N

N

Squeezing more CPU performance out of a CRAY-2 by
vector block sheduling
Christine Eisenbeis, W. Jalby, A. Lichnewsky

» To cite this version:

Christine Eisenbeis, W. Jalby, A. Lichnewsky. Squeezing more CPU performance out of a CRAY-2
by vector block sheduling. RR-0841, INRIA. 1988. inria-00075712

HAL 1d: inria-00075712
https://inria.hal.science/inria-00075712
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075712
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 841

SQUEEZING MORE CPU
PERFORMANCE OUT OF A CRAY-2
BY VECTOR BLOCK SHEDULING

Christine EISENBEIS
William JALBY
Alain LICHNEWSKY

MAI 1988

|

SQUEEZING MORE CPU PERFORMANCE
OUT OF A CRAY-2
BY VECTOR BLOCK SCHEDULING

Christine Eisenbeis
William' Jalby
Alain Lichnewsky
IN.R.IA.

Domaine de Voluceau
78153 Le Chesnay CEDEX

Résumé

Ce rapport traite de l'ordonnancement des instructions vectorielles du CRAY 2 ala
compilation. L' approche retenue utilise une modélisation simplifié du fonctionnemment
en mode vectoriel, et se préte a‘ une utilisation inhabituelle des techniques de compaction
de microcode développées par les auteurs. la méthode utilise deux passes, la premiére pour
ordonnancer les instructions, la seconde pour l'allocation des registres et de la sauvegarde
en memoire locale. Cette approche est validée par des résultats expérimentaux montrant
des améliorations allant jusqu’ & 50% par rapport aux compilateurs CFT77. De plus
les résultats obtenus ouvrent des perspectives nouvelles sur I’évaluation de l'intérét du
mécanisme de chainages dans les architectures vectorielles.

Abstract

Compile time scheduling of vector activities on the CRAY 2! is studied using a simpli-
fied model of the vecter instruction stream. Due to several of the hardware characteristics
of the machine, an approach using much know-how obtained on Array-Processor micro-
code scheduling by the authors is shown practical. It calls for a pass of loop scheduling
followed by a pass of resource allocation. Actual benchmarks of the resulting code are
shown, exhibiting speed-ups as large as 50% over the current CFT77 compiler. Our re-
sults also give a new perspective in the comparison of vector chaining and non-chaining
processor architectures.

1Computations performed on the Cray 2 at CCVR, Palaiseau (France)

N I:I PAPIER RECUPERE ET RECYCLE

INTRODUCTION

In the race towards peak performance, all the
forms of parallelism present in the code have to
be exploited. In fact, the challenge is double:
parallelism must first be detected and then
matched with the architecture. Moreover, it
has to be determined if these problems have
to be solved by hardware, software or a subtle
cooperation of the two.

At the higher level, the advent of vector-
izers and more recently parallelizers, has pro-
vided a very powerful and successful approach.
The success of vector architecture has been
largely due to the availability of vectorizing
technology enabling the user to benefit from
the speedup of pipelined units.

A lower level of parallelism exists in most
modern architectures, permitting the simulta-
neous operation of independent units for com-
putation, memory access, control. This means
that parallel activities must be scheduled and
synchronized, in order to maintain the code
semantics while enhancing the overall perfor-
mance. The memory units often have an asyn-
chronous behaviour that must be matched to
a general synchronous organization.

The hardware conflict resolution approach
is embodied in the Tomasulo algorithm, the
Scoreboard of the CDC - 7600 and Cray “is-
sue” strategy. (cf.[1,26,6,7]) These techniques
have very different run time scheduling capa-
bilities.

The other extreme relies on the software to
solve these problems, and is exhibited by RISC
and horizontally micro coded ~ or VLIW - ar-
chitectures. Going from the first set to the
second. the requirements for the software in-
crease: good scheduling is an optimization fea-
ture in the first case which presents no inter-
lock detection need, the second assumes a very
good scheduling capability and conflict resolu-
tion.

The purpose of this paper is to describe

code scheduling techniques well adapted for
the Cray 2 making a very efficient use of the
hardware resources for vector loops. An amaz-
ing corollary of our proposed techniques, is
that we show that our code scheduling algo-
rithm overcomes the absence,of chaining on
the Cray 2. More precisely, we achieve similar
performance as for an extended architecture
incorporating full chaining mechanism, with
the same memory bandwidth.

In section 1, we give an overview of the dif-
ferent techniques used for instruction schedul-
ing.

In section 2, we describe how the Cray 2 is
modeled in our study. We consider vector in-
structions as atomic blocks, whose interaction
is very simple, due to the absence of chaining.
The latency of the memory access pipeline,
which is a well known characteristic of this ma-
chine, is adequately rendered using a two stage
block level pipe. Moreover, our model can be
treated without the complex linear program-
ming methods of Aryia [2] taking into account
potential chaining in the Cray 1.

In section 3, we describe the software
scheduling of the arithmetic units and mem-
ory access units. The technique used is cyclic
scheduling which is basically local scheduling
of the body of the loop taking into account the
cyclic nature of the loop. This technique was
developed for optimizing code for horizontally
microcoded architectures such as the ST100,
by one of the authors. The asymptotic speed
obtained is very similar to the one obtained by
trace scheduling; moreover due to the use of
cyclic nature of a loop, the peak performance
is reached for relatively small number of iter-
ations (relatively small Ny).

In section 4, we describe the register alloca-
tion strategy. In fact, the scheduling algorithm
of the section 2 allows us to overcome the lack
of chaining, the price to pay is a higher reg-
ister usage (increased residence time of data
in registers): it is the classical well known

space time tradeoffs. This problem is solved
by a graph coloring algorithms; however, the
graphs derived from our vector loops, exhibit a
strong regularity allowing us to devise an opti-
mal polynomial register allocation algorithm.
In this phase, spilling is also introduced, us-
ing the fact that spilling can be done in lo-
cal CRAY 2 memory in complete overlap with
other operations, i.e. spilling can be free when
scheduling allows.

In section 5, we present systematic bench-
marking of our proposed algorithms. We de-
scribe experimental results on a CRAY 2 ob-
tained using code generated according to our
techniques. We compare these results against
those obtained using the current CRAY 2 com-
pilers. Our techniques is clearly superior even
compared with the CFT77 compiler which is
using some sort of trace scheduling technique:
as an example, we get 50% performance im-
proveinent on simple loops such as the multi-
plication of 2 complex vectors. In many cases,
we obtain speeds which cannot be beaten even
by hand compiling, because we saturate one
of the hardware resources, which is often the
global memory path.

1 MOTIVATIONS

In this section, we review briefly the main ap-
proaches used for using parallelism at the low
level between the functional units.

