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ANALYSIS OF A STACK ALGORITHM
FOR RANDOM LENGTH PACKET COMMUNICATION

Philippe JACQUET and Eric MERLE
INRIA
Domaine de Voluceau
78153 Le Chesnay Cedex
France

Abstract—We give an exact performance evaluation of the Capetanakis-Tsybakov-
Mikhailov collision resolution algorithm, under the hypotheses of local area network com-
munication, where packets are of different length. In particular we precisely describe the
packet delay distribution (mean and variance), and the maximum throughput that the
system achieves, for any packet length distribution given.

-ANALYSE D°UN PROTOCOLE EN ARBRE
POUR DES MESSAGES DE LONGUEUR ALEATOIRE

Résumé—Nous analysons de maniére exacte les performances du protocole de Cape-
tanakis-Tsybakov-Mikhailov, sous I’hypothese des réseaux locaux, ou les messages sont
de longueurs différentes. En particulier, nous donnons une évaluation précise de la distri-
bution (moyenne et écart type) des délais des messages et nous déterminons les valeurs
exactes des débits maximaux accessibles, quelque soit la distribution des longueurs de
message en donnée.
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ANALYSIS OF A STACK ALGORITHM
FOR RANDOM LENGTH PACKET COMMUNICATION

Philippe JACQUET and Eric MERLE
INRIA
Domaine de Voluceau
78153 Le Chesnay Cedex
France

Abstract—We give an exact performance evaluation of the Capetanakis-Tsybakov-
Mikhailov collision resolution algorithm, under the hypotheses of local area network com-
munication, where packets are of different length. In particular we precisely describe the
packet delay distribution (mean and variance), and the maximum throughput that the
system achieves, for any packet length distribution given.

1. INTRODUCTION

This paper analyses the performance of a protocol for managing the use of a single-channel packet
switching communication network like the one used in the Ethernet [10].

We consider the following model, commonly taken as the basis of mathematical studies of the
multiple-access channel [3]. The time is slotted and stations can start transmitting only at the
beginning of slots. A packet may have a length of several slots. Each transmission is within the
reception range of every user. When more than one user transmit simultaneously, packets are said
to collide, none is correctly transmitted and the colliding users abort their transmission at the end
of the slot. We assume that for a given packet, collision can occur only on the first slot to transmit.
For the next slots, the other users are aware that a packet is in current transmission and wait for
its final slot (carrier sense).

Thus the status of a slot is a blank if no user transmit on it, a success if there is only one user
transmitting and a collision when two or more users transmit. This ternary feedback is the only
source of information available for monitoring the communication process and resolving eventual
collision. The collision resolution algorithm is clearly a major determinant of the behaviour of
such a transmission process. In this paper we focus on the Capetanakis-Tsybakov-Mikhailov tree
protocol [7], [8], [9] coupled with free, or continuous access of newly arriving packets into the
contention. This protocol enjoys nice properties such as simplicity and robustness, stability under
a large population of users, and last but not least, according to our point of view, tractability to
analysis.

In 1985, Fayolle, Flajolet, Hofri and Jacquet {1] published a complete analysis of this protocol
with an exhaustive determination of the channel utilization and of the distribution of packet delay.
At this time it was the first complete and exact evaluation of the performance of a collision resolution
algorithm. But the analysis was done under the simple hypothesis that all packets be of the same
length, namely one slot. Our purpose is to extend this former analysis under the more realistic
hypothesis of variable length packets (e.g. traffic mixture of voice and data in local area network).

This extension is not trivial. In a recent paper, Tsybakov and Fedortsov [4] showed some of
the intricacies of the problem of variable packet length for this communication process. Given a
distribution of packet length, they finally extracted fair upper and lower bounds of the maximum
throughput of the protocol (i.e. the maximum admissible arrival rate before the channel destabi-
lizes). This led us to slightly modify the tree protocol in order to get the analysis tractable. The
modification does not affect the basic properties of the protocol and, surprisingly, even slightly
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improves the performance when the mean packet length is above about 10 slots. This is a reason-
able hypothesis considering that the slot is a fair estimation of the delay of reaction of an ethernet
chipment monitoring the channel.

