N
N

N

HAL

open science

Experimenting with a parallel ray-tracing algorithm on a

hypercube machine
Thierry Priol, Kadi Bouatouch

» To cite this version:

Thierry Priol, Kadi Bouatouch. Experimenting with a parallel ray-tracing algorithm on a hypercube

machine. [Research Report] RR-0843, INRIA. 1988. inria-00075710

HAL Id: inria-00075710
https://inria.hal.science/inria-00075710
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075710
https://hal.archives-ouvertes.fr

Rapports de Recherche

EXPERIMENTING WITH A PARALLEL |
RAY-TRACING ALGORITHM ON
A HYPERCUBE MACHINE

Thierry PRIOL
Kadi BOUATOUCH

MAI 1988

S
R.B843*

*RR.

1RISO

ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 -RENNES CEDEX

FRANCE

Téléphone : 99 36 20 00
Télex: UNIRISA 950 473 F
Télécopie: 99 383832

EXPERIMENTING WITH A PARALLEL RAY-TRACING ALGORITHM
' ON A HYPERCUBE MACHINE

Thierry PRIOL
Kadi BOUATOUCH

Avril 1988
24 pages

Publication Interne n° 405

Abstract :

A parallel space tracing algorithm is presented. It subdivides the
scene into regions. These latter are distributed among the proces-
sors of an iPSC hypercube machine designed by Intel company.
Each processor subdivides its own region into cells to accelerate
the ray tracing algorithm. Processors communicate by means of
messages. The pyramidal shape of the regions allows the deletion
of the primary ray messages. A method of performing a roughly
uniform load distribution is proposed.

UN ALGORITHME PARALLELE DE LANCER DE RAYON
SUR UN HYPERCUBE iPSC

Résumé :

Un algorithme de lancer de rayon sur un hypercube iPSC est pré-
senté. La scéne est subdivisée en régions qui sont associées a
chaque processeur. Chacun d'eux subdivise la région qui lui est
associée afin d'accélérer le calcul d'intersection entre les rayons
et les objets appartenant & cette région. Pendant le calcul de 1'ima-
ge, les processeurs s'échangent- des informations (rayons) par l'in-
termédiaire de messages. La forme des régions associées & chaque
processeur permet de calculer localement les rayons primaires. Une
méthode permettant une charge de travail équilibrée pour chaque
processeur est également présentée.

INSTITUT DE RECHERCHE EN INFORMATIQUE

Experimenting with a parallel ray-tracing algorithm
on a hypercube machine *

Thierry Priol
Kadi Bouatouch
IRISA 1
Campus de Beaulieu
35042 Rennes Cedex
France

Abstract

A parallel space tracing algorithm is presented. It subdivides the scene into regions. These
latter are distributed among the processors of an iPSC hypercube machine designed by Intel
company. Each processor subdivides its own region into cells to accelerate the ray tracing
algorithm. Processors communicate by means of messages. The pyramidal shape of the regions
allows the deletion of the primary ray messages. A method of performing a roughly uniform
load distribution is proposed.

Key Words : image synthesis, parallel ray-tracing, hypercube.

1 Introduction

The latest research in computer graphics has provided several techniques of rendering high quality
images including stochastic sampling [7,11,21] and sophisticated light models [6,8,18,19,27].

The rendering algorithm which may take into account all these techniques is ray tracing. It
simulates the operation of a camera, following light rays in reverse order. It consists of shooting
rays from an observer through a simulated screen plane towards the objects of a scene (primary
rays). The program computes the intersection of each ray with each object, and determines which
intersection is closest. Light sources’ contributions to the pixel intensity are computed by shooting
rays from the intersection point to each light source (light rays) and determining if the rays are
occluded by some solid objects. If this is the case, the relevant point is shadowed. According to
the photometric properties of the objects, new rays are shot from the closest intersection point, in
order to take into account the contribution to the pixel intensity of the neighboring objects [8,17,28].
Indeed, if the object is transparent, then a new ray is shot in the refracted direction and if in addition
it is reflective, then a new ray is shot in the reflected direction (secondary rays). Consequently, the
number of rays is very important. This yields a lot of computations of intersections between rays
and objects, and makes the ray-tracing technique extremely time-consuming.

Two approaches have been attempted in order to overcome this large number of intersections:
algorithmical and architectural.

