALGORITHM

2.1 The usual Euclidean Algorithm

We run the series of divisions
(1) Ri-1 = Qi Rj+ Rij+1, deg Rj+1 < deg Ry,
fori=0, ... up to the value given by a stop test. That value may be the smallest
k suchthat Ry +1 =0, that is the case when we compute gcd(R-1,R¢)=Rk.
But it also can be the value k such that 2deg Rx.1 = deg R.1 = n and
2deg R x <n-2. This is the case in the decoding algorithm, where R.1 = Xn

and R ¢ is the syndrom S(X). (MC WILLIAMS and SLOANE [4] pages 362-
367).

2.2 Shifts
For a polynomial of degree m, we write
am XM + ap-1 Xm-1 4+ . + ag.

Thus mutliplying by X a polynomial will be considered a shift to the left.

2.3 The operations

The considered polynomials are in K[X] for any field K. For polynomials A
and B we will repeatedly perform operations of the following kind :

) Be—XB
ii) B «— aB,forsomeainK
iii) A —~A-B.

2.4 The degrees of the operands
Let n be the degree of R . 1 .

All the way to the end, the operands are possibly shifted to the left. They are
actually multiplied by a monomial, say XS in order that whenever operation iii)
is performed, then deg A =deg B =n.

This is because we avoid to check the degree of any polynomial. That
would force us to verify which is the non-zero coefficient of highest degree. But
in the course of the division of Rj- 1 by R j, we know that we get the remainder
Rji+1 by the condition:degRj+1 <deg Ri . We then know that we have to
make

Ri-1 — Ri, Ri «~ Rijs1,
and then to go on until the stop test on i is met. Since we don't have a criterium
based upon degrees, we will consider an integer parameter dj of which the
relation with degrees of the concerned polynomials is clarified in Property 4.1.

Moreover index j of dj counts up the numbers of steps where operation i) was

performed, thus j counts up the number of shifts. It also counts up the number
of iterations.

3 ;I)‘llz{gOFITERATIVE EUCLIDEAN ALGORITHM, DESCRIPTION AND

3.1 Bounding the degrees of the polynomials
We here refer to the process given in Appendix 1.

When entering 3b, E'j is the dividend polynomial and E; is the divisor
polynomial. But there, they are interchanged and in the following steps through

-4.

3c, E'j is the fixed divisor and E; takes the successive values of intermediate
remainders.

Now there, E'j is not exactly one of the successive divisors R in 2(1), but
such a divisor multiplied by a monomial in order that deg E';j always equals
n, the degree of R . 1.

The degree of E'j certainly is n for j=0 after initialization. Further, E'; only
changes when passing through 3b. There it takes the value of E j which has
degree n by the condition of entering 3b. It is assumed that in the initial
situation, '
degRg<degR-1 =n.

At steps 2 and 3a, we see that if deg Ej < n, then Ej is shifted to the left.
When a substraction is performed in 3b or 3c, then deg E ; = deg E'j = n and for
the resulting E j + 1, we have thatdeg Ej+1 <n since for that substraction, we

always have that A= [Xn] Ej, Aj= [X "] Ej, where we denote by [X?] P the
coefficient of X! in polynomial P.

Since dég Eo <n, we then always have that deg E < n.
To sum up, we state
Property 3.2

Entering any step of the algorithm, polynomial E'j has degree n.
Regarding polynomial Ej, its degree is never larger than n and
equals n if the discrepancy Aj does not cancel. Entering 3b or 3c,
polynomials E'j and Ej both have degree n and the linear
combination there produces a polynomial with degree less than n.

3.3 Introducing some notations

Letj-1<j0<...<jj denote the successive steps where conditions to enter
3b are fulfilled. That sequence is actually denoted by (ji-1) since integer i takes
the values 0, 1, 2,... . Notice that dj only changes when passing
through 3b. We thus have that
€)) dj = dj; for j=ji-1+ 1,...,ji.

1

At step j = Ji-1 then dj changes from the value dj;_; to the value
dj; = Jj+l -dji_l,andsincej_>_2dj , then

2dj; = + (j+2 - 2dj) > j+1.
Hence there is astep tj after ji- 1 for which
(2) ti = 2dg; = 2dj;

Instants t ;-1 and t j together with instant j j-1 define two phases in the process of
the algorithm.

phase bj

Phase b; is the succession of steps starting at tj - 1 and ending when step ji -
1 is completed.

During phase bj, we enter repeatedly 3a until passing through 3b at step
ji-1.

Phase ¢;

Exiting phase b, starts a sequence of steps through 3a or 3c up to the instant
ti-1.

Property 3.4

The number of steps in phase b;j equals that one in phase ci and is
worth dj; - dj;.q1-

Those numbers are respectively ji-1 - ti-1 + 1 and tj - 1 - ji-1.

By definition of dj + 1, in 3b, we have that ji-1 = dj;_ + dj; - 1.

The property then follows by (2).

Remark
If when entering phase bj , we have thatj=tj.1 =2dj;_ and A #0, we

will enter 3b right away and the number of steps in b as in ¢ is 1. This is the
case where the quotient Q; has degree 1 and they are only two substractions in

-6-

the process of division. In that case, step 3a is not used. We will see that more
generally deg Qi = dj; - djj;.; and this is measured up by the number of

steps in phase b .
* 3.5 The first iterations of the algorithm

Since degR ¢ <deg R.1 =n, then A ¢ is possibly O. If so, we then enter a
loop : 2, 3a, 4,2, ... up to the moment where deg E j isn. Since d j is still worth

zero, we enter 3b. Refering to the beginning of section 3.3, we there have
j=j-1 and as observed in 3.3, we will have thatdj+ 1 =dj.