A. Specifications of the protocol

Each station with a pending packet uses a variable C; to schedule its transmissions. The variable
C, is interpreted as the stack level at which the packet is located at slot s. Each station updates the
value of C; at the end of each slot, in accordance with the instructions of the protocol. A station
has to monitor the stack variable Cs only during the time it has a waiting packet (idle station can
switch off). Below, we give a set of instructions for our slightly modified protocol:

I1 If a packet appeared at a station at slot s, then Cy; = —1.

I2 If C, = —1 and the slot s is a success, then the station waits for the end of the current message,
and then set Cs to 0. For any other state of slot s, we have Cs4, = 0.

I3 While C; = 0, then the station initiates packet transmission.

I4 If C; = 0 and the slot s is a success, then the station transmits the following next slots of the
packet and becomes idle.

I5 If C;, = 0 and the slot s is a collision, then C,4; assumes one of the values 0 and 1 with
respective probabilities p and ¢ (of course, p+ ¢ = 1). If it turns out that Cs4; = 0, then the
station initiates packet transmission in slot s + 1.

I6 If C; > 1 and the slot s is a collision, then Cy4y = Cs + 1.

I7 If C, > 1 and the slot s is a success, then Cs4y = C,.

I8 If C; > 1 and the slot s is a blank, then Coyq = C5 — 1.

From a global point of view this protocol consists in monitoring a virtual stack containing the
stations which are waiting for retransmission. The stack is a sequence of cells, numbered from 0 to
oo and during the slot s, the elements of the cell number i (z > 0) are the stations such that Cs = i.
The stack behaves as following. Suppose that at slot s, n stations collide (n > 2). Thus there were
n stations in cell number 0 during the slot s. Because of the collision, stations which were waiting
at level greater than zero, will increment their stack level. Meanwhile, the colliding stations use
their random generator. Those which get a 0, suppose that their number be I (I > n), remain at
level 0 and transmit again during the slot s + 1. The other colliding stations (n — I) reach the level
1, for the slot s + 1, and wait for the resolution of the eventual conflict of the I first stations (plus
some eventuai new incomers) before retransmitting (when their counters C, will read zero again).

The process underlies a recursive structure, since any conflict is resolved via a partition and
the resolution of conflicts of smaller size.

B. Characteristic Parameters

We are interested here in several characteristic parameters of this protocol :

a) An n-session is the minimal set of slots separating the two following events:
(i) There are exactly n stations inserted in the global stack, and each of them is stored at
level 0.
(ii)) There is no station in the global stack.
The length of such an n-session, which is usually termed the collision resolution interval (CRI) will
be here denoted by /,,.

b) Capetanakis-Tsybakov-Mikhailov tree protocols are stable random-access systems when the
packet arrival rate is not too high. Thus, the mazimum traffic rate that our protocol will allow
before destabilizing is an important characteristic of the system. It will be denoted by Amax.

c¢) The delay experienced by a packet is the time from its generation at a station to the end of its
successful transmission and is denoted by W.
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Many other parameters are of interest, but our aim is not to give an exhaustive analysis of our
protocol. However, these could be evaluated by the same following methods.

With the basic protocol (without our modification), the final set of slots of an n-session (which
is a blank or a successful transmission) has a variable length. This is the reason why Tsybakov and
Fedortsov failed in providing a complete analysis of it. However, with our protocol, the final set of
slots of an n-session is reduced to a single blank, and this feature makes it tractable to analysis.

B. The probabilistic Model

First of all, it is assumed that the number N of stations is la.rge,l so that the assumption N = oo is
valid. Moreover, the number of newly created active users in each slot is supposed to be independent
of the state of the stack and its history, and to be a Poisson arrival process with a fixed rate A.
Thus, if this number is denoted by X,
,\n
= — e~ A
Pr(X=n)=e —

At last, we assume that the length T of packets is independent of X, of the stack and its history.
Pr(T = n) will be denoted by T, and the mean of T, by M. Thus,

o0

M= ZnTn.

n=0
2. THE BASIC EQUATION AND CRI DURATION

A. Preliminaries

Notations: if ¢ is a complex variable fonction, let
Ro(2) = ¢(2) — $(X + pz) — ¢(A + ¢2) .

Moreover, let 01(2) = A+ pz and 03(2) = A+ gz. We denoted by H the noncommutative semigroup
generated by composition of oy and o plus the identity. At last, for each o in H, let

(p,q)° = plohgloh

where |o|; is the number of occurences of o; in o (when ¢ is the identity, by convention |o|; = 0).