For scalar processors. very sophisticated and
complex hardware techniques have been de-
signed (Scoreboard, Tomasulo’s algorithm) in
order to schedule dynamically at runtime, the
insiruciion flow. At the opposite, recently the
RISC and VLIW architectures are using sim-
ple hardware mechanisms, leaving most of the
burden of code scheduling to the compiler. Al-
though extensive data flow analysis is required
at compile time, this approach appears very
promising.

For vector processors, the associated con-
cepts of vector instructions and registers make
the instruction scheduling problem harder and
more crucial: the granularity being larger both
expressed in processor cycles and allocated
resources, the interactions between them are
more complex and the performance is more
sensitive to the quality of scheduling.

A first approach is the Vector-CISC tech-
nique (CDC 205, ETA 10, IBM 3090 VF, AL-
LIANT FX8) which imbeds most of the lower
level parallelism into the instruction set. The
instructions are issued sequentially, thus not
requiring any run time scheduling. The role of
the compiler is to optimally decompose, for in-
stance by pattern matching techniques, arith-
metic expressions into templates correspond-
ing to the instructions supported by the hard-
ware. [13] This technique although constitut-
ing an interesting solution due to its simplic-
ity and relatively good performance for simple
cases, suffers severely from its lack of flexibil-
ity: a very large instruction set may be re-
quired in order to cover all the practical cases
for which high performance is sought. In this
context vector registers can be used to real-
izc optimizations such as reuse of data and in-
termediate results, and simplify the pipeline
organization by breaking them into simpler
parts.

On the other hand, vector RISC architec-
ture such as Cray and Fujitsu permits to com-
bine intimately hardware and software opti-
mizations, for an increased global efficiency.
This requires registers and the ability to exe-
cute several vector instructions concurrently.
All the present machines of this class, ex-
cept the Cray-2, use the concept of chain-
ing. This allows to build up dynamically
macropipelines, achieving similar run time
flow of data and therefore performance as the
CISC machines. However, the performance
achievable is very dependent upon the com-
piler, which has to order the instructions ex-

N

ploiting data dependencies permitting chain-
ing while avoiding dependencies which result
in wasted cycles due to interlocks. At first
glance, the CRAY?2 with the absence of chain-
ing seems to appear as a step back. We will
show in this paper that much of the overall
performance can nevertheless be obtained by
software scheduling techniques, making inten-
sive use of the vector registers and the local
memory, thereby giving a new perspective to
the speed / complexity tradeoff.

2 Machine Model

In the first part of this section we describe
the general structure of the target architec-
ture and how its behavior is modeled for the
code optimization procedure. Then, we ex-
plain how we imbed the Cray 2 architecture
in this model. The key point here is to ab-
stract the architecture in order to apply ef-
ficiently optimization tools, while preserving
the cssence of the architecture. As we will see
in section 5, the pertinence of the model is
clearly validated by the experimental results
obtained.

2.1 Description of the generic
architecture

In our architecture model, we distinguish two
kinds of hardware resources:

- Functional Units: floating point and in-
teger arithmetic. memory access, data
paths subject to reservations.

- Storage Units: registers, local memory,
main memory.

To operate on the run time behaviour of
these resources, the concept of reservation ta-
bles permits to describe the use of resources
for a series of discrete time steps. The time

steps, also called granules, are not necessarily
cycles. The table explicits, for each of these
time steps, the occupancy of the resources sub-
ject to reservation. These resources are de-
fined in terms of the above hardware elements,
and of their organization with respect of the
flow of data. Thus, when functional units are
pipelined, their different stages are considered
as different reservation entities.

Following this correspondance, instructions,
which control the run time activity of phys-
ical resources, are associated with elemen-
tary reservation tables — also called tem-
plates — which describe the impact of the in-
struction execution on the reservation table.
Each template may specify reservations of sev-
eral resources spanning several time granules.
Scheduling the basic operations and checking
for interlocks now amounts to placing the tem-
plates onto the reservation table. The role
of the scheduler is to compact the reservation
table templates without violating dependence
and resource constraints thus minimizing the
actual execution time.

Array processor architectures (FPS 164,
ST 100) fit naturally in this model, let-
ting templates describe related sets of micro-
operations. The code scheduling becomes the
microcode compaction problem. However, as
shown next, this framework can be applied to
code optimization to a larger class of architec-
tures.

2.2 Modeling the Cray 2

In this section, we describe how we choose the
model of the Cray 2, which contains the time
granule, the reservation table and the tem-
plates. '

Since we are primarily interested in vector
loop optimization, we choose a granularity cor-
responding to a full length vector elementary
operation, or a reservation implied by it. The
practical size of a granule, or macrocycle, is

RESULT V. Register J

OPERAND V. Register

r FLP ADD / MULT J

SOURCE V. Register

MEM |
RESULT V. Register]
MEM
0 64 128
i Lo 14 1 by 1g g1y Cycles(0=Issue)
Figure 1: Instructions and Resource Reservations
RESULT V. Register
OPERAND V. Register
FLP ADD / MULT
SOURCE V. Register
MEM
RESULT V. Register
MEM 1
MEM 2
0

L

Figure 2: Templates

FLP
OP.

STORE
MEM

LOAD
MEM

FLP
OP.

STORE
MEM

LOAD
MEM

2
M| Granules

thus between 64 and 82 cycles. Some of our
results will indicate explicitely the granule size
used, in the others a size of 82 is implicit. The
experimental data below will also show the re-
sult of our scheduling for smaller vector length,
but it must be emphasized here that the whole
optimization process is only conducted for vec-
tors of length 64. Neglecting to optimize vec-
tor instructions of length less than 64 is not
too severe since this occurs only once per loop
after the classical strip mining loop optimiza-
tion. The complete code optimization process
has become hierarchical, and a second pass
is necessary to emit and schedule the scalar
instructions. It also performs local — within
time granule — vector code fine tuning, working
with a time granularity of a single cycle, which
is more that one order of magnitude smaller.
This second pass can be made quite easily be-
cause the most crucial vector block scheduling
is known. and because many reservation table
slots remain free to schedule the scalar opera-
tions.

The resources which must be considered in
the reservation table are the functional units
which are all considered single stage, except
the main memory access path, which is con-
sidered a 2 stage pipeline. Thus, in the case of
a main memory store or load the access is split
in 2 macrocycles and main memory accesses
might be partially overlapped. The local mem-
ory access path is single stage. The vector
registers should have entries in the reserva-
tion table, but we take them into account only
in a separate phase, following the basic loop
scheduling of the previous resources, which
uses virtual registers.

The templates are derived straightforwardly
from the description of the instructions, by
marking the resources occupied during each
time granule. The busy times are simply
rounded up to the next granule. For example,
figure 2 gives the templates with a macrocy-
cle of 82 clock periods. The number 82 corre-

sponds to longest reservation time, in proces-
sor cycles, which occurs for the result register
in a floating point add. (Cf. Figure 1).