We have that
dj+1= j+1 -dj=j+1 =n - deg Ro.
We may Write as well
3 djq - dj_; = deg Qo.
Next statement asserts that this situation continues up to the end.
4. THE VALUES OF THE OBTAINED POLYNOMIALS AT CRUCIAL-v

STEPS

We need to be able to get every polynomial of the secjuence Ri,i=0,..0f2
(1) from the obtained values of E'j and E j. The crucials steps are the steps ji
and ti defined in 3.3, i=0,

Property 4.1

Let j; and t; be the steps defined in 3.3, for i = 0, We have
that

(1) E';=X%i Ri , E=XUi*1 Riy1, i=0, ...
Moreover
(2) dj; = n - deg Rj

From (2) we also will have that
(3) dj;,q - dj; = deg Ri - deg Rij+1, i=0, ...

Since we also need (3) for the proof by recurrence on i, we first verify (1),
(2) and (3) for i = -1. Notice that, for logical correctness, we should have
written i-1 in place of i in (1) and (2) since sequence (i) actually starts from
zero. That wouldn't have been aesthetic.

Remember that t.1=dj_;= 0. Then, for i=-1, (1) is given by the

initialization as well as (2). Relation (3) for i=-1 is precisely the relation stated
as 3(3).

We now assume that all relations are verified where entering step ti-1 and we
prove they are valid when entering step ti. At step tj-1 we enter phase bj and
when entering the last step of phase bj, then Ey;_junderwent a number of shifts
equal to dj; - dj;_; - 1, by Property 3.4. Since we only went thru 3a, then Eg, ; is
then shifted into

xdji-djj -1 + djjg+1 R,

At the conclusion of 3b, at stepj = jj-1 + 1, this becomes the value of Ej
and then E'j remains unchanged during phase c;, that is, up to j = ti.

We now verify the second relation of (1). Here we start with E';; ; which
remains unchanged in 3a all the time of phase bj except for the last step which is
step ji-1. There, Ej takes the value of E'j which is the one of E' ti_1=dei'1 Ri-1.
We then enter phase cj. The operation in the end of 3b plus the operations in
phase c; are those of a regular division of Rj.1 by R; except that here the divisor
is never shifted and instead, the intermediate remainder is shifted once to the

1~€e o fe It 3 Tatns 3 3 1
left after it is obtained by a substraction. The number of such operations is

dj;j - djj.q+ 1,
by Property 3.4.

By the recurrence hypothesis, that number is deg Rj.1 - deg Ri+1, which is
deg Qi+1. But this is exactly the number of substractions in the usual division.
This means that we obtain at the end of phase c; a polynomial which is Rj+1
shifted a certain number of times which is the number of steps in phase c;j plus
the last step in phase b;, that is dj; - dj;_;+1 plus the possibly large shift that we

started with. Since we started with the dividend dei' 1 Rj.1, that shift is made
of dj;_; elementary shifts. Hence

Ey= X%4itl Ryyq.
To end the proof, we have to show (2) and (3).

By the first assertion of Property 3.2, we have that deg E'y; = n. This implies
(2).

We also know by (1) that

deg E'y; - deg Ey; = deg Rj - deg Ri+1-1.

But that number is the necessary number of shifts, starting at step tj when
entering bi+1 to satisfy the condition of entering 3b, which is A; # 0, or in other
words deg Ej=n (remember that we have 2d; < j in phase bi+1 thoroughly).

By Property 3.4, that number is dj;, ; - dj; - 1, and this ends the proof.

We now examine the successive values of E; and E'j thru 3b and 3c.

Property 4.2

For 0 < k < deg Qj, we have that

4) Ej;_q+k = X4i-1*F(Ri.1- QiKRY),
(5) E'j;.;+x = X4ii Ry,

where

(6) Qi®=qe Xe+...+qe-ks1 X k+1=Qj-qek Xe-k - ... qo.

Notice that dj; | + € = dj;, by Property 4.1.

By Property 4.1, we have that E';, ; =X dji-1Rj.1 and when entering 3b at
step ji-1 we have that E'J'i-l = E'ti_l

Moreover, by Properties 3.2 and 4.1, we have that

(M) Ej;; = X%i4ji-171 By = XYii Ry
Remember now that E'j and E; will be interchanged.
Thus passing thru 3b, we have that

®) Ejjq+1 = X(XUi-1 Ry - XUi-1 QiMRy).
Now for k=2 we assume that

) Ejii+k-1 = X(X4ii- 1462 Ry 1 -Xdji1+k-2 Q(k-Ry).
Then passing thru 2, we have that

(10) Aj;_1+k-1 = [X2] Ej;_{+k-1
and by Property 3.2 :

(11) qe-k+1 = Aj;_y+k-1 A°1,

where A = [Xn] Ej; , = [Xn] X%i Ry, by (7).
Whence '

(12) Bjjj+k = X(Ejj.+k-1 - qe-k+1 X Ui Ry)
= X(Ejj_1+k-1 - Qe-k+1 x4ji-1+k-1 xe-k+1 Rj)

Finally,

(13) Ejiq+k = X(XUi-1+k-1 Ry ;- x4ji-1+k-1 (k) R;).

Remark 4.3

We see that for k = e+1, then Q;(k) equals Qj. Also dj; ;+e = dj;, by Property
4.1. We also have that ji-j+e+1 = ji-1+1+ dj; - dj;_;, which by Property 3.4 is t;.