Thanks to these notations, we now can state the following lemma which will be used in the
next sections in order to solve some functional equations. The reader is referred to [2] for a detailed
proof of it.

LemMma 0. * .
a) Let f be an entire function such that f(%) = f( %) The equation Rg(2) = f(z), with specified

values for g(0) and ¢'(0), has the unique regular solution:
9(2) = 9(0) + 24'(0) + S(f; 2)

where

S(f;2)= Y_[f(o(2)) = £(o(0)) = (,9)"f'((0))] -
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b) The equation g(z) — pg(01(2)) — qg(o2(2)) = f(2), where f is an entire function such that
A
J¥ f(u)du = 0, has, for each specified value of g(0), the unique following regular solution:

o(2) = 9(0) + T(f; 2)

where

T(f;2) = Y (7,a)°[f(0(2) - f(a(0))] -

oEH

B. Mean value analysis and determination of Amax

The recursive structure of the algorithm leads to the following identity, when there is an initial
collision (n > 2):
Lh=14+1lx + a1y, (2.1e)

The integer I is the number of stations which remain -at level 0 after the collision, and X and Y
the numbers of arrivals generated on single slots. X and Y are independent and Pr(X = k) =

Pr(Y =k) = e"\%-, and I has the binomial distribution Bp(n), namely Pr(I = i) = (7)p‘g"~".

To complete the identity, we have the obvious relations

fo=1 (2.1b)

LW=T+1,,
where T is the length of the packet and m the number of arrivals generated during its transmission.
The second equality, which is less obvious than the first one, means that packets, which are waiting
at level 1, cannot immediately transmit after detecting the end of a successful transmission like in
the basic protocol : now they have to wait for the end of the conflict resolution of the m packets
which have been generated during that successful transmission. The distribution of m is easy to
obtain from the distribution of 7. Thus, if the mean of I,, is denoted by L., we have

(Lo =1

M_I_ET Z —)\n\"”‘} 2,

)\ AY
"_1+Z —/\z e Z()P‘I"’ (Ljyz + La—jyy) forn> 2.
z,y>0 :

(2.2)

+0o0 n
Let us define the function ¢ by ¢(z) = e~ Z Ln%‘—. We introduce the quantity K defined by

n=0
[P -
= ifp#a,
K=q 567 -g¢ :
1—12,\ ifp=g=7;

the function #(2), by
t(z) =(1+ K z)e™*
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and function x(z), by :
x(2) = ETnS(t;nz) .

n=0
THEOREM 1. The maximum throughput, Ayax is the smallest positive root of the equation
2Ax(AN) + (1= AM)(1+2S(;A) =0

and if A\ < Apmax, then the mean value of CRI duration is ¢(A), with the expression

1
N = ST A AT BEN)

Moreover, we have
M (14 2S(t; A)) — 2x(X)

b= o (A= M)A F 285 0)

and
8(2) = 1+ 2(Ly — 1) — 26(N)S(t; 2)

Proof. These results are very similar to those obtained in (1], and by considering L, as a parameter,
computations can be led in the same way. Thus, we just give a sketch of our computations, and
the reader is referred to [1] for a more detailed discussion of them.

From (2.2), we obtain the following functional equation for ¢:

Ré() = 1— e (29(N(1 +2) +2(#'(N) = L +1)), (230)
and,
+o0
n=0

A convenient simplification of (2.3a) is possible, by noting that, if p # g, then R¢>(}\—)) = R¢(%) =
—@(2A), and thus
¢'(N) = Li+1=26(A)(K -1),

where

andifp=¢q= %, then substituting z = 2X in the derivative of (2.3a) also yields
¢'(/\) ~-Li+1= 2¢()\)(I( -1),

h
where .

=1

This simplification produces, in both cases:
Rg(z) =1 -2¢(A)(z) .
5.



Moreover, ¢(0) = 1 and ¢'(0) = Ly — 1. Thus, by using theorem 1 we get

$(2)=14+2(L - 1) - 2¢(A)S(t; ). ' (2.4)

We still have to compute L; and d)(/\); Now, from (2.3),

B(X) = 14 A(Ly — 1) - 26(N)S(5; V),

and from (3a.4),
Li=M+ "'2"20 T (14 An(Ly — 1) — 2¢(A)S(E; An)).
n=0
These two equations form a linear system whose detérmina,nt is:
det(A) = 2Ax(A) + (1 — AM)(1 + 2S(t; A) .
If det(A) = 0, then this system has no solution, and so the protocol is not stable. Thus, we get
Amax = min{A > 0/ det()\) = 0}. (2.5)

However, if det()) # 0, this system has a unique solution which is the one given in the statement
of theorem 2.