Now that the modelling process has been
described, the choice of the unique granule pe-
riod can be examined more closely. At a first
glance, this approximation may seem an over-
simplification in the sense that in our model,
for example the floating point adder will be
considered busy for 82 ticks while, in reality,
this number drops to 68. In fact, the error
introduced is less than 20 %, as pointed out
by the comparison figures 1 and 2 . A more
detailed analysis reveals that our model intro-
duces 2 kinds of wasted cycles: first at the level
of the storage units — which does not constitute
a penalty for the execution time, but shows
higher register usage — and second at the level
of the functional units. In the latter case the
cycles left over can be systematically used to
schedule scalar operations.

Going further in that direction shows that
the choice of the macrocycle and the reserva-
tion tables can be changed for different opti-
mization purposes. For example, a macrocycle
of 72 cycles can be adopted. This choice will
give a better usage of the functional units, be-
cause the approximation is more accurate for
their reservation time, at the cost of a more ex-
pensive allocation for the result register. This
might be worthwhile for vector loops without
scalar operations. Moreover, the reservation
tables can be used to force the code scheduler
to increase the distance between 2 dependent
instructions. This might be extremely useful
for damping the variations of - the main mem-
ory latency and throughput. For example, the
result register for a load can be reserved for 3
macrocycles, inducing the scheduler to delay
the use of that register. This will avoid to get
an interlock at execution time due to a mem-
ory access conflicts. Another case is the scat-
ter store operation, for which actual behaviour
can be modelled quite closely, after adequate

experimentation. Our model offers a large de-
gree of flexibility which can be adjusted for
various optimization purpose.

3 Scheduling of the Func-
tional units

As explained in the previous section, our code
optimization strategy distinguishes between
vector operations and scalar operations: in a
first coarse granularity pass, we schedule vec-
tor operations, then. in a subsequent pass, we
schedule scalar operations working at the ma-
chine cycle granularity.

The optimization of vector operations , itself
is decomposed in two consecutive phases:

- scheduling of the functional units as-
suming an unbounded amount of storage
resources (infinite number of registers).
This means that the physical registers en-
tries in the reservation table can be ig-
nored. However, the life span of virtual
registers is computed and used in the al-
location phase.

- management of the storage units: register
allocation, spilling in locai memory

Assigning real registers too early during the
scheduling phase is unnecessary due to the in-
terchangeable character of the registers. Fur-
thermore, such an allocation would require to
add several lines to the reservation table, mak-
ing the scheduling more complex and less effi-
cient.

3.1

We are working on a vector loop which has
been already detected and processed by a vec-
torizer (in our case VATIL [23]). The depen-
dence graph [19] is available at this stage and
several optimizations including strip mining

Preprocessing

have been performed. The dependence infor-
mation — intra- and inter-iterations — is used
during the scheduling process to preserve the
semantics of the program. The strip mining
operation consists in breaking ~ blocking — all
the vectorized loops by blocks of 64 iterations.
For a loop of N iterations, the result is an out-
ermost loop of f—g—“ and an innermost loop of
64 iterations.

Since vector operations are considered as
atomic blocks, the term iteration (resp. loop)
will denote exclusively outermost iteration
(resp. outermost loop).

3.2 Code Generation of the
Loop Body

In this phase, we generate an intermediate vec-
tor code for the loop body, which is used as
basic pattern for the cyclic scheduling of the
iterations.

The registers are handled in a virtual man-
ner according to a single assignment rule: the
number of registers is supposed unbounded, at
each time a register is needed to hold a value
resulting from a load or an operation, a new
register is allocated. In the cyclic scheduling,
each iteration of the loop body will be repre-~
sented by a similar copy of the generated inter-
mediate code. The virtual register defined in
the generic loop body are named Ri. The copy
corresponding to iteration ¢ will create the reg-
isters numbered R, (%) through R;(7). The vir-
tual registers which are either live on loop en-
try or invariant, are named R;(0). Globally,
as a consequence of the single assignment rule,
each virtual register is written once but may
be read several times. The main advaniage
of such a technique is to avoid introduction of
artificial dependencies due to a bad allocation
[10].

The intermediate code is represented by a
graph (called I-graph) whose vertices are the
instructions. The edges are of two kinds: first

BEST CYCLE LENGTH 1M =6

CDIR$ DOVEC LOOP LENGTH LB =6

D0 22 i =1 ,1000 ,1 INSTRUCTION COUNT THC =25

zr(i) = xr(i)*yr(i)-xi(i)*yi(i) ¥ 1/2 ITERATIONS NIT =1.16
zi(i) = xi(i)*yr(id+xr(i)*yi(i) ¥ 1/2 VECTOR LENGTH WL =175
22 COETINUE ITERATIONS PER SECOND VIT = 36.13367 MITS
THEORETICAL SPEED VOP = 216.802 MFLOPS
Figure 3: Source Code and MIMOSA Statistics
|---LOOP-~~~-|
| I
PEE T Tititititiititigf2l2izi2i2i
fol11213141516}7(8I910(1121314I51617]8]9l0]1]2]|3}4]
--------- [=1=1=1=t=1=1=t=1=b=1=1=0=1=1= D=1 =1= 1= 1= =)= =1 =1 -]
nemi (t11le12f | f212121211111313131312121 | | 1 I313] |
el B B B R R B e ol Bl B B e S Bl el B B R R R R R R R B
mem2 Plgiglanal 1 of212i2i2r pisisisist e b b
--------- I=t=l=1=1=1=1=1=k=1=0=1=1=t= === 1=)= 1= i= 1= 1= =1 =]
add T T T T T 0 3 T 2 4 I < T T L
--------- F=l=1=1=1=1=t=0=1=1=1=1=1=]=1=1=1=1= 1= 1= |=1=1=]=1-]
mult b beitinleh oi2t212120 1 I31343i31 1 1 L H
e e M S S B N S E N B S S B R S SRR B
vo (2 O AR T U W 3 T I T T O O O
e it it B ot B R o B Bl B Bt B R el Bl Bt B R R R Bl R Rl Bt B
vl [ARUEUE SRR R I T T T T T I O
el B T I B B B B B R R R B B B B R R B R B R B
v2 (I E RN & A5 W I T T T T I O I I A
--------- I=t=t=1=1=1=1=1=1=1=1=1=1=1==1= 1= 1= D= 1= 1= 1= 1=]=]=]
v3 (I B LN 5 U RN & U T T T T I T O O O O
--------- F=l=1=t=1=t=1=i=t=1=t=1=1=1=1=1=1=1=1=1=F=1= =] =] =]
v4 [N A A & S U T T T I T O O O
aeenetecl Bt Bt BN B B B B e Bt B Bt R R B Bl Bt Bt R Bl o Bl Bl Bl R B
v5 T T T T T I T T O I O A O
--------- I==1=1=1=I=1=1=1=1=1=}=1=1=1=I=F= |- = 1=] == 1=]=]-]
v6 (I I R W R B & 8 I T T I O A B
--------- I=l=1=1=1=1=1=1=1=1=1=1=1= 1= 1= I === F= = 1= = 1=} =) -]
v7 I T T S % 2 T T T T I O I
--------- I=l=1=1=1=F=1=1= 1= 1= 1= 1= 1= 1= 1= 1= =]= == D=1 = 1=] =] =]
v8 (N A T S R W W I T T T O O IO N O
--------- b=l=1=b=1=t=k=1=t=i=1=1=1= 1= 1= 1=1=1= 1= D= t=1=)= -1 =]
v9 (N T I O 8 W 2 T T A O A B A
--------- F=l=1=t=1=1=1=1=1=1=1=1=1= == 1=I=1=1=1=4=1==1=] -]
Figure 4: Reservation Table after Pass 1