Thus for k = e+1, that is when the division process of Rj-1 by R ends, then we
have that

;1()_

(14) Eg; = X4i*! Riay,

as already obtained in Property 4.1.
S THE STOP TEST
5.1 Computing a gcd

In the case where we compute gcd (R-1, Rg), we eventually have deg Rj = 0
and then

Rj=0=>gcd (R-1,Rp) =Ri-1
Ri#0=gcd (R-1,Rp)=1.
Thus when for the first time, a newly computed dj+1 = dj; in 3b is worth n,

then we have that E'j+1 = E'y = X0 Rj which is either 0 or a non-zero scalar
times X0, This is a consequence of Property 4.1.

5.2 Decoding alternant codes

In the case where the Euclidean algorithm is used for decoding pure errors in
an alternant code with minimum distance d > r+1, where r is even, then R.j = XT
and we know that the error evaluator polynomial is a scalar multiple of Rk
where k is the smallest integer for which

deg Rk-1 2 r/2, deg Rk <r/2 -1
([4] page 366).

We may by 4(2) state that condition in words of dj :
djp.q S1/2, dj 2r/2 + 1.
6. AN ITERATIVE VERSION OF THE EUCLIDEAN ALGORITHM WHERE
THE REMAINDERS ARE NOT ACTUALLY COMPUTED.
6.1 Why computing the remainders could and should be avoided.

The degree of R.1 is here denoted by r.

Since we actually need in the case of correcting codes the values of Uk and Ry,
then it is worthwhile to avoid computing the sequence of remainders
R1, Ra, ..., Rk.1 which in the worst case needs computing r-1 coefficients, then

-11 -

r-2 coefficients, ..., and finally k+1 coefficients. Notice that when the quotient
- Qj has degree 1, then computing the remainder Rj+1 of degree £ needs passing

thru 3b and 3c once and there processing 2(£+2) products and 2(2+1)
substractions.

Let us remind that
deg Uj = deg R.1 - deg Rj-1.
That is easily verified by recurrence on i.

Observe that by 4(2), we have that dj; , =deg Us.
Then if we compute the sequence of polynomials Uj,...,Uk instead, since

deg Uk =r- deg Ri.1 <1/2,
then all polynomials processed have small degrees.

The basic observation in JL. DORNSTETTER [3] is that sequence (Uj) and
(Vi) may be computed without computing sequence (Rj). All we need to know
are the initial values R.1 and Rg. We have that U.; = Vg =0, Ug= V.1 = 1. This
means that we shall be able to compute sequence (Q;) which gives
(1) Ui+1 = Qi Ui + Ui-1, Vit1 = Qi Vi+ Vi1,

whithout performing the sequence of divisions :

(2) Ri-1 = Qi Ri + Rj+1, deg Ri+1 < deg Rj ,

which would produce at step i, Q;j and Rj+1.

6.2 How to get the coefficients of Q; whithout computing Rj,;1

This relies on the general relation
(3) Ui Ro - Vi R.1 = (-1)i Rj.
We immediatly show how the coefficients of polynomial Qj, which

successively appear while performing the division of Rj.1 by Rj, may be
computed when knowing Uj.1, Uj, Vi.1 and V;.

-12-

'For, let
(4) Qi(k) = qe X€ + ... + Qe-k+1 Xe-k+l

be the polynomial whose terms are the first k terms with higher degrees form
Q;. Denote by r; the degree of Rj and let I" be the leading coefficient of Rj, thus

(5) I = [XTi] Rj .
Now we use the notation -
©) Tk-1=[XT-IKH](Rig - Qitk-D Ry).
This means that after performing k-1 substractions, k22, in the process of

dividing Rj-1 by R we got the polynomial Ri- - Q;k-1) R; with degree at most
ri.1-k+1. Next step in that division is the performing of

(M Ri.1 - Qij(k-1) Rj - Tg.1 I'-1 Xe-k+1 R4

which produces a polynomial of degree at most rj-1 - k. If k=e+1, then the
division is completed and the obtained polynomial is Rij+1 with

deg Ri+1 = ri+1 <T1j = 1i-1- €. Since (6) only defines I'k.1 for k>2, that is, after at
least one substraction was performed, we need defining I'o which necessarily is
worth [Xfi-1] R;.1 since qe = [oI-], with T defined by (5). But subsequently, we
compute at kth step

(8) qe-k+1 = I'k-1 1.

Now relation (3) allows computing I when knowing U; and Vj but without
actually computing Rj. We indeed have that

9 [XTi] Rj = (-1)1 [X"] (Ui Ro - Vi R-1)
= (-1)i [XT1] Uj Ro - (-1)i [XT1] V; R.q

This means that we only have to compute one coefficient in each
polynomial product Uj Rp and Vi R.1. Now we need computing the sequence
['k-1 in order to get the kth coefficient qe-k+1, k=1, 2, Since I'g is the

previous value of I', we then compute I'k-1 fork > 1 by the relation

-13 -

(11) (Ui-1+Qik-DU;{)Rp - (Vi-1+Qi(k-DVj)R.1
=(-1)i-1(Rj-1-Qi(k-DRj),

and from there
(12) Qi) = Qjk-1) 4 I'_1 I'-1 Xe-k+1

Remark 6.3

If R.1 is reduced to XT, then
Tg-1 = (-DFXm-1-k+1] (U1 + Qitk-1) Uj) Ro.
This is true by (11) for every i since k is larger than 1 and

ri-1 = deg Rj-1 < n.