*This work has been supported by C® and by the CCETT (Centre Commun d’Etudes de TéKdiffusion et
Télécommunications) under contract 86 ME46
tInstitut de Recherche en Informatique et Systémes Aléatoires.

H I:l PAPIER RECUPERE ET RECYCLE

1.1 Algorithmical approach

Two classes of algorithms have been proposed in the literature. The methods of the first class
involve the creation of a tree of bounding volumes whose leaves are the extents of the objects and
the nodes represent the bounding volumes of parts of the scene [24,25). If a new ray fails to intersect
the extent of an object, then it cannot intersect the object itself. This saves many computations.

As for the methods of the second class, they involve a 3D subdivision of the bounding volume
of the scene which is generally a rectangular parallelepiped whose faces are perpendicular to the
view coordinate axes [2,3,13,14,20,29]. Indeed, this bounding volume is subdivided into 3D regions
containing a small number of objects. A ray which enters a region, intersects only those objects
lying in this region. If no intersection is found or the intersected objects are all transparent (in the
case of light rays), a computation of the next region traversed by the ray is performed.

These subdivision methods have proved their efficiency since they can reduce considerably the
synthesis time, but at the expense of a more important memory requirement.

1.2 Architectural approach

All the parallel machines which have been completed or proposed can be classified in three groups.
Those of the first group [4,23] use the fact that each pixel may be processed independently, thereby
the pixels are divided evenly among the processors. There is no problem of interprocessor commu-
nication since the database is duplicated in each processor’s memory. Even in the case of scenes
of moderate complexity (several hundred objects) the performance is degraded due to the large
amount of ray-objects calculations. One solution is to subdivide the space containing the scene and
duplicate the data base associated with this subdivision, in each processor’s memory. Unfortunately
this would require a very large memory.

As for the machines of the second group [15], the objects of the scene are distributed among the
processors. The method involves a tree of extents used for intersection computation. Only the top
levels of this tree are replicated in every processor. The leaves of the subtree constituted by these
top levels, enclose the parts of the database distributed among the processors. One or more parts of
the database and a subset of the pixel array are controlled by each processor. The drawback of this
technique relies on the fact that the criterion of distribution is not easy to determine automatically,
and in addition, a lot of time is spent in the traversal of the tree of extents.

The machines of the last group are based on the subdivision of the space into 3D regions. Each
of the processors is assigned one or more regions and each region contains a part of the database.
This latter is then distributed among the processors. Neighbouring processors contain adjacent
regions and communicate localy via messages. A very important source of inefficiency, inherent in
these machines, is the load imbalance problem. Indeed, the processors near the light sources and
those controlling the regions located in the middle of the scene, are more loaded than the processors
near the edges. To overcome this problem, some attempts have been proposed in the literature
[10,22]. They consist of a dynamic redistribution of the load among the processors, in order to
make it uniform. We will see in the next section that these techniques raise many deficiencies.

In spite of these remarks, we think that the machines of the third group would be the most
interesting if we could resolve all (or part of) the problems due to this kind of machine. These
machines are presented in the next section and parallel space tracing is described in the third
section. The last section is reserved to the conclusion.

2 Machines based on space subdivision

Firstly, in this section, we describe three machines based on the distribution of 3D regions among
the processors and which have been proposed by Cleary [5], Dippe [10] and Nemoto [22]. Then we
make remarks about some aspects of their implementation and raise some problems which have
not been emphasized by their simulation and which influence considerably the efficiency of these
machines.

2.1 Description

To our knowledge, three machines have been proposed in the literature but none has been com-
pleted.

e Cleary’s machine

This machine consists of an array of processors. The authors proved that a 2D array is better
than a 3D one, since it reduces the number of messages exchanged by the processors. We
approve of this since our experience on an iPSC hypercube has shown that even with a 2D
array, the number of messages is so large that the associated queues are rapidly saturated.
In this machine, each processor is connected to its four neighbors by means of dual port
memories. It may happen that several processors contribute to the final intensity of a pixel.
These contributions are passed from processor to processor back to the processor where the ray
started. This is one of the drawbacks of this implementation since the overhead of messages
is increased.