those representing the intra-loop data flow
which are labeled by the corresponding vir-
tual register name and second those represent-
ing the inter-iteration dependence information
(distance vector and dependence type). Clas-
sical optimization procedures such as finding
common subexpressions, redundant and dead-
code elimination are performed on it.

3.3 Scheduling

The scheduling of the whole loop involves two
intimately related subproblems: scheduling of
the generic loop body code, and then schedul-
ing of the successive iterations. Our strategy
will be to use the cyclic scheduling technique
which was developed for array processor mi-
crocode compaction [24], and which tackles
the two issues simultaneously.

In this method, all the iterations are sched-
uled exactly following the same pattern de-
rived from the generic loop body. Therefore
each iteration contributes to the reservation
table by a translated copy of the generic loop
body reservation table RT. Iterations are
started with a constant unknown period of d
granules. The global scheduling problem is to
build a reservation table RT for the loop body
and find a period d, such that:

- the sequence RT +kd does not conflict: at
each macrocycle, a given functional unit
is not used more than once.

- the semantic dependence constraints are
satisfied.

- the total execution time is minimized.

~ Let us notice that the execution of one itera-
tion may span more than d granules and there-
fore at a given cycle several successive itera-
tions might be concurrently executing. Conse-
quently the local scheduling has to take cyclic-
tly constrainls into account in order to avoid

resource conflicts between iterations. This
simply means that dependences are satisfied
under the periodic initiation mode, and cyclic-
ity constraints can readily be computed from
the dependence graph as a function of d. The
payoff of that additional complexity is the per-
fect chaining between iterations.

As a preliminary step, we first complete the
I-graph with a dummy terminal sink node S.
Then we label each vertex v with the length
of longest path from v to S. After, the vor-
tices are sorted into a list L = {v,,...vx} by
decreasing label.

For a given period d, we schedule the loop
body according to a list scheduling strategy
slightly modified in order to take into account
both semantic and cyclicity constraints. In

begin
n=0
while L #0 do
while any v in L
can be scheduled at cycle n
then
schedule v
L=1L\{v}
update functional unit usage
update cyclic comstraints
endvhile
n=mn+l
endwhile
end

Figure 5: Basic Scheduling Algorithm

figure 5, “can be scheduled” means that the
semantic and cyclic constraints are preserved.
Taking into account cyclic constraints while
scheduling the generic loop body allows to op-
timize globally the execution time, by permit-
ting a small value of the period d. In fact,
this is equivalent to the insertion of delays sug-
gested in [11] and [20], but we have more flexi-
bility in the process because much semantic in-
formation is available. However, since at that

stage, we are not considering physical regis-
ter assignment, our introduction of delays will
not add complexity to the reservation table
describing functional units.

The period d is simply determined by com-
puting for each functional unit ¢, the number
of macrocycles n, where ¢ used is during one
iteration. In our current implementation, d is
chosen starting at the maximum value of ny;
this value of d corresponds to the saturation
of one of the functional unit. Further work is
required to investigate this choice.

The success of such a strategy of scheduling
is mainly due to the fact that the templates
are extremely simple: most FUs is not used
more than one macrocycle.

3.4 Global Register Usage

In this section, we describe how to keep
track of the register requirements during the
scheduling phase.

We call the birth date of a virtual register
the cycle where it is assigned a value. Cor-
respondingly, its the death date is the cycle
where its content is used for the last time. Be-
tween its birth and death, the virtual register
is said live. At each cycle, the total number of
live registers is determined and the maximum
number of live registers over the whole exe-
cution is called the critical register quantity
(CRQ). Note that the number of live regis-
ter during a period of d cycles does vary dur-
ing startup and pipe flushing times, and that
CRQ correspond to the steady state of the
execution. This number clearly corresponds
to the minimum number of physical registers
needed to execute the loop without spilling.

Many useful properties of registers are com-
mon of a register class, which correspond to
the virtual registers of the generic loop body.
Namely. the class R; contains :

U R

i=l.n

Ry =

A register class C is said critical if suppressing
the reservations associated with elements of C
reduces CRQ. For example, register classes
whose elements have a life span of d granules
are critical. This occurs for the registers v1
and v6 in figure 4. This notion helps to select
good candidates for the allocation of a physical
register or for spilling.

In the scheduling procedure described
above, there is no direct to try to minimize
that quantity. However, as we observed in
practice, the resulting CRQ is generally not
far from the optimal due to the fact that we are
scheduling as early as possible, the executable
templates, which in fact, directly reduces the
lifespan of virtual register names and there-
fore CRQ. Torefine our approach, we are cur-
rently testing a level scheduling strategy which
instead linearly ordering the templates, allows
to choose for execution between several tem-
plates. The criteria used for selection is the
local minimization of the number of simulta-
neously alive registers.

4 Register Allocation and
Spilling

In this section, we describe how to map the
virtual registers onto the physical ones. De- .
pending upon the value of CRQ@, relative to
the number NPR of physical registers avail-
able, two cases occur:

- If CRQ is less or equal than N PR, the
specific allocation algorithm described in
section 4.2 uses exactly CRQ registers,
which is optimal.