From ¢(z), we can compute an explicit form of L,,. Moreover, the renewing properties of the
protocol (see [1]) yields that ¢(A) = 3572 e"*2LL, is the unconditional length of a session. M

C. Moments of the CRI duration.

Let P,(u) be the characteristic function of the length of a session when the initial collision is of
multiplicity n :

P.(u)= iPr(ln = k)u® .
k=0

Let us introduce the bivariate generating function, P(z,u), defined by

P(z,u)=e* (Z Pn(“)%;) )

n=0
THEOREM 2. We have the functionnal equation
1
ZP(Z, u) =P(X + pz,u)P(\ + qz,u)

V4 n

— e"*P(\u) (P(\, u)(1 + 2) + 2P,(\, u)) + e~ (Hzn(u)‘) ’

where

Pi(u)= f: Thu™P(u, An) (2.6b)

n=0

(P, means partial derivation of function P(z,u) with respect to variable z).
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Proof . We get from (2.1a) and (2.13) the following recursion

( Po(u) = u
| nw=3 . w3 e p )
n=0 k=0

w=u(3 e 2( VP i Pras@)Pacjas(@) Forn 22

z,y20

some elementary algebric manipulations yield the functionnal equation of P(z,u) (For further
explanations, see [1]). n
Let ¥(2) defined by

2
¥(2) = o (P(50)ums.

Introducing the quantity I, defined by

L (62 -6(2) (2-2)

K = 4¢(Ne7 f ,
i e
’( A)q p
2 e 1
K= 4¢(A)m lfP-— q9=173

the function G(z), defined by
G(z) = 2¢(2) - 2+ 28(A + p2)p(A + q2) - e {26*(\)(1 + K2) + 2K} .

the function R(z), defined by

R(2) = Zn(n— )T, + 2ET ng(zn) ,

n=0 n=0
and Y (z), defined by
= Z T,.S(G;n z2) ,
n=0

we obtain the following theorem:

THEOREM 3. If A < Amax, the inconditionnal variance Var(l), of the length of session is

Var(l) = T(\) + ¢(A) — $2(}) ,

with a0 = (L= MDS(GiX) + MR + Y()
TO22x(A) + (1= AM)(28( ) + 1)
Moreover we have
¥(0) = —2x(A)S(G3A) + (R(A) + Y(A))(28(4A) + 1)

2Ax(A) + (1 = AM)(25(t; M) +1)
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and the expression
¥(z) = S(G;z) - 2¥(\)S(¢;2) + ¥'(0)2

Proof . Of course e™* 3, ., E(l?,)%— = ¥(z) + #(z), which leads to the expression of the uncondi-
tionnal variance. -
Derivating twice (2.6a) and substituting u = 1, we obtain

RU(2) =2¢(2) — 2 + 2¢(A + p2)p(A + g2) — e *(2¥(A)(1 + 2) + 2V’ (X))
—2e77H(AN)(P(A)(1 + z) + 2¢'(A)) — ze7*¥, ,

L Pl(u))
‘I"a—“(_ o

since ¢(2) = Py(z,1). The same methods of simplification as those developped in a) lead to

(2.7)

where

RY¥(z) = G(z) —2¥(N)e ™ *(1+ K2)
Moreover, ¥(0) = 0 and
¥'(0) = Li(1) = RQA) + )_ Tn¥(An) .

n=0
From theorem 1, ¥(z) = S(G;z) — 2¥(A)S(¢; 2) 4+ ¥'(0)z. We now just have to evaluate ¥()) and
¥’(0) by solving the following linear system:

T(A) = S(G; A) — 2%(N)S(¢4; A) + ¥'(0)A

¥'(0) = R(A) + X020 Tu(S(G; An) — 28 (X)S(t; An) + ¥'(0)An),
whose determinant is the same as the one we got in a), so that for A < Amax, it has a unique
solution which has an explicit expression. |

Remark We could get, by using the third derivative of (2.6), an explicit form of the third moment
of I, and so on, it is possible to compute all moments of the distribution of I,,.