e Dippe’s machine

The architecture is a 3D array of processors, each one is assigned one or more regions. The
shape of these regions are general cubes which are general hexahedra. A set of tetrahedra
is constructed with groups of six tetrahedra forming a cube, which are then arranged to
fill the space occupied by the scene. The boundaries of the regions are moved to assure
a roughly uniform distribution of load. When a region’s load is higher than those of its
neighbors, some load is transferred to them. This is done by moving the corners of a region.
The redistribution of load is performed by means of messages called redistribution messages.
Each ray resulting from a ray-object intersection contains its contribution to the intensity of
a pixel; thus reducing messages.

e Nemoto’s machine

The regions resulting from the space subdivision, are orthogonal parallelepipeds which consist
of several unit cubes. A unit cube has a size equal to one, and edges parallel to each axis. The
architecture is a 3D array of processors; each one has six connections to its six neighbours
and is assigned one region. In order to avoid a load imbalance, the loads of two neighboring
regions are compared by the associated processors. If the load of one region is lower than
that of another region, and the lower load is under the given threshold value, the separating
face is slid by one unit along the axis perpendicular to this face.

2.2 Remarks

Among the three machines described previously, those of Nemoto and Dippe seem the most realistic
because they try to solve the problem of load imbalance. Nevertheless, many problems remain to
be solved. This leads us to make remarks concerning the questions of space subdivision, dynamic
load redistribution, distributed algorithms and overhead of interprocessor messages.

e Space subdivision

In Dippe’s machine, the movement of a ray (or objects in case of load redistribution) from
a region to its neighbor involves a very expensive boundary intersection. This is due to the
subdivision of the space into tetrahedra. As for Nemoto’s machine, the regular space partition
becomes irregular after a dynamic redistribution load. Indeed, a region may become adjacent
to several other regions. This makes it expensive to route the messages on a 2D array.

e Load redistribution

The load redistributions proposed are interesting but involve a lot of messages, whereas mes-
sages associated to primary, secondary and light rays are yet very numerous. This load
redistribution is not so simple because the movement of a corner or a face affects all the ad-
jacent regions. Which corner or face is selected first? What is the behaviour of the algorithm
when all the processors are adjusting their load at the same time? What is the periodicity of
the load redistribution? This latter may be a source of oscillations. How to avoid it?

e Distributed algorithms

Due to the large number of messages, some processors may be in a situation of deadlock. How
to avoid it ? This is a crucial problem which has never been evoked by the authors quoted
previously. A second question arises: what is the algorithm of termination which does not
affect the efficiency of the distributed machine. A termination algorithm will be given in the
next section.

e Messages overhead

It is clear that if we try successfully to reduce the number of messages, we can improve the
efficiency of these machines and avoid the problems evoked previously. For example, light
rays involve a lot of messages and make the processor near them, very busy. Finding a means

for suppressing them would be very effective. We will propose an efficient one in the next
section.

The following section presents some solutions for the evoked problems. We have chosen to
implement these solutions on an existing parallel machine which is an iPSC hypercube designed by

Intel Company, because simulation does not raise the problems inherent on a distributed machine.

3 Implementation of our algorithm an iPSC hypercube

Our algorithm is based on the distribution of the database among the processors of a multiprocessor
machine. It is implemented on an iPSC hypercube which is a multiprocessor system consisting of

Object whose perspective projection
[v / does not belong to the screen

Screen Extended region

Figure 1: Subdivision in regions.

64 processors. Each processor is a 80286 microprocessor supplied with a 80287 floating-point
coprocessor and 4.5 Mbytes of local memory. The topology of this machine is a hypercube. It
allows a large choice of architectures (2D or 3D array, ring, etc...).

In a first approach, we have chosen a 2D array due to the reasons evoked previously. Each
processor is connected to its four neighbors and is assigned one region containing a part of the
database which is a CSG tree. These regions result from a space subdivision technique which is
described below.

3.1 Space subdivision into regions

The method is illustrated by figures 1 and 2. The screen is subdivided into a 2D grid. All the
elements of the grid (called pixel areas) contain roughly the same number of pixels. A 3D region
controlled by a processor is a pyramid whose back face lies on the back face of the extent of the
scene, and whose front face is a pixel area. The shape of the region is such that a primary ray which
is shot in a region, does not leave it. This decreases the messages overhead since the transmission
of primary ray messages is avoided.

The regions at the edges of the screen are made larger in order to take into account the secondary
rays intersecting the objects whose perspective projection does not lie on the screen. Indeed, they
are extended up to the edges of the perspective projection of the front face of the scene extent.