- If CRQ is greater than NPR, we study
the life of the virtual registers to deter-
mine the ones to be spilled, in order to
reduce CRQ®, as described in section 4.3.
This process is iteratively repeated up to
the point where CRQ is less than than

ENTRY | -~-UNROLLED LOOP----—-
!

prrrrt
VIRTUAL lol1]2/3l4i51l6I7I8I910I1]

s O 8 Y B R T R R R R S

EXIT

I 11111l ieit2121212i2
1213141516171 1819101121314
I=1=1=1=t=11=1=1=1=1-1-1-1

vO 111111 :6lelel6l6:: .3]3|3|313:: :6l6|6l6l6: |
""'---’|’|‘|'|’|'|‘||‘|'|‘|'|'|'||'|'|'|'|'|'||'|'|'|‘|'|'|'|
vl |0|0|0|0|0|0.'.:0|0|0|0|0|0::0|0|0|0|0|0:: 11 ||
--------'l'l'l-l'l-l'l|'|'|‘|‘|'|'||'|'|'|'|'|-||'|'|'|‘|-|-|-|
v2 [:2121212: | :5151815: |l s2020202: L LT
’-"‘-"‘l'|'|'|‘|'|'||'|'|‘|'|'|'||'|‘|'|'|-|'||-|'|'|’|-|'|'|
v3 [:5151515115: :2121212112: :5151515115: 11 |
-'-'-'-'-I-l'l’l‘l'l'l|—|'|'|-|‘|'||-|*l-|'|'|'||-|'|-|'|-|-|'|
v4 111 :6l6l6ll6: | :31313113: | :elelsfie: | | [
B et Rt Cnd A Bt ol B I-I'l'l'l'l'l|'|'|'|'|'|'||'|'|'|‘|-|-|-|
v5 PE L eTiTiTe :4l414: (11 TiTdT: L
"-"'-'-l'l'l‘l'l'l'l|—|'|'l‘|'|'||’|'l'|'|'|‘||'|'|'|'|-|'|'|
v6 td |1|1|1||1|1|1:1|1|1|Illillzlllllllilllit [
""""'l'l'l‘l'l'l'l|-|'|'|'|'|'||-|-l-|‘|’|‘||'|'|-|'|-|'|'|
v7 Py | .4la]1414: | :7I71717: 1 [
-"'-"'-|-|-|‘|‘|'|‘l|-|'|'|-|‘|-|I'l'l'l'l‘l'l|-|'|'|'|-I-|-|
v8 P oc2ani2i2: 0| 511518 11 :211212: L 1 ||
“'-'*--'-|'|-|'|‘|'|'l|-|'|'|‘|‘|'||'|'i'|'|'|‘||‘|'|'|'|'|'|-|
v9 P 31813 11 ::61616: 1 | ::31313: 1 | 1
""""'|'|‘|‘|'|‘|'||'|'|'|‘|‘|'|l'|'|'|’|'|'||'|'|‘|‘|‘|'|'|

|] 1 H |

| wINpow || winpow i wINDOW || WINDOVW |

| 1 I 2 .. 3 Il 4 |

Figure 6: Allocation of

N PR which is relevant of the previous
case. During that phase, spilling code is
introduced and scheduled. In many prac-
tical cases, the spill will take place in par-
allel with other operations, without delay-
ing any arithmetic or main memory oper-
ation.

4.1 Register Allocation Frame-
work

In that section we assume that CRQ is less
or equal than NPR. and show how to pro-
duce a physical register assignment requiring

Real to Virtual Registers

CRQ registers at most. The register assign-
ment will be described by a function ¢ associ-
ating to each virtual register a physical one in
RV[L.NPR].

First, if the loop contained only one iter-
ation, the problem could be easily solved by
graph coloring (Cf.[5]). We would first build
an interference graph in the following way:

- the vertices are the virtual registers.

- the edges are drawn between all the pair
of virtual registers simultaneously alive

A graph of intervals on the real line is thus

10

©

obtained, which can be easily colored in poly-
nomial time. (Cf. [3] and [14]).

Now, for a loop with more than one itera-
tion, if we forced each iteration to follow the
same assignment rule

S(Ri(7)) = S(Ri(i + 1))

the same code could be generated for all iter-
ations. This involves building a similar graph:

- the vertices are the virtual register classes
R, through R;.

- anedge is drawn between R; and R; if and
only if there are two pairs (i,m) # (j,n)
such that R;(m) and R;(n) are simulta-
neously alive.

However, in that case, the resulting graph is
not a graph of intervals on the real line any-
more but a graph of arcs on a circle of d gran-
ules long. This is due to the periodic nature
of the loop. The resulting graph may be diffi-
cult or even impossible to color: if the life of
a virtual register is greater than the period of
the loop d, there will be a self cycle, making
no coloring possible.

To solve this problem, we must enlarge
the possible choices of allocation functions.
Specifically, we look for periodic allocation
functions of integer period ¢ :

HeN (Ri)=o(Rili +1).

When such a couple (¢,1) is found, we just
unroll the loop 1 times, and we generate the
code for the block of { iterations, spanning td
granules, according to the mapping defined by
&é.

4.2 Unrolling Strategy

As a preliminary step, the critical names are
allocated. On the example of figures 4 and 6,
vl is assigned to RVO and v6 to RV1, leav-
ing 6 critical registers. This has reduced the

11

complexity of the problems without any loss;
if s physical registers have been used for hold-
ing the s critical names, the critical number of
registers required for the remaining names has
been decreased by at least the same amount
s. Now we can focus on the allocation of the
remaining names.

In the sequel, the term window will denote
d consecutive granules, and the loop execution
is decomposed in a sequence of windows. On
the example, the first window consists of gran-
ules 0 up to to 5, the second from 6 to 11,...
Except for the startup and pipeline flush win-
dows, the execution pattern on these windows
is exactly identical. One of them is arbitrarily
selected as a reference window, (window 2 in
the example).

We will construct,on a window by window
basis, a function ¢ satisfying the following con-
straints:

- first over each window considered sepa-
rately the function ¢ is an admissible al-
location: any pair of virtual registers si-
multaneouly alive in a cycle of the win-
dow will be assigned through ¢ different
register names

- between two consecutive windows, the
function ¢ preserves the continuity of the
assignment: a register name whose life
span several windows, is assigned across
all the windows the same number

It can be readily checked that such a function,
constitutes an admissible assignment for the
whole loop.

To satisfy the first constraint, we start the
construction by building an assignment ¢rover
the reference window. This is a problem which
can be solved in polynomial time using exactly
C RQ registers. The assignment over the other
windows is now defined by a permutation o of
the physical register number:

over any window: ¢ =00 ¢,.

By construction, the first property is verified.
The problem is now to find the proper per-
mutation o such that the second property also
holds.

Let us notice that over the reference win-
dow, two different names belonging to the
same class may appcar such as v3(i) and
v3(i + 1). During the allocation phase, these
names may be allocated to different physical
registers.

In our example, as a result of the assign-
ment on the reference window, v0 is assigned
to RV6.v2 to RV5, v3 to RV5 then to RV[2],
v4 to RV6 then to RV3, v5to RV7,v7 to RVT
and RV4, v8 to RV 2 then to RV5, and finally
v9 to RV 3.