3. DISTRIBUTION OF THE PACKET DELAY W.
~ A. Direct evaluation of the mean packet delay

LEMMA 4. The mean number of users that are active per session is A¢(\)

Proof . This is a direct application of the renewing properties of the protocol. |
Let us define ¢, as the total sojourn time experienced by all users that are active during an
n-session, and denote by C the mean of ¢,. It is convenient to introduce the function C(z), defined

by C(z) = e7*(3+> 7). Introducing the quantity A()), defined by
L_1 A
Lolio(d)-262)
IA(A)=Q AL L T
le 9 — =" ¥
q I4
2+ 6(2X) + Ag'(2))
— A —qg=1
lA(/\)_e 21— 23) fp=g=g,
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the function F(2), defined by
F(z) = g26(A + p2) - zA(Ne™ ,
the function X(z), defined by
X(2) = i T.S(F;nz),
n=0

and the quantity D,

D___M_I.,\ETnﬁ(_’:‘.?—_l_),

n=0

we obtain the following theorem:

THEOREM 5. When A < Amax, the mean delay E[W] has the expression :

EW) = ;[(1 — AM)S(F;A) + A(D + X)].

L)

. The specifications of the
%0) P

Proof . The renewing properties and lemma 4 tell that E[W] =

protocol produce
Co=0 .
_ 2 > _)\n (An) n— 1
cl_M+§)TnkZ=oe 5 ( > k+Ck)

AT AN\ ol .
Cn=n+ Z e‘A?e A;—Z(J,)qu H(Citz+ Crejyy+(n—F)Ljyz) forn>2.
z,y2>0 ) ' j=o0

From this recursion, we get an equation relative to C whose simplified form is

RC(z) = z+ qzp(A+ pz) = 2C(A)(1 + Kz)e™? — zA(N)e™* . (3.1a)
Moreover, C(0) = 0 and,
C'(0)=C1 =D+ ) TuC(Mn), , (3.16)
n=0
Using lemma 0 yields
C(z) = C'(0)z + S(F;z) —2C(\)S(t; 2) . (3.2)

From (3.1b) and (3.2), we obtain

o — (L= AM)S(X) + A(D + X)
(A= 22x(A) + (1 - AM)(25(t M) +1)

(3.3)

| |

Once more the reader is referred to [1] for a more detailed explanation of these computations.

The above procedure yields E(W), but it cannot lead to the values of higher moments, due to the
linearity it utilizes. That is why we have to resort to a more involved analysis.
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B. Moments of the packet delay
Let Q, be the delay experienced by a packet that had its first trgmsmission at the beginning of an
n-session. Introducing the notations wn(u) = 32,51 Pr(Qn = i)u’, and

-1

h(z,u) =€~ an(u) Nk

n>1

and defining w by

= ”E:Emﬁ ( huuoui,

n>1

produces:
THEOREM 6. The bivariate generating function h(z,u) satisfies the functional equation

%h(z, u) =ph(A + pz,u) + ¢ (A + gz, u) P(A + pz,u)
+o0 (3.3)
+e™* (Z Tou™! = h(Au)(p+ ¢P(), U))) ,
n=1

and we have the following expression for the generating function of the first moment of :
w(z) =M +T(J;2) —w(A)T(e™;2),
where

J(2) = gd(A + pz) — e *(gp(N) - M + 1),

with M+ (730
+ )
“) = T

Proof . Using the line of reasonning introduced in [1] we have

((wi(u) = 302 Thu” - ,
nwn(u) u(z et —e "‘)‘ X

¢ ,y>0

x Z ( )p Q"G 05(u) + (1= )Pjra(uon-juy (1))

forn>2,

which, translated in terms of generating function, leads to the functionnal equation. Derivating
this functional equation with respect to u and substltutmg u = 1 yields the functional equation for

w(z)
w(z) = pw(A + pz) — qw(A + ¢2) =1 + q¢£/\ + pz) (3.4)
\

2N - PN YA WY 11 1)
- & WA) T qPA) — d + 1),

As w(0) = M, using theorem 1 proves the theorem 5. N
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Let W] be the mean number of packets that experienced a delay of j slots during an n-session.
Let W,(u) be defined by

Wp(u) = ZWJUJ ,

and the blvanate generating function W(z,u), by

W(z,u) = EW (u)-—e 7.