6.4 The polynomials G;j.

In Appendix 2 we replaced all Ej's by Gj's and Hj's. But whenever
Ej-AjA-1E'; appears, then a plus is substituted to the minus to get
Gij+AjA-1G'; or Hj+AjA-1H'j. The initial conditions are
Go=XUg,Go=U.1,Hyp=X Vo,Hp=V.1,where U.1=V0=0,V_.1=Ug=
1, With the same notations as for Property 4.2, we have

Property 6.4.1

With the notations of Property 4.1, we have that

(1) Gji-1=G’ti = X% UiaGti = X4ji+! Uij+1,i=0, ...
Hj, (=H't; = X%i Vi,Hy; = X95ir1 Vigq,i=0, ...

We leave the proof to the reader.
Property 6.4.2
For 0 < k < deg Qj, we have that

Gji.1+k = X%tk (U 1+QiU1), G'j; q+k = X%i Ui ;
Hj; {+k = X1tk (Vi 1+Qi(K)Vy), H'j: 1+k X4dji V;.

-14 -

The proof is the same as the one for Property 4.2. except that Aj; ;+k-1 18
here obtained as

Aji_1+k-1 = (-1)I-1[X0] (Gj;_1+k-1 Ro - Hj;_1+k-1 R-1)
and A as
A = (-1)i-1[Xn] (Gj;.1 Ro - Hj;_q R-1)

6.5 The stop test

We see in the data of the extended iterative Euclid algorithm given in
Appendix 2 that the successive values of Aj and of d; are the same as those from

the iterative algorithm of Appendix 1. Then the stop test is the same as in
section 5.

Remark 6.6

When R.p is reduced to XT, then by Property 6.4.2, Hj; | +k R_.1 hasno
term of degree less than r+1 since dj;_; +k always is at least one. On the other
hand, as for Remark 4.3, we can see that Hy; | = dei-1+1 Vi and since by
Property 3.4 we have that Hj; ; = x9dji-dji-1-1 Hy,_,thenHj; ;= x 4ii
V;. Now for i 2 0, we know that dj; is larger than zero and consequently Hj; 4

R .1 does not bring any contribution in the expression of A since its terms with
degree r or less all cancel.

To sum up, for j = ji-1 up to t; we don't need the values of Hj to compute A;.
Now the steps from t; up to ji-1-1 all take place in 3a. But in 3a, we have that Hj
becomes X Hj = Hj+1 which certainly has no term of degree less than n if Hj

hasn't.

On the whole we will not need computing the Hj whenever R.1 is reduced to
Xr,

7. THE NORMALIZED ITERATIVE EXTENDED EUCLIDIEAN
ALGORITHM

7.1 Why is a normalized version usefull
We now focus our attention on the iterative version of the extended

normalized Euclidean algorithm that exactly corresponds to the B-M algorithm.
We here then consider the algorithm for decoding alternant codes. We here

-15-

denote by r the degree of R.1 which actually is XT and the stop test is the one
given in 5.2. We also use remark 6.6 which spares us the computing of sequence
(H;). Moreover our objective is now to save the time and memory space needed
to performing the interchanges in the first lines of 3b.

7.2 Normalization
The division
(1) Ri1=QiRi+Rin

that gives Qj and Rj+1 is usually performed by starting with the substraction
-1
(2) Rij1-bi1b; XeRj

where b s is the leading coefficient or R s and where e is the degree of Q i .
To save time, the first substraction will be

3) -bi bili Ri-1+Xe Rj

we then may write

@) -b; bil Rij.1=- Xe¢ Rj+ Pj.

where deg Pi < deg Rj-1.

What we started doing, together with what will follow, is the sequence of
%
operations in the division of R ;.1 by Rj with

(5) Rj.1 = - bjbi.; Rji.1.
We then obtain

%

6 Q; = -bibj'; Qi,

%
and by (4), the leading coefficient of Qi is -1.

-16 -

% %
Starting in that way at i = 0, we obtain sequence (Ri) and (Qi) of which the

correspondance with (R j) and (Q j) is given by

N ,
Property 7.3 The sequence (Ri) of remainders produced by the
normalized Euclidean algorithm is recursively defined by the
division

%

¥ % % ¥ %
(7) Ci-1 R1_1=Q1 Rl +R1+1 ,»deg Ri+1<deg Rl’

where the scalar cj.1 is adjusted in order that the leading
%
coefficient of Qi be -1. Let (R j) be the sequence of remainders of

*
the classical Euclidean algorithm with the initial datas R .1 =R_4,

%
Ro= R0. We then have

*

where aj is recursively given by
(9) aj bj + aj+1 bj-1 =0,
bi, being the leading coefficient of Rj, i =0, 1, ...
E . %
Moreover, sequences (Ui) and (Vi) for the normalized Euclidean

algorithm defined recursively by

% * % * * * %
(10) Ui+1=Q; Uj +¢i-1Uj.1, Vis1=Q; Vi+ci-1 Vi1,
with
% * * *
(11) U1=U.1 =Vg=Vp=0,Up=Up=V.1=V1=1,

-17 -

%
each Qi being given by (7) and where (Uj) and (Vi) are the

sequences given by 1(3) in the classical extended algorithm.

We finally have that

(12) Uizaj Uj Vi=aj Vi,i=0,1, ..

* _1 .
(13) Qi = - bj-1 biQj i=0,1,..

We have that sequence (bi) is given by the classical sequence R; ; moreover @)
and (8) define sequences (R:), (Q:),(ci) and (a;) while sequence (U:) and (V:)
are given by (10) and (11). Now (13) which relates (Q:) and the classical
sequence (Q;) will be proved as well as (9). Next, (12) will be proved by

induction on i. By (8), (7) writes

* % %
(14) ci-12i-1Ri1 = Qi aj Ri + Ry, degRyyp <degRi.