Now, let us determine the proper permuta-
tion o to satisfy the continuity constraint. In
fact our problems is that some names have a
lifespan of several windows. For sake of sim-
plicity, let us assume that the execution of one
iteration does not span on more than two win-
dows. It is convenient to introduce here the set
of names (denoted RIGHT), whose life span
over the reference window and the next one:

RIGHT = {R;,(j1).....Ri,(Js)}

Newles wen Aafina TT
i1any, We Qeininc Li:x 1 a5 the set of names

Sim
alive in the reference window and in the previ-
ous one. Due to the cvclic nature of the loop
and our scheduling strategy, there is a one to
one mapping between the elements of LEFT
and RIGHT associating names in the same

class. Therefore:
LEFT = {Ri,(ky1),....R; (ks)}

In our example:
RIGHT
LEFT

{v3(2),v4(2),v7(2), v8(2)}
{e3(1). v4(1),v7(1), v8(1)}

= [
= 7
Looking closer at the physical registers allo-
cated at the element of left and right, we define

12

a partial mapping @ over the physical register
numbers by:

0(Rll(kl)) Ril(jl)

8(Ri, (ks)) Ri,(4s)

This an injective partial mapping which can
be completed into a bijection o. It is easily
checked that such a permutation satifies the
continuity property by construction. The or-
der t of o will give the period ¢, recalling that

o' = Identity.
In our example,

0(v3(1)) 6(5) =2
6(v4(1)) = 6(6)=3
0(v7(1)) = 6(7)=+4
f(v4(1)) = 6(2) =5

a(2) 5

a(3) = 6

og4) = 7T

g(5) = 2

o(6) = 3

a(7) 4

There are many ways to complete 8 in order
to get o. For.this purpose, we build the partial
graph of 8 and complete it to limit the length
of the cycles. The reason is that the order
of o (and therefore the degree of unroiling) is
the least common multiple of the length of the
cycles. By the same token, for eight registers
of the Cray, the maximal ¢ is 15. In practice,
this is a very large upper bound; for all the
loops described in the benchmark section,the
unroling factor is not greater than 3 .

4.3 Spilling

We present here the simplest of our strate-
gies for spilling, more elaborated ones are un-
der development. Although fairly simple, this
technique scems well adapted to the frequent
case where CRQ is not too large compared to
NPR. It can be assumed that the local mem-
ory is large cnough to hold all the spilled data,
the limit in the local memory of the Cray 2
being of 256 full vector registers.Several prob-
lems need to be solved:

- selecting a canditate for spilling
- scheduling of the transfers

- bookeeping in the register data structures
of the compiler

The registers are spilled one by one as long as
CRQ is greater than NPR. The criteria to
select the next register to spill is

- if a register being spilled reduces CRQ,
select it immediately.

- otherwise, spill the register with the
longuest life.

The move to or from local memory is sim-
ply inserted in the reservation table on the line
corresponding to the local memory access unit.
If there is a conflict on the local memory unit,
we try to schedule later or earlier but while
preserving the decrease in CRQ. If none of
these costless solutions is feasible, a granule of
delay is inserted. The bookeceping amounts to
mark as killed a register spilled at the first time
after it has entered the local memory. When
the data is needed again, a new name is cre-
ated.

The other strategies under development for
spilling incorporate spilling directly into the
scheduling phase. This amounts to add con-
straints in the same spirit as “register. pres-
sure”.

5 Experimental Results

We present here some benchmark results and
compare our code generation techniques with
the main FORTRAN compilers available on
the Cray2. The machine used was a Cray2
using dynamic main memory implying a long
latency. Some experiments were performed
under a normal load and also some others
on dedicated time in order to get an accu-
rate view of the performance. In our tables,
CFT77 denotes the Fortran compiler CFT77
2.0, CFT2 denotes the Fortran compiler CFT2
3.0b and “ours” denotes the code generated
according to our method. In our case, the
vector code was automatically generated using
VATIL for the vectorization and dependence
analysis and a version of the microcode com-
pacter MIMOSA modified to performed as de-
scribed in this paper. At the time of the exper-
iments, the address generation, done in scalar,
was not fully operationnal, so the address com-
putations were inserted semi-manually. This
does not affect the results due to their minor
impact on the overall performance.

Our benchmarks (Cf. Figures 8,9,10, 11 and
12) contained vector loops — m mv mvf fam-
ilies — and two larger kernels (Cf. 7) — mul-
tiplication of two complex vectors: mulcomp
and applying a Givens rotation: drot —. The
goal of the m, mv and mvf families is to get
a systematic evaluation of the behavior of the
different code generators for various possible
2, 3 and 4 adic vector operations; we wanted
to check that our method was not sensitive to
some patterns of operations. All these loops
are very good candidates for the use of chain-
ing mechanism.

As a first conclusion, for our benchmark,
CFT77 achieved better performance than
CFT?2, in particuliar for vector length greater
than 256. This is due to the fact that CFT77
unrolls the loops by blocks of 256 iterations,
then on block of 256 iterations, it resched-

13

ules the operations in fashion quite similar to References

trace scheduling. In both cases our method
achieves better performance, and might be of
interest for the evolution of commercial com-
pilers, which obviously have to work under
more stringent reliability requirements. On
most cases, our methods permits to use fully
the possible memory bandwidth.

Conclusions

A new approach to vector code generation and
vector code scheduling for the Cray-2 has been

described. [i is built upon ideas from micro-
code compaction, program restructuring, and
an original allocation strategy adapted to the
periodicity of the loops. Our present imple-
mentation is based on the MIMOSA micro-
code optimizer, and has permitted to validate
the approach as well as test several strategies.
The experimental results show the quality of
the code produced, and the adequacy of the
simple machine modeél used. The fact that
speeds near the peak potential performance of
the machines can be reached, also give some
insights on the efficiency aspects of the non
chaining Cray 2 Architecture. Directions for
further rescarch contain comparative studies
of spilling strategies, and optintization of the

use of local memories.

14

(1]

2]

(3]
4

(3]

(6]

7}

(8]

[9]

[10]

ANDERSON D. W., Sparacio F.
J. AND TomasurLo F. M., “The
IBM System/360 Model 91: Ma-
chine Philosophy and Instruction-
Handling”, IBM J., vol 11, Jan-
uary 1967, Reprinted in C.G. BELL,
A. NEWELL AND D.P.SIEWIOREK,
“Computer Structures : Prin-
ciples and Examples”, Mc Grew
Hill.

ARYA,S., “Optimal Instruction Schedul-
ing for a Class of Vector Processors:
an Integer Programming Approach”,
Report CRL-TR-19-83, University of
Michigan, 1983.