n=0

THEOREM 7. The characteristic function of the distribution of the delay of a random packet satisfies
the identity
o0
W(A,u)
Pr(W = k)yuf = ——22 21
2 Prw = bt =

and the bivariate function W(z,u) satisfies the functional equation

W(z,u) =W(A + pz,u) + W(A + ¢z, u)
+ 2(h(2,u) — ph(X + pz,u) — gh(X + gz,u) + h(), u)e™?)

o (3.5a)
- <2W(A,u)(1 +2)+z2 (Wz()\,u) - Wi(u) + Z Tnu">> e~ ”,
n=0 ‘
with,
Wi(u) = Z Tou™ — A Z Tnn h(An, u)
+2A ET (Z Yh(An,u) (3.5b)

+ Z T.W(\n,u).

n=0

Proof . The Law of Large Numbers and the renewing properties of the communication process
provides that 3 o W, ’\—,e ~* divided by the mean number of users per session is the stationary
probability for a ra.ndom packet to experience a delay of j slots. Since the mean number of users

per session is exactly A¢(A), we prove the first part of the theorem.

We have

( Wo(’u) = 000 _ . )

Wi(u) =) T, Tou"+ Y Ty Z o—An (A1

n=0 n=0

\ X (nl(—l——)k“’k(u) + Wi(u) - kwk(u))

Wn(u) = nwn(u)+ Z e-,\A e_)\ \Y Z ( )qun ]x

z,y20 z! When .
X (Wira(w) = jwpra(n) + Wasjay(u) = (0 = on-sey(w)) ,
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which, translated in terms of bivariate generating function, yields the functional equation
Introducing the function =(z), defined by

E(2) = z[-1+20(2) + 208X + p2)w(A + g2) + a(¥(A + pz) + $(A + p2)
—e7% (2g6(N)w(X) + a(T(N) + ¢(1)))] ,

and the quantity B, defined by

=(3)-=(2)

B=———"*5 ifp#p
el

22 e 1

R ) ifp=g=3,

and the function v(z), by

we can state the following theorem :

THEOREM 8. When A < Amax, the second moment E(W?) of the packet delay has the expression

E(W?) = (1= AM)S(2; 3) + An + AW)] ,
where -
A(z) = Z T.S(v;zn),
n=0
and - -
n=M+ZTnn(n—-l)+AZTn 1)(2” +2/\ZT 1) w(An) .
n=0 n=0

Proof . Of course, we have

C(z) = (%W(z,u))

u=1 )

Let W®(z) = (a—JW(z,u)> + C(z). Then, substituting » = 1 in the second derivative of
u=1
(3.5a) and simplifying the result,_produces the following equation relative to W(2)

RW(2) = —2WP(Ne™*(1+ 2) - Hze™ +2(2) , (3.6)
where H is a known real which will be eliminated afterwards. After simplification this equation
becomes

RW®(2) = —2W®(N)e (1 + Kz) — Bze™* + =(2),
Then, using Lemma 0 yields

I’V(z)(z) = 2W(A)S(t; 2) + S(v; 2) + wW@0)z .
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Moreover, W(2)'(0) = W}(1) + C'(0), hence,

w0) =5+ i T.W®(An). (3.7)

n=0

()
We are now able to compute W(?)()), and the fact that E(W?) = —%
the theorem. [ |
Remark The variance is obtained from theorems 4 and 5 by using the formula: Var(W) =
E(W?) — E(W)?. The other moments could be evaluated in the same way.

completes the proof of

4. NUMERICAL RESULTS AND DiscussioN

A. Analysis of Apax

Figure 1 shows Apax as a function of M; quantity M is the mean packet length and varies there
between 1 and 50. The two curves correspond to two types of packet length distribution. The curve
C1 is obtained with the case where all packets are of the same length M. The curve C2 is obtained
with the case where the packets are either of length 1, either of length 100, the probabilities are
being tuned in order to have the mean M. These two cases illustrate the differences between packet
length distributions with zero variance and distributions with large variances.

The curve C2 is below C1, thus the variance of the packet length slightly affects the protocol
performance. But computations and analysis show that the degradation remains confined between
strict bounds: the protocol does not collapse when the variance tends to infinity, for a fixed mean
M. The curve €2 is of interest, because, in real life, local area networks are generally submitted
to two types of traffic: short packets corresponding to user oriented communications, and large
packets corresponding to data exchanges between computers.