But since
Ci-12i-1Ri-1=ci-12i-1 Qi Ri +ci1ai1 Ri+1,degRjr1<degR i,

we must have that both member cancel in the relation

1-Ci-12i-1Rist

/1 &\ e anea O an.MN .
(10) (Ci-jaji Wi-diV i-1 ai- ’

so that coefficient a j+1 defined by R1:1 = aj+1 R i must verify, by (15),

(16) ai+l =Ci-1 aj-1.

* *
Now by (15), we see that Qi = vj Qi for some scalar vi. But since Qi has

leading coefficient -1, then (13) is verified. Moreover, by (15) and (13), we
have

-18 -

that

1 -
(17) Ci-1=-a.1aibj.1bi,

We thus see by (16) and (17) that a j+] is recursively given by (9). We now
verify (12). The ith relation (10) gives by induction

%
(18) Ui.:1=ci-1 ai-1Ui1+ QjaiUi,

and the same for Vi:I'
Using (17), (13), (9) and 1(3) gives actually (12).

For the normalized extended Euclidean algorithm, we have
Property 7.4
%* * *
Pi : deg R; < deg Rj.1= n - deg U;
* * * * . '
Py : Ui Vi.1-Uia Vi = (D' ai i

* * L%
P3: Ui Ro - Vi R.1 = (D' R;

The proof is by recurrence on i and uses the relations of Property 7.3 Going
back thru the preceeding sections with the help of Properties 7.3 and 7.4 allows
the justification of the iterative process given by Appendix 3.

8. DECODING BINARY BCH CODES WITH THE ITERATIVE
EUCLIDEAN ALGORITHM

8.1 The ring of formal power series IF2 [[X]]

We here are first concermned with the ring of formal series denoted by A[[X]]
where A is any commutative ring with a unity. We refer to N. BOURBAKI [2]

for the general properties of that ring. We are here concerned with the case

-19 -

where A is the finite field IF; of two elements. We consider any formal series S

from IFy[[X]] without constant term. We write § for the sum of all terms from S
with odd degrees. Thus S =S5 +S.
We first recall a Theorem of BERLEKAMP [1].

Theorem 8.2

et S be any formal power series from IF2[[X]] without constant
te.m. Then the inverse 1+ G of 1+8 in IF2[[X]] is such that G=G

iff $2=§.
We here prove a lemma which entails Theorem 8.2 and which leads to an

algorithm for constructing the inverse 1+G of 1+S whenever S2=S8.

Lemma 8.3

Let S and S; be any two series form IF2[[X]] without constant

term. Then for S = S1 + S> we have that S2= S, iff S= X Szll.
i>0

The condition is necessary.
Since we have that S = Sj + S2, equality
2 j j+1
S=S1+S1+... 457+ 87,
assumed by induction, gives
j+1 j+2
S=S1+S1+...+5° +82.

2j+2 j+2
Now we have that S = X2 T, with T in IR[[X]]. Thus

-20 -

S .
S=1lm 3 S2+x* T= 3% ¥
s 00 j<i 20

The condition is sufficient

Since S2 = 'El S%i, then we have that S = St + S2, hence S2 = S3.
i>
We particularize the hypothesis of Lemma 8.3 by taking for S1 the series S.
Thus by Lemma 8.3 we have that S2 = S2iffS= ¥ S2i,
We now prove Theorem 8.2. =0
The condition is necessary

We know (see for example [2]) that the inverse 1+S of 1+G writes

(1) ¥ Gi= Y G2i+ls ¥ G2,
i=0 i20 i20

Denoting by S the series Y, G2i+!, we have that S =3+ S with S=S2,
120

The condition is sufficient

By hypothesis we have that
(2) S(-1+S) =S+82=1S§

But we also have by Lemma 8.3 that
3) S= S(1+ S+...+ §2i-14)

Substituting the RHS of (3) for S in the first factor of the LHS of (2) shows
that '

@ A+G6)1+S)=1,

with
5) G= Y 321,
i=1
Hence G = G.

221 -

8.4 A fast algorithm to inverse the rational formal power series

1+S whenever S=S +Sand S = S2.

By (3) and (5) we have that

6) SG=S.

Thus for

(7) S=s1X+2X2+...+nX0+...

and

(8) G=g1X+g3X3+...+82n+1X2n+1+...,

we have that

© I 2+ 2+ =sms2,0=0,1,2,3, ...
0<j<n

Thus if b is the smallest positive integer for which s2b+1 =1, we have that

Sbil = S2(b+1) = g1 S2b+1
Sb+2 = S2(b+2) = €3 S2b+1+ g1 S2b+3
(10) sp+3 = S2(b+3) =85 S2b+1+ 83 S2b+3 + 81 S2b+5

oo

oo

from which we compute successively g1, g3, 85, .-+ 82i-1, -

But since sp+i = 0 for i<b+1, we aiso have that g2j+1 = 0 forj<band we

rewrite (10) from i = b+1 up to i= c+1,

g2b+1 =82b+1 =1
£2b+3 = g2b+1 S2b+3 + S2b+2
(11) g2(b+j)+1 = 82b+1 S2(b+j)+1 + 82b+3 S2(b+j-1)+1
+ ...+ 82(b+j)-1 82b+3 + S2b+j+1

oo

22c+1 = 22b+1 S2c+1 + 82b+3 S2(c-1)+1 + ... + 82¢-1 52b+3 + Sb+c+l,

=22 .-

where the value of ¢ is to be specified later on.