BERGE, C., “Graphes”, Gauthier Vil-
lars, Paris, 1970.

CHAILLOUX, J. ,“Le.Lisp de I'INRIA,
le Manuel de Reference”,Decembre
1984.

CHAITIN,G.J., “Register Allocation and
Spilling via Graph Coloring”, Proc.
ACM SIGPLAN Symp. on Compiler
Consiruction, Boston, 1982,

CoNTROL DATA CORPORATION, “6600
CENTRAL PROCESSOR Vol 1
& 27, Ref. 020167 & 0911466, 1967.

CRrRAY RESEARCH INC., “Cray 1S Se-
ries Hardware Reference Man-
ual”, Ref. HR-0808, 1980.

CrAY RESEARCH INc., “Cray-XMP
Computer Systems”, Main Frame
Reference, 1980.

CyTrRON, R.G., “Doacross: Beyond
Vectorization for Multiprocessors”,
Proc. International Conference on
Parallel Processing, August 1986.

CYTRON,R., FERRANTE,]J.,
“What’s in a name? The value of re-

12

[13]

(14]

(15]

[16]

[17

[18)

[19]

naming for parallelism detection and
storage allocation”, ICPP 87, 1987.

DavipsoN, E.S.,“The Design and Con-
trol of Pipelined Function Gener-
ators”,Proc. 1971 Int. IEEE Conf.
on Sysl., Nelworks, and Compulers,
Oazlepec, Merico, January 1971.

FisHer, J.A., ELLis, J.R., RUTTEN-
BERG, J.C., NicoLau, A., “Paral-
lel processing:a smart compiler and
a dumb machine”, Proceedings of
the 1984 SIGPLAN Symposium on
Compiler Construction, June 1984.

GANAPATHI M., FISCHER,C.N,,
“Affix grammar driven code gen-
eration ”, ACM-TOPLAS, VOL.7,
NO.4, Oct.1985, pp.560-599, , 1985.

GONDRAND, M., MiNoUX,M.,
“Graphes et Algorithmes”, Ey-
rolles, Paris, 1985.

GoobpMAN, 1.R., Young, H.C., “Code
Scheduling Methods for Some
Architectural Features in PIPE”,
CSTR 579, University of Wisconsin-
Madison.

HAXEN, C., “Optimizing Static Micro-
programmable Pipelines: a Timed
Petri Net Model”, Proc of the 2nd
International Conference on Super-
computing, Santa Clara, 1987.

HockNEY, R.W., JessHoPe, C.R,,
“Parallel Computers ”, Adam Hilger,
Bristol, 1981

KExNEDY, K., “Automatic Vectoriza-
tion of Fortran Programs to Vector
Form”, Technical Report, Rice Uni-
versily, Houston, TX, Oclober 1980.

Kuek, D.J., Kuan, R., Pabuva, D,
LEASURE, B., WoLFE, M., “Depen-
dence Graphs and Compiler Opti-

15

[20]

[21]

[22]

[23]

(24]

(25]

[26]

27]

mizations”, Proc. 8th ACM Symp.
POPL, Williamsburgh, VA, 1981.

KoGGE, P.M., “The Architecture of
Pipelined Processors”, McGraw-Hill,
New York 1981.

LANDSKOV, D., DaAviDSON, S,
SHRIVER, B., MALLETT, P.W., “Lo-
cal Microcode Compaction Tech-
niques”, Computing surveys, vol. 12,
n 8, September 1980.

LICHNEWSKY, A., LOYER, M., “Un
Module Vectoriel Flottant sur SPS7.
Pourquoi?’, Bullelin de Liaison de
Liaison de la Recherche en Infor-
matique el en Aulomatique, no 112,
1987.

LICHNEWSKY,A., THOMASSET, F.,
“Techniques de base pour ’exploi-
tation automatique du parallelisme
dans les programmes”, Rapport de
Recherche INRIA, N 460, 1985.

LiCHNEWSKY, A., THOMASSET, F.,
EisENBEIS, C., “Automatic Detec-
tion of Parallelism in Scientific Pro-
grams with Application to Array-
Processors”, Proc.of IBM Instilute,
North Holland, 1986.

Mackg, T., HusoN, C., Davies, J.,
LEASURE, B., WoLFE, M., “The
KAP/ST-100 : A Fortran Translator
for the ST100 Attached Processor”,
Internalional Conference on Parallel
Processing 1986.

NEC CoRPORATION, “NEC Super-
computer SX-1/SX-2. General
Description”, GAZ0IE, 1983.

NicoLaU, A., “Uniform Parallelism Ex-
ploitation in Ordinary Programs®,
International Conference on Parallel
Compuling 1985.

A\

[28] RAuv, B.R., GLAESER, C.D.,
PicarD, R.L., “Efficient Code Gen-
eration for Horizontal Architectures:
Compiler Techniques and Architec-
tural Support”, Compuler Architec-
ture News, Vol 10, No 3, April 1982.

[29} SHAR, L.E., “Design and scheduling
of statically configured pipelines”,
Stanford Univ., Technical Report n
42, 1972.

[30) WEISS,S., SMITH,J.E., “Instruction
Issue Logic in Pipelined Supercom-
puters”, IEEE Tr. Comp., Vol. C-
33, NO.11, Nov. 1984, pp 1013-1022,
1934.

[31] STAR TEecu~NoLoGiEs, INc. “ST100:
The 100 Megaflops array proces-
sor”, Hardware and Software Refer-
ence Manuals.

[32] TOMASULO,R. M., “An Efficient Al-
gorithm for Exploiting Multiple
Arithmetic Units”, IBM Journal,
1967.

[33] Tovzeat, R.F., “A Fortran Compiler
for the FPS-164 Scientific Com-
puter”. SIGPLAN Notices, Vol. 19,
N 6, June 1984.