This subdivision does not sufficiently solve the problem of load imbalance since it is just based
on a uniform distribution of pixels. It is just implemented to raise the problems evoked previously
and to solve a part of them. A more efficient subdivision method performing a roughly uniform
distribution load, has been implemented. It is discussed in section 3.7.1. -

3.2 Overview of our algorithm
The algorithm consists mainly of four phases:

1. The host processor of the iPSC subdivides the space into 3D regions as described above.
Then it assigns to each processor a region and a part of the data base which results from a
CSQG tree pruning technique [2,3,26].

Observer P =, View
e - \ . ~ nyamld
’ A Y

Perspective projection of AN
the front face of the Back face of
scenc extent the scene extent

Figure 2: Projection of the 3D regions on a XZ plane.

2. Each processor subdivides in its turn its own 3D region into subregions called cells [2]. The
result is a set of cells which are linked together by means of four pointers associated with the
cell corners.

3. When all the processors have accomplished their subdivision, they notify (by messages) the
host processor which sends them a message permitting them to start the synthesis phase.

4. Synthesis phase: each process shoots primary rays through its pixel area. These rays remain
in the associated region and are not transmitted to the neighboring regions since the shape of
a region isa pyramid These primary rays yield light rays which may be transmitted to the
neighboring regions by the sending of messages, which is the case in cur present implemen-
tation. It will be seen later that these messages can be avoided. Primary rays generate also
secondary rays whose associated messages are passed to the neighboring processors. Each
processor is assigned four FIFO queues in order to save the messages which must be send to
the neighboring processors. When a processor receives a ray, it computes its contribution to
the intensity of the associated pixel and then transmits this pixel to the host processor to
cumulate it to the contents of the frame buffer location associated with the relevant pixel.
This is possible since the computation of the final intensity of a pixel is distributed among
several processors.

These different phases are detailed below.

3.3 Subdivision of a region

Let us show now how each of the processor subdivides its own region. With each region is associated
a subtree which is the restriction of the whole CSG tree, representing the scene, to the objects lying
in this region. The subdivision technique is described in [2]. It consists in subdividing the screen
into two halves along each axis z and y. This process is applied recursively on each half and
terminates when a certain level of subdivision is reached. The result is a set of pixel areas. Each
of them is related to a region whose extension along the depth axis z yields 3D cells called super-
cells. To take advantage of the spatial coherence of the scene, a spatial subdivision, named depth

left 'T up
‘ A
PTLU “p,
PTRU -
right
Srons

back

PTRD -

right
ke PTLD v
€ down
V' down

Figure 3: Connectivity using corner pointers

partioning, is accomplished on the super-cells. Indeed, since each super-cell contains primitives
which are distributed along the z axis, the faces of the bounding boxes of these primitives which
are perpendicular to the z axis, are used to divide the relevant super-cell into cells. A region
associated which each processor is then a set of cells. The cell connectivity is assured by means of
pointers (figure 3).

PTLU, PTRU, PTRD, PTLD name each corner used in our method and up, down, front, back,
left and right are the names of the associated pointers according to the direction of the adjacency
relation. With this technique, we can follow the path of a ray across the cell structure.

The search for the next cell along a ray path involves the computation of intersections of this ray
with the faces of a cell. Since cells are polyhedra, this may be time consuming. We have resolved
this problem by expressing a ray in two coordinate systems. The first one is the eye coordinate
system and the second is such that a cell becomes a rectangular parallelepiped whose faces are
perpendicular to the axes (figure 4). This solution is also used by a processor, to know which
processor is controlling the next region along the ray path.

3.3.1 Determining the entry cell

When a processor receives a ray, it must be able to determine the cell of its own region which is
pierced by this ray. To do that, each processor localizes two particular cells during the phase of
subdivision into cells of its own region. These are the right-up and left-low cells as shown in figure
5. Thanks to their connectivity pointers, these two cells allow the determination of the cell pierced
by the received ray (figure 6).

3.4 Distributing the computation of the pixels intensity

For reasons of simplicity, we use the illumination model proposed by Whitted [28], an extension
to Cook’s is straightforward. The contribution of each ray to the intensity of a pixel is computed
by each of the processors and transmitted to the host processor which uses it to update the frame
memory. To do that, the data structure of a ray message must contain the cumulated product of
the specular reflection and transparency coefficients K, and K, of the objects intersected by all

=a
Ray
Absolute Coordinate Projection
System transformation

Figure 4: Coordinate system

Region

Cell at the
left of the
BSP trec

Figure 5: Right-up and left-low cells

10

North face of a region

® ® Entry point

T Back pointer

€~ Left pointer

b

Figure 6: Computing the entry cell

the intermediary rays generated by a primary ray. This avoids the return messages of intensity
contribution.