Remark 8.5

The formal power series 1+S is assumed to be rational, that is, there exists
polynomials U an V from IF;[X] such that V(1+S) = U. We also know that the
inverse 1+G of 1+S is the series verifying U(1+G) = V. Our aim is to compute
U and V by the iterative extended Euclidean algorithm in the case where S is
yielded by the syndrom obtained in decoding a binary BCH code. That syndrom

is a polynomial Sq of degree r-1, where r is even, and the series S is defined by

V(1+Sg) = U mod Xr
ged (U,V) =1,

deg V <r/2, deg U <r/2-1,
V(1+S) = U.

(12)

This is a well known fact about decoding alternant codes ([4] pages 365-369).

Thus we only need the terms of degrees at most r-1 of G and we will solve the
problem :

Find polynomials U and V such that

U(1+Gg) = V mod XT,
(13) ged (U,V) =1,
deg V< r/2 , deg U <r/2-1,

where Gg is the sum of the terms with degrees at most r-1 of G. We see that
for 2c+1 = r-1, then Gg is entirely computed by (11).

Since computing coefficient g2i+1 needs i products and i additions in IF2, then
computing those coefficients from i = 0 up to i = r/2-1 needs

(14) (r-2)r/8

products and as many additions.

It is actually worthwile to first compute Go since as shown by the following

Theorem, solving system (13) needs much less operations than solving system

-23.

(12). This corresponds to a situation already exploited by E.R. BERLEKAMP
[1] by other means.

Theorem 8.6

Let G be a rational formal power series of IF2[[X]] without
constant term. It only has odd degrees terms iff

(15) 1+G = (V1+V2)/V,

where Vi1 and V3 are in IF2[X], V1 has only odd degrees terms, V3
has only even degrees terms and ged (V1,V2) = 1.

The condition is necessary

By hypothesis, there exist polynomials U and V from IF[X]}; U0) =V(0) =1,
gcd (U,V) = 1 such that

(16) U(1+G)=V.

We have to prove that U = V7, with V3 = V2 and U+ V = V1, with V1 =V].

We write U= U + U. Then U G (resp. U G) is a formal power series with
only odd degrees terms (resp. even degrees terms). Since UG + UG is a
polynomial, and since U(0) = 1, then U G is necessarily a non-zero polynomial
V1 such that V1 = V1. By putting V2 = U we obtain (15). We may assume that
ged (Up, Vi) = 1. Indeed V1 writes X V% and V7 writes T2. Thus the greatest

commun factor to V1 and V3 is a square, that is a polynomial with only even

degrees terms. By writing Y=X2, it is seen that dividing both members of the

relation.

17) T2(X-1G) = V(z)

by that polynomial leads to a relation

224 .

E 3 %k
% * * *
where V, =V, and Vl = V.
The condition is sufficient
-1 . - -1
IfG=V1V,, since V1=V and V2= V2, thenV, has only even degrees

terms and consequently G = G.

Corollary
Let S be a rational formal power series. When writing S = S+S,

we have that S = S2 iff

1+8S=V32/(V1+V2),

where V3 = V; and V; = V1.

8.7 How the decoding algorithm simplifies

Knowing G, we have to compute V1 and V2 with the properties of Theorem
8.6.such that Vo G = V1. We write

(19) G = X2k+1 Gy,

where Go has a non zero constant term, and we necessarily have that
V1 = X2k+1 Vg and that V2(0) = Vo(0) = 1.

We thus write Gg = H(%, Va2 = W% and Vg = Wg Now knowing Hop, we have to
~ find W> and Wy such that

(20) W2 Hp = Wo.

275 -

It is thus seen that solving (13) reduces to solving (20) and the degrees of all
polynomials involved in the process of the iterative Euclidean algorithm are
reduced by half.

9 AN EXAMPLE UNDER MACSYMA

We here give command lines under MACSYMA which operate over the field
Q of rationals the Normalized Extended Euclidean Algorithm.

We start with polynomials p and q and we first compute the polynomial called
"syndrom" given on line d17 which has the property that

g-syndrom = p mod Xn,
where n =2 deg g+1.
Now, given polynomial "syndrom", the sequence of iterations stops as soon as
deg Ri+1, in the listing which is deg [i+1], is smaller than d[j+1]. As it can be

seen in (C26), this means, with the notation in 5.2, that the newly computed
dji 1 = dj+1 verifies dji 412 n/2+1.In the example dealt with, we see in line

- (€72) that deg [i+1] = deg Rj+1 =n - dj;, ; = 3 (Property 4.1), which is verified
in line (d75).

On the other hand, we have by Property 6.2 that

GJI = G'ti"'l = Xd.]1+1 U1+1

Since Gj; is the G[j] of the listing, command line (c74) is justified.

- 26 -

(c3) "We start with two polynomials p and q. We first compute the first n
terms of the expansion of the froction p/q "$

(c4) p:l4x+xt3;

3
(d4) x + x + 1
(c5) q:i+x+xt4;
4

(d5) _ x + x +1
(c8) showtime:true;
Time= 3 msec.
(de6) : true
(c7) n:2+hipow(q,x)+1;
Time= 10 msec.
(d7) 9
(c8) do:hipow(p,x):
Time= 6 msec.
(d8) 3
(¢9) di:hipow(q,x);
Time= 6 msec.
(d9) 4
(c10) pp:subst(1/x,x,p);
Time= 14 msec.

1 1
(d19) -+ — +1

X 3

27 -

(c11) qq:subst(1/x,x,q);
.Time= 12 msec.

(d11)

(c12) reciprocal_p:

Time= 44 msec.

(d12)

expand(pp*xtdo);

(c13) reciprocal_q:expand(qqesxtdl);
Time= 22 msec.

(d13)

X

+ X

4 3
+ x

+ 1

+ 1

(c14) pil:expand(reciprocal_pext(di—de+n—1));
Time= 30 msec.