16

mi y(i) = (a * x(i)) + b

m2 y(i) = (a + x(i)) = b

mv1 z(i) = ((x(i) * y (i)) + a) *+ b
mv2 z(i) = ((x(i) * b + a) * y(i))
mv3 z(i) = (y(i) + (a * x(i))) + b
mv4 z(i) = (a * x(i)) + (y(i) + b)
mvS z(i) = ((a * x(i)) + b) + y(i)
mvé z(i) = ((x(i) + b) * a) + y(i)
mv7 z(i) = ((x(i) + y(i)) » a) + b
mv8 z(i) = ((x(i) + y(i)) + a) ¢+ b
mv9 z(i) = (((x(i) + a) + y(i))) = b
mvfi t(i) = ((x(i) * a) + y(i)) * z(i)
mvf2 t(i) = ((x(i) + y(i)) * 2(i)) + a
mvf3 t(i) = (x(i) + (y(i) * 2(i))) * a
mvfd t(i) = x(i) + ({y(i) + a) * z(i))
mvf5 t(1) = (x(i) + y(i)) + (a * z(i))
nvf6 t{i) = (x(i) + (y(i) * a)) + z(i)
mvE7 t(i) = ((x(i) * y(i)) + a) » z(i)
mvf8 t(i) = ((x(i) + a) * y(i)) * z(i)

mulcomp | zr(i) = xr(i) * yr(i) - xi(i) * yi(i)
zi(i) = xr(i) * yi(i) + xi(i) * yr(i)
mulcomp | x(i) = ¢ * 2(i) - 58 * t(i)
y(i) = s * z(i) + ¢ * t(i)

Figure 7: Program Kernels used in the Experiments

17

[Performance for V. Length = 234]

Loop CFT2 | CFT 77 Ours | Speedup
ml 62.92 71.93 | 102.07 1.42
m?2 62.11 57.23 | 100.12 1.61
mvl 67.39 70.81 | 109.54 1.55
mv2 78.54 80.84 | 122.47 1.51
mv3 79.06 87.21 | 116.79 1.34
mv4 75.68 82.88 | 121.34 1.46
mv53 82.39 81.82 | 122.04 1.48
mv6 79.04 80.26 | 119.06 1.48
mv7 67.79 71.50 | 88.160 1.23
mv8 67.87 73.03 | 106.08 1.45
mv9 75.85 82.71 | 117.67 1.42
mv{l 71.25 70.81 | 107.21 1.50
mv{2 67.02 72.10 | 99.250 1.38
mv{3 64.80 71.08 | 100.77 1.42
mv {4 72.80 74.27 | 103.08 1.39
mv{5 62.61 69.37 | 102.34 1.48
mvis 76.27 80.37 | 109.33 1.36
mvi{7 68.06 74.49 | 96.570 1.30
mvi8 70.61 75.39 | 113.39 1.50
mulcomp 98.52 108.5 | 128.44 1.18
drot. 127.6 121.3 | 148.95 1.17

Figure & Performance in MFLOPS under Average Load

18

{ Performance for V. Length = 490 |

Loop CFT2 | CFT 77 Ours | Speedup
ml 67.99 90.73 | 113.22 1.24
m?2 66.62 93.03 | 108.89 1.17
mv] 70.87 89.99 | 123.25 1.37
mv?2 84.64 106.93 | 137.90 1.29
mv3 78.95 111.57 | 146.94 1.32
mv4 78.36 99.43 | 145.51 1.46
mvs 85.57 106.98 | 149.32 1.39
mv6 82.34 103.86 | 135.86 1.31
mvT 72.86 84.05 | 115.36 1.37
mv8 72.30 87.45 | 127.86 1.46
mvY 81.33 104.82 | 133.08 1.27
mvfl 74.72 92.69 | 109.81 1.18
mv{2 68.01 83.29 | 117.40 1.41
mvi3 64.65 87.08 97.48 1.12
mv{4 79.78 88.05 92.74 1.05
mv{3 64.73 85.15 | 111.24 1.31
mv{6 78.69 89.40 | 120.23 1.34
mv{T 71.64 87.07 | 117.13 1.34
mvi{8 72.75 90.79 | 119.03 1.31
mulcomp | 104.71 111.37 | 152.12 1.36
drot 130.35 123.94 { 130.35 1.05

Figure 9: Performance in MFLOPS under Average Load

19

[Performance for V. Length = 256 |

Loop CFT 77 Ours | Speedup
ml 78.09 | 121.24 1.55
m2 75.87 | 129.40 1.70
mvl 83.41 | 119.61 1.43
mv2 100.48 | 143.75 1.43
mv3 96.82 | 144.75 1.49
mv4 96.96 | 145.20 1.50
mv5 95.32 | 144.75 1.52
mv6 86.74 | 143.75 1.66
mv7 80.14 | 105.11 1.31
mv8 80.74 | 130.80 1.62
mv9 95.80 | 144.87 1.51
mvfl 87.62 | 115.77 1.32
mv{2 84.67 { 111.36 1.32
mvi3 83.17 | 114.21 1.37
mv{4 77.50 | 115.69 1.49
mvf3 84.09 | 113.45 1.35
mvib 98.26 1 110.32 1.12
mvf7 84.17 | 111.23 1.32
mv{8 93.34 | 123.56 1.32
mulcomp 128.84 | 163.66 1.27
drot144 150.11 | 165.62 1.10

Figure 10: Performance in MFLOPS on dedicated machine

20

5

| Performance for V. Length = 480

Loop CFT 77 Ours | Speedup
ml 105.23 | 126.84 1.20
m?2 100.86 | 131.46 1.30
mvl 102,95 | 12543 1.22
mv2 121.38 | 151.97 1.25
mv3 116.98 | 152.97 1.31
mv4 119.32 | 153.63 1.29
mv5 111.83 | 147.63 1.32
mv6 99.96 | 150.54 1.50
mv7 91.94 | 114.59 1.24
mv8 96.58 | 132.73 1.37
mv9 . 112.77 | 150.15 1.33
mvfl 100.06 | 119.17 1.19
mvi2 101.02 | 116.68 1.15
mv{3 101.77 | 121.23 1.19
mv{4 93.67 | 116.10 1.23
mvf3 99.32 | 118.53 1.19
mv{6 107.07 | 115.12 1.07
mv{7 100.13 | 116.68 1.16
mvi{8 101.54 | 125.66 1.24
mulcomp 127.28 | 171.20 1.34
drot 148.46 | 203.42 1.37

Figure 11: Performance in MFLOPS in Single User

21

| Performance for V. Length = 960

Loop CFT 77 Ours | Speedup
ml 131.787 | 156.202 1.18
m2 122.260 | 159.663 1.30
mvl 121.277 | 139.789 1.15
mv2 142.381 | 178.148 1.25
mv3 135.306 | 179.560 1.32
mv4 139.608 | 178.738 1.28
mv5s 136.248 | 167.727 1.23
mv6 112.518 | 165.983 1.47
mv7 112.254 | 146.464 1.30
mv8 118.987 | 153.976 1.29
mv9 128.110 | 174.086 1.35
mv{l 107.678 | 125.998 1.17
mv{2 115.552 | 131.174 1.13
mvf} 118.210 | 138.521 1.17
mvi4 106.112 | 122.504 1.15
mvf3 111.679 | 132.461 1.18
mvi6 1i6.838 125.12 i.07
mv{T 115461 | 131.101 1.13
mv{8 108.584 | 135.921 1.25
mulcomp | 129.429 | 192.898 1.49
drot 151.892 | 234.655 1.54

Figure 12: Performance in MFLOPS in Single User

22

Imprimé en France

ar
I’ Institut National de Recherche en Informatique et en Automatique

2

&