3.5 Interprocessor communication

Our algorithm uses a set of processes. Each process communicates with another one by means of
messages. These processes are located on the nodes of the iPSC and on the host processor. The
process associated with this latter controls all the input/output operations. Whereas, one process
is associated with each node processor and does two tasks :

1. Synthesis task.

2. Communication task.

3.5.1 Process associated with the host processor

This process controls all the input/output operations as for example the reading of the database. It
subdivides the space into regions and distributes them among the node processors. It synchronizes
the running of the synthesis process of the node processors. After doing that, it waits for the
reception of the messages of intensity contribution, coming from the node processors, to update
the frame buffer.

3.5.2 Process associated with the Node processors

Figure 7 illustrates the communication between node processes.

e Synthesis task

The node process receives its region and its associated subtree, transmitted by the host
processor, and it subdivides it into 3D cells. It then shoots its own primary rays. Some
rays may be sent to the processors controlling the regions along their path. This sending

11

Synchronisation
AN

Synthesis process
Ray
-FIFO } North canal
R Synthesis task
4 ard AFO South canal
icat —AFO } East canal
Ray task
FIFO ¢ Wast canal
Ray

I —— Sending pixels

Figure 7: Communication between node processes.

is performed asynchronously by using FIFO queues and asynchronous system call send() in
order to avoid the locking of the synthesis task. But if FIFO queue is already full, the synthesis
task remains locked until there is an entry in the FIFO queue. To avoid the saturation of
the FIFO queue, the synthesis task computes in priority the rays sent by the neighbouring
processors.

Once, the fraction of the pixel intensity is computed by the synthesis task, this latter stores it
in a queue. As soon as this queue becomes full, it is transmitted to the host processor. This
saves time since communication between a node and the host processor is time-consuming.
The synthesis task is described by the following algorithm:

main()
{
while(image_not_finished()) {

/* Processing of primary rays */

generate_primary_ray(r)
evaluate_ray(r);

/* Processing of rays coming from */
/* the neighbouring processors x/

while(ray_to_read())
read_ray(r):
compute_entry_cell(r)
evaluate_ray(r);
}
}

12

where :

evaluate_ray(r) processes a ray according to its type. Secondary or light rays may be shot.
compute_entry_cell(r) computes the entry cell according to the entry point in the region.

image not_finished() this procedure corresponds to the implementation of the termination
algorithm.

¢ Communication task

The node process has a second task which manages the four FIFO queues used by the synthesis
task. There is one queue for each face of a region except for the front and back face. When
the synthesis task wants to put a ray in a queue, the communication task is called to try to
send the oldest ray message picked in the four FIFO queues in order to avoid the saturation
of these queues. FIFO queues can store 128 rays under the message form given by:

typedef struct

{
type kr; /* kind of ray (primary, */
/* light or secondary ray */
point ori; /* origin of the ray */
vecteur dir; /* direction of the ray */
point end; /* outgoing point */
short depth; /* depth of the ray */
short ipix; /* pixel coordinate */
short jpix; /* " "%/
short face; /* face containing the */
/* outgoing point */
double maxlum; /% distance between the origin */

/* of the ray and the light source */
double coeff; /% Cumulated product of the Ks, Kt */
double att; /* Attenuation factor */

} rayon;

3.6 Tefmination algorithm

We have chosen to implement the termination algorithm proposed by Dijkstra [9]. To do that, we
configure the iPSC into a virtual ring on which a token moves, whose color may be white or black.
At the initialisation phase, processor 0 possesses the token. After having completed a tour round the
ring, if the token remains white the termination algorithm is then effective. Otherwise, processor
0 must emit another white token. This latter is not immediately passed from a processor to its
neighbour. Indeed, the synthesis process consist of two phases. In the first phase, the primary
rays and the received rays are simultaneously processed. The second phase starts when all the
primary rays are treated. During this phase, a node processor has to consume only the rays coming
from its neighbouring processors. It is in the second phase that the token moves from processor
to processor. A processor transmits the token (whatever its color) to its neighbor only if it has
nothing to do. When a processor P receives the token, two cases have to be considered:

1. If the token is black, processor P transmits it to the next processor in the ring.

13

[
[— Light source

///
//,ﬁ// .
1LV N

A S

/1

[

\

N

P~

Regions

Figure 8: Light rays path.