(d14)

(c15) divide(p1,reciprocal_q,x);
Time= 102 msec.

8
(d15) [x

+ x

5

-2

X

4

3

+ 2 x

12
b

-2

(c16) reciprocal_syndrom:first(%);

Time= 6 msec.

(d16)

X

8

-+

X

5

-2

X

1 9
+ x + x
2 3
X + x4+ 1, -3 x 4+ 2 x
J
+ 2 x -2 x 4+ x+ 1

2

-x=-1]

- 28 -

(¢17) syndrom:rat(subst(1/x,x,reciprocal_syndrom)sxt(n—1));
Time= 150 msec.

8 7 6 5 4 3
(d17)/R/ x +x —2x +2x —2x +x +1

(c18) "This syndrom is now considered the data to our problem. The iterative
process given in Appendix 4 will then be performed "$
Time= 1 msec.

(c19) G[0]:x;
Time= 7 msec.
(d19) x

(c20) Gprime[0]:©;
Time= 7 msec.
(d20) (7}

(c21) d[e]:e;
Time= 6 msec.
(d21) 0

(c22) delta:1;
Time= 3 msec.

(d22) 1
(c23) j:0;

Time= 3 msec.

(d23) (7}

(c24) deg[-1]):n;
Time= 7 msec.
(d24) 9

- 29 .

(c25) i:0;
Time= 3 msec.
(d25) (%]

(c26) block(
debut,

discrepancy[j]:((=1)ti)scoeff(G[j]*+syndrom,x,n),
Idisplay(discrepancy[j]),
if discrepancy[j]=0 then go(enfin),
if j<2+d[j] then go(suite),
Idisplay(i),
Idisplay(d[j]),
dlj+1]:j+1-d[j],
deg{i):n-d[j+1],
Idisplay(deg[i]),
Idisplay(d[j+1]),
U[i]:rat(G[j1/xtd[j+1]),
Idisplay(U[i]),
if deg[i]J<d[j+1] then go(fin),
gregistre:G[j],
G[j+1):
Glijl+ A
(discrepancy[j]*Gprime[j])/delta,
Glj+1]):rat(xeG[j+1]).
Gprime[j+1]:gregistre,
delta:discrepancy[j],
ici+t,
jritt,

- Idisplay(Gprime[j]),
Idisplay(G[j]).
go(debut),

suite,

- 30 -

(e26)/R/

(e27)

(e28)

(e29)

(e30)

enfin,

fin

G[j+1]):

Glil+(discrepancy[j]«Gprime[j])/delta,

G[j+1):rat(xsG[j+1]),
Gprime[j+1]):Gprime[j],

dlj+1]):4d[j

jrj+1,

1.

Idisplay(Gprime[j]),
Idisplay(G[j]).

go(debut),

G[j+1]):rot(xsG[}]),
Gprime[j+1]:Gprime[j],

dlj+1]):4d[]
jej+t,

1.

Idisplay(G[ijl).

go(debut),

)$

“Idisplay(Gprime[j]),

discrepancy

- 31 -

(e31)/R/ u =1

%]
(e32) gprime =
1
2
(33)/R/ . = x
1
(e34)/R/ discrepancy =
1
(e35) gprime =
2
3
(e36)/R/ g =x - x
2
(e37)/R/ discrepancy
2
(038) i =1
(039) . d =1
2
(e40) deg =7
1
(e41) d =2

X

= 3

1

- 32 -

(e42)/R/

(e43)/R/

(e44)/R/

(e45)/R/

(e46)/R/

(e47)/R/

(e48)/R/

(e49)

(e50)

u = x -1
1
3 2
gprime = x -— X
3
4 J 2
g =x —x + 3 x
3
discrepancy = 7
3
3 2
gprime = x = X
4
5 4
3 x +4x + 2 x
3
2
discrepancy = - -
4 3
i =2
d =2

- 133 -

(e51)

(e52)

(e53)/R/

(e54)/R/

(e55)/R/

(e56)/R/

(e57)/R/

(eS8)/R/

gprime

9

deg = 6

2 3
5 3
I x +4x + 2 x
5 3
6 5 4
x + 12 x 4+ 4 x + 2 x

gprime

1"

discrepancy = —

5 9
5 3
3 x +4x + 2 x
6 3
7 6 4
X = X — 4 x =2 x

- 34 -

(e59)/R/

(e60)

(e61)

(e62)

(e63)

(e64)/R/

(e65)/R/

(e66)/R/

(e67)/R/

gprime

4

discrepancy

R)

2

7

X

8 7

- 2 x 4+ x

+ 8 x

+ 6 x

discrepancy

7

3

4

- 35 -

(e68)/R/

(e69)/R/

(e70)/R/

(e71)/R/

(e72)/R/

(e73)/R/

(e74)

(e75)

(e76)

gprime

gprime

7 6
2 x —-x =4 -2
=
2
9 6
g =x + x + x
8
discrepancy = 0
8
7 6
2 x - x =4 -2
2
10 7
Lol + x + x
9

discrepancy

deg

-3

1

- 36 -

(077) d = 6

10

4
(e78)/R/ | U = x + x + 1

' 4
Time= 1882 msec.
(c79) denominateur:rat(G[]]/xtd[}j+1]);
Time= 27 msec.
4

(d79)/R/ X + x + 1

(c80) numerateur:remainder(syndromsdenominateur,xtn)$
Time= 26 msec.

(\
o
(c81) display(R[i]:numerateur); .
3
r =x <+ x + 1
4
Time= 9 msec.
(d81) done
Time= 9801 msec.
(d82) BATCH DONE

(c¢83) closefile(iterneuc);

APPENDIX 1

The iterative process for the usual Euclidean algorithm.