2. If the token is white, it is transmitted to the next processor in the ring, only if processor P has
not sent a message to a previous processor in the ring before receiving the token. Otherwise
processor P modifies the color of the token before transmitting it to the next processor in the
ring.

Each processor transmits the token to the next processor only if it has finished to compute its
primary rays. The goal of this technique is to minimize the number of tokens. First results have
shown that only a dozen is enough to detect the termination of our parallel algorithm.

3.7 Load distribution

The first tests have been performed with a scene of one hundred objects and with a resolution of
256 x 256 pixels. Our present parallel algorithm seems slower than Roth’s (where the database is
duplicated in each processor and the pixels are distributed among all the processors). In fact, the
algorithm is very efficient at the beginning of the synthesis phase. After that, its efficiency decreases
rapidly. The state to which converges the algorithm is such that 75 percent of the process are locked
due to the saturation of the FIFO queues. This means that the load is not uniformly distributed.
This load imbalance is mainly due to the processing of the light rays which all converge to the
light sources, yielding then a lot of messages (figure 8). In the following, we propose a method of
performing a roughly uniform load distribution.

3.7.1 Static load distribution

As mentioned previously, dynamic load redistribution [10,22] yields a lot of messages and con-
sequently a lot of computations of ray-boundary intersection. This degrades dramatically the
performance of a distributed machine. We think it is more realistic to perform a load distribution
staticly, that is before starting the synthesis phase. The proposed redistribution method consists
in sub-sampling the image in order to represent a set of coherent rays by only one ray generated
by ray-tracing the sub-sampled image. The algorithm consists of two steps. In the first step, the
primary rays corresponding to this sub-sampling and all the derived secondary and light (in case
of non use of light cones) rays are computed. In the second step, the pyramidal bounding box of

14

@

splin‘ing line

z
\

cmccnae e

Region and ray Region 1 Region 2
before splitting

Figure 9: Splitting a ray into two rays.

©

the scene is adaptively subdivided into regions; each one contains roughly the same number of rays.
In fact this subdivision is accomplished by means of a 2D binary space partitioning technique [12]
which is performed on the screen plane. Indeed, all the rays are projected in perspective on the
screen plane and the 3D regions are represented by their associated pixels areas described in the
previous section. During the BSP step, a ray may belong to two adjacent regions created by a BSP
splitting line. This ray is then split into two rays (Fig. 9).

The result of the BSP subdivision is firstly a set of rays including the original rays computed in
the first step and secondly a set of regions containing roughly the same number of rays. We can now
define the load metric. It is only determined by the number of rays to be processed, since objects
are supposed to be of the same kind and since ray tracing in a 3D region is nearly independent of
the number of objects [2]. Since a region may be adjacent to several others (Fig. 10), we obtain an
adjacency graph which represents the interprocessors communications. It is important to suitably
map this graph on the hypercube topology in order to minimize the messages routing. An other
important point is the choice of a good sub-sampling. This latter is not obvious. For example, it
must be regular and must depend on the image resolution. This choice is under investigation.

Another problem arises when a light source lies within the scene. In this case, the processor
controlling the region containing it, as well as its neighbours, become rapidly saturated (figure 11).
A solution to this problem, is to delete the light ray messages involved by this kind of source, as
shown in the following subsection.

3.7.2 Deleting the light ray messages

The aim is to allow each node processor to process locally its light rays. To do that, it must know
all the objects potentially intersected by the light rays which originate from its own region. These
light rays form a light volume. This latter may be approximated by a cone whose apex is a light
source and which contains the spherical bounding box of the relevant regions (figure 12). A small
part of the database (which is a subtree in our case) is associated with a cone which is henceforth
called light cone. Thus at each region, corresponds as many light cones as light sources. In fact,
each light cone is truncated by a plane which subdivides the space into two half-spaces. A leaf of
the subtree, associated with a light cone, is such that its spherical bounding box intersects both

15

Figure 10: Result of the BSP.

Light
1 N\ sosrce

Region g
T =7\

7 s]
L~/ i it

> s
~ 4
8

Figure 11: Network congestion due to light source within the scene.