The degree of R -1 is denoted by n. We have that deg R g <n.

3a

3b

3¢

Initialization

j—0, Eo—X Ro, E'0~R-1, do—~0, A—-[Xn]R.;.

Picking out the discrepancy Aj
Aj—[X1]E;j.

If A j= 0, then shift E j:

dj+1+~dj, Ej+1—X Ej, E'j+1—E'j, A— A.

If A j# 0 and 2d; < j, then interchange E;j and E'j,

interchange Aj and A, finally modify d;

Mo—Ej, EJO—E'J,E'Jo-—M,
Te—Aj, Aj—A, A—~T,
Ej+1o-—Ej -Aj A'IE",
Ej+1—X Ej+1, E'j+1—E'j,
dj+1+—j+1 - dj.

If A j# 0 and 2dj > j, then dj, A j and A remains u

Ej+1—Ej -Aj A1EYy,
EJ+10—X Ej+1, E'j+10—E'j9

dj+1—dj,A—A.

The loop closes up

j — j+1, goto 2.

- 38 -

APPENDIX 2

Iterative process for computing polynomials Uj and Vj in the
extended Euclidean algorithm without actually computing the
. sequence Rjof remainders

The values to start with are R_1 and R ¢ as in Appendix 1, and U.1 = Vo =0,
Vii=Up=1.

1 Initialization
j—0, Go—X Up,G'¢9g~U.1,dpo~0, A—[XDn]R.3,
i—0, Hp—X Vg, Ho~V_1.

2 Picking out the discrepancy Aj

Aj—(-DI([Xn]G; Ro-[X"] HjR.1)

3a If A j= 0, then shift G;, H;j

dj+1+—dj, Gj+1—=X Gj, G'j+1—G'j, A— A,
Hj+1 —~ X Hj, H'j+1—H';.

3b If A=+ 0 and 2d; < j, then interchange Gj and G'j, H'j and
H'j, Aj and A, respectively. Modify Gj and Hj and finally
modify dj
M~Gj, Gj~G'j, G'j—M,
N~ Hj, Hj—~H'j, Hj~N,
T—Aj, Aj—A, A-T,
Gj+1—X Gj+Aj A-1G'j,
Hj+1 —Hj +Aj A-1Hj,
dj+1—j+1 - dj,
ie—i+1.

-39 -

3¢ IfAj#0and2d;> J» then dj, A j and A remain unchanged

Gj+1+—Gj + Aj A-1G5,
Hj+1+—Hj + Aj A-1HY,
Gj+1+—X Gj+1, G'j+1-G'j,
Hj+1— X Hj+1, H'j41 —~H'j,
dj+1-—dj,Ao—A.

4 The loop closes up

j — j+1, goto 2.

- 40 -

APPENDIX 3

Iterative process for the normalized Euclidean algorithm.

% *
The values to start with are R_*1 and R; withn=degR_; > degR,,

1

3a

3b

3¢

Initialization

; *
j—0, Eg—X Ry, E'g—R, do—0, A [X1]R]}.

Picking out the discrepancy Aj

If A j = 0, then shift E;
dj+1—dj, Ej+1— X Ej, E'j+1—E'j, A— A.

If A j# 0 and 2d; < j, then compute a new E j, a new d j and
a new A

Ej+1«—Ej- Aj A-1E';,E'j+1 —E;j,
Ej+1~—XEj+1,A~—Aj > dj+1 — j+l - d;.

If A j# 0 and 2d; > j, then compute a new E;

EJ+1°—EJ'A] A'IE'j,E'j+1o-—Ej,
Ej+1—XEj+1,A — Aj.

The loop closes up

j — j+1, goto 2.

-41 -

APPENDIX 4

. ®
Iterative process for computing polynomials U; in the normalized

3 *
extended Euclidean algorithm for R_; = XM and deg Rg < r without

*

actually computing the sequence R; or normalized remainders.

% %* % %
The values to start withare R ; and Ryand U, =0, Uy =1

1

3a

3b

3c

Initialization
jo—O, GOO—X, G'O._O, dO""O,A"—l,i‘—O.

Picking out the discrepancy Aj
. %*
Aj—(I[XNn]Gj Ry .
If A j = 0, then shift Gj
dj+1—dj, Gj+1—X Gj, G'j+1—G'j, A~ A.

If A j# 0 and 2d; < j, then compute a new Gj, a new d j and
a new A

Gj+1+—Gj-Aj A-1G';,G"j+1 ~G;j,
Gj+1—XGj+1,A~A4j, dj+1 —j+l -dji—i+1.

If A j# 0 and 2d; > j, then compute a new G;j

Gj+1+—Gj+ 4j A'lG'j,G'j+1 — G},
Gj+1+— XGj+1,A —Aj.

The loop closes up

j — j+1, goto 2.

- 42 -

REFERENCES
[1] E.R. Berlekamp, "Algebraic Coding Theory" Mc Graw-Hill 1968.

[2] N. Bourbaki, "Eléments de Mathématique" Livre II Algebre - Chapitre 4
Polynémes et fractions rationnelles. Herman 1959.

[3] JL. Domstetter, "On the Equivalence Between Berlekamp's and Euclid's
Algorithms" IEEE Transactions on Information Theory IT 33 n° 3 May
1987.

[4] F.J. MacWilliams and N.J.A. Sloane "The Theory of Error-Correcting
Codes" Amsterdam North Holland 1977.

Imprimé en France
ar
I’ Institut National de Recherche en Informatique et en Automatique