16

- -
-
-
Y
e

’

-

~__ Spherical bounding

box of the region

Figure 12: Light cone.

the light cone and the half-space containing the light source. Spherical bounding boxes are used

since sphere-cone intersection is easy to compute [1].

An alternative is to use a pyramid (called light pyramid) to fit the light volume more accurately.

The construction of this pyramid is described in figure 13.

A coordinate system (S, X;,Y;,Z;) is associated with a light source located at point S. It is
. named light coordinate system. The Z; axis passes through the center of gravity C of a region. Let
V be a vertex of a region. The three unit vectors of the light coordinate system axes are then:

Let (z},y}, z}) be the coordinates of the eight vertices ¢ that define a region. The light pyramid

is then constructed by five faces:

e One face which is perpendicular to the Z; axis and which contains the point P(0,0,Z7) such

that:

e Two faces making the angles a; and f; with the (z;, ;) plane such that:

SV ASC
| SV AsC|
st
| sc|

= XiNZ

Z = max(f)
=1

_ .8 4
’ tan(on) = Irg;a;t(z—i)l

17

Region Y],

o
yqq====
(@]
]
-

Face perpendicular to
The 21 axis

Figure 13: Light pyramid
8y
tan(f) = |min(Ce) |

e Two faces making the angles a; and S8 with the (yi, 1) plane such that:

tan(az) = Irglfgc(zl.-)l
8 i
tan(f) = ir;;ifx(—zl.‘-)i

A leaf of the subtree associated with a light pyramid is such that it’s parallelepipedic bounding
box intersects the light pyramid.

The light pyramid is more efficient than the light cone because of the shape of the region
associated with each processor. Generally, the depth of a region is much greater than its width
or its height. Thereby the size of the spherical bounding box is very important. Consequently,
the number of objects contains in the light cone would be larger than those contained in a light
pyramid.

4 Results

The coding of the algorithm with a static load balancing has been written in C language on an
iPSC hypercube available at IRISA. Figure 14 shows the image of the scene which database has
been provided by E. Haines [16]. Its characteristics are given by table 1.

Table 2 shows times of synthesis process. Preprocessing time is not showed and take few minutes
essentially due to the communication between the host and the nodes. An interesting result is that
the estimated number of rays associated with each processor by subsampling the image, is close to
the exact one processed by this processor. Figure 15 gives, for each processor, the number of rays

Image Balls

Number of primitives 92

Number of light sources 3

Maximum depth of ray 5

Kind of objects sphere
parallelepiped

Resolution 128 x 128

Table 1: Characteristics of test image.

Figure 14: Balls

19

Nb of rays
1 -

09+
0.8+

0,7 -/

0,6 +
-- Estimate
0,5 4

-~ Rays treated

044

0,3+
0.2+

0,1+

0 1 1 1 i 3 : 4 I 3 4 i } 3
T ¥ T T 4 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor
number

Figure 15: Number of ray estimated and treated by each processor

[Processors | Times (s) | Speedup | Efficiency
1 13941 1 1
4 4621 3.02 0.75
16 2262 6.16 0.39
32 1263 11.04 0.35

Table 2: Results

estimated by subsampling and the exact number of rays processed by each of them (the results are
normalized). The pixel area is subdivided into a set of 8x8 windows. Subsampling consists then
in choosing one pixel in each window. In spite of this, tests have shown that some processors (less
than 25 percent) remain less loaded that the other ones. This means that the load metric described
previously, must be refined. This refinement is under investigation.

20

b Conclusion

We have presented a parallel space tracing algorithm whose implementation on an iPSC hypercube
has allowed us to raise all the problems due to a distributed machine. Only one part of the
solutions of these problems have been implemented whereas the other part (light pyramids) is
being implemented. Our main goal was to reduce considerably the number of messages in order
to accelerate the algorithm and to avoid the crucial problem of deadlock. Indeed, primary ray
messages have been deleted and light pyramid have been proposed to avoid light ray messages
when the light sources are in the scene. The proposed static load distribution yields good results
but must be improved by refining the load metric.

21

»

¢

References

[1] J. Amanatides. Ray tracing with cones. Computer Graphics, 18(3):129-135, July 1984. '

[2] B. Arnaldi, T. Priol, and K. Bouatouch. A new space subdivision method for ray tracing csg
modelled scenes. The Visual Computer, 3(2):98-108, August 1987.

[3] K. Bouatouch, M.O Madani, T. Priol, and B. Arnaldi. A new algorithm of space tracing
using a csg model. In EUROGRAPHICS’87 Conference Proceeding, pages 65-78, Centre for
Mathematics and Computer Science, August 1987.

[4] C. Bouville, R. Brusq, J.L. Dubois, and I. Marchal. Synthése d’images par lancer de rayons:
algorithmes et architecture. In Premier Colloque Image, pages 683—696, May 1984.

(5] J.G Cleary, B.M Wyvill, G.M. Birtwistle, and R. Vatti. Multiprocessor ray tracing. Computer
Graphics Forum, 5(1):3-12, March 1986.

[6] M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for complex environments.
ACM Computer graphics, 19(3), 1985.

[7] R.L Cook. Stochastic sampling in computer graphics. In Siggraph’86 Tutorial, SIGGRAPH,
. 1986.

[8] R.L. Cook and K.E. Torrance. A reflectance model for computer graphics. ACM transactions
on graphics, 1(1):7-24, January 1982.

[9] E.W Dijkstra, W.H.J Feijen, and A.J.M Van Gasteren. Derivation of a termination detection
algorithm for distributed computation. Inf. Proc. Letters, 16:217-219, June 1983.

[10] M. Dippe and J. Swensen. An adaptive subdivision algorithm and parallel architecture for
realistic image synthesis. Computer Graphics, 18(3):149-158, July 1984.

[11] M.A.Z. Dippé and E.H Wold. Antialiasing through stochastic sampling. ACM Computer
Graphics, 19(3), 1985.

[12] H. Fuchs. On visible surface generation by a priori tree structure. In SIGGRAPH’80 Confer-
ence Proceeding, pages 149-158, July 1980.

[13] A.Fujimoto, T. Tanaka, and K. lawata. Arts: accelerated ray tracing system. IEEE Computer
Graphics and Applications, 6(4):16-26, April 1986.

[14] A. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and Applica-
tions, 4(10):15-22, October 1984.

[15] J. Goldsmith and J. Salmon. A Ray Tracing System for the Hypercube. Technical Report,
California Institute of Technology, 1985.

[16] E. Haines. Introduction to ray tracing. SIGGRAPH’87.

{17] A.Roy Hall and Donald P. Greenberg. A testbed for realistic image synthesis. JEEE Computer
Graphics and Applications, 3(8):10-20, November 1983.

[18] J.T. Kajiya. Anisotropic reflection model. ACM Computer Graphics, 19(3), 1985.

23

(19] J.T. Kajiya. The rendering equation. In Proceedings of SIGGRAPH’86 in computer graphics,
pages 143-150, SIGGRAPH, August 1987.

[20] M. R. Kaplan. Space-tracing, a constant time ray tracer. In SIGGRAPH’85 tutorial on the
uses of spatial coherence in ray tracing, 1985.

[21] M.E. Lee, R.A Redner, and S.P. Uselton. Statiscally optimized sampling for distributed ray
tracing. ACM Computer graphics, 19(3), 1985.

[22] K. Nemoto and T. Omachi. An adaptative subdivision by sliding boundary surfaces for fast
ray tracing. Graphics Interface, 4348, 1986.

[23] H. Nishimura, H. Ohno, T. Kawata, I. Shirakawa, and K. Omuira. Links-1: a parallel pipelined
multimicrocomputer system for image creation. In Proc. of the 10th Symp. on Computer
Architecture, pages 387-394, 1983.

[24] S.D Roth. Ray casting for modeling solids. Computer Graphics and Image Processing,
18(2):109-144, February 1982.

[25] S. Rubin and T. Whitted. A three-dimensional representation for fast rendering of complex
scenes. Computer Graphics, 14(3):110-116, July 1980.

[26] R.B Tilove and A.A.G Requicha. Closure of boolean operations on geometric entities. Com-
puter Aided Design, 12(5):219-220, September 1980.

[27] K.E. Torrance and E.M. Sparrow. Theory for off-specular reflection from roughened surfaces.
Journal of Optical Society of America, 57(9):1105-1114, September 1967. :

[28] T. Whitted. An improved illumination model for shaded display. C:mmunications of the
ACM, 23:343-349, June 1980.

ii. A functional model for constructive solid geometry. The Visual

Imprimé en France
par)
I' Insticut National de Recherche en Informatijue et en Automatique

3