It is possible to fairly compare the basic protocol to our modified version. When the packets
are all of length one slot, the modified protocol entails Apay = 0.328226 which is below the 0.360177
reached by the basic protocol [2]. The explanation of this difference is clear: the basic protocol
destabilizes when the proportion of collision slots equals the proportion of non collision slots (empty
and success slots); meanwhile the modified protocol naturally destabilizes when the proportion of
collision slots only equals the proportion of empty slots. Reference [4] presents an upper bound
of the equivalent of curve C1 for the basic tree protocol, which clearly shows that the modified
protocol outperforms the basic one as M > 10. This assertion is rather surprising, but it can be
explained as follow.

Let us suppose that all packets are exactly of length M, the quantity M being large compared
to 1. Let us assume that A is very close to Amax. The proportion of empty or collision slots is
negligible compared to the proportion of success slots (which occur in sequences of M units in a
row — see below for a rigorous proof). The proportion of success slots is exactly AM and we have
then AM = 1. The number of users which become active during the emission of a packet follows a
Poisson distribution of rate AM, which is approximately 1. The probability that no user becomes
active during a packet transmission is e *™ =~ % In the basic protocol, a user whose stack level
is 1 at the beginning of a success will transmit just after this packet and experience a collision,
with probability greater than 1 — % ~ 0.632. With the modified protocol, this collision is avoided,
because no user in stack is allowed to transmit just after a success.

The following proposition give a precise illustration of the behaviour of A,,x when M — co.

THEOREM 9. When the mean length of packet tends to infinity, the quantity AmaM tends to 1
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Proof. the quantity AM is the proportion of success slots in steady state. Thus, we necessarily have
AM <1, and ApaxM < 1 consequently. Thus Ay,x — 0 when M — oo.

Let ¢a(z) be the generating function of the mean session length for the basic protocol, when
all packets are of length one slot with a Poisson arrival of rate A packet per slot. We know that

(12)
_ 25(t;2)
P = 1= s -

The Apax of our protocol satisfyes, according to theorem 2,
(1 - maxM) = /\max Z T (()oz\m.x(n’\m&x) - 1)
n=90

The analysis done in [2] yields that, for any given A < 0.360177, px(2) = O(2), when z — oo, and
ea(2) =1+ 0(2?), when z — 0. Let Ay be defined by

-1
A) = sup _____go,\(:v) ;
x>0 z

We have Ay < co and Aj is a continuous increasing function of A. Thus
max Z T ((loAmax(nAmax) - 1) < )‘max Z T AkmaxAmax - MAmaxA)\max N

Since Aj,,, is bounded (Amax = O(77)), we get

~AmarM = 0(-1‘12) .

[ |
It is interesting to analyse how M Apay tends to 1. A good way for that is to determine the
marginal throughput, p, of the channel. The marginal throughput is the throughput we obtain

WhPT] we fnnnw f]'NJ events on f}in r})annn] in fha nafura:l way, CXCCpt that ea‘ch packet duxatxuu i

collapsed into a single slot (we take a movie of the channel, but we stop the camera after every first
slot of a successful transmission and we resume at the end of the successful transmission).
The following lemma, is obvious

LEMMA 10. The marginal throughput, p, of the channel, when the input load is A and the mean
packet duration is M, is a monotonous function of A and is defined by

1
M-1+%

Like maximum throughput Amax we can define marginal maximum throughput, pimax-
THEOREM 11. When M — oo, we have
liém inf max > 0.25730 .
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Proof . According to the previous proposition and theorem 2, we have A, > A*, where A* satisfyes

1= A*M = MA*? Ay .

Since A*M < 1, we have
1- XM < Axed™

and finally
1
AF D> e
v T M+ Ay
Since A* — 0 and A+ — Ao, and Ao & 25 = 2.88539, the proof is complete. [

Thus, we proved that there are lower bounds of the stability of our protocol that are only
dependent of the mean packet length, M. When all packet, are of length M, we can precise the
previous proposition.

THEOREM 12. When all packets are of length M, then

fmax = 0.4277 + 0(514-) .

Proof . We have
1- /\maxM = ’\max (Sokm.,(’\maxM) - 1) .

We know that 1
/\maxM = 1+ O(H") .

The precise analysis in [2] leads to the fact that ¢)(z) is analytic with respect to its two arguments
A and z; thus

Prne Amax ) = 90(1) + O(57) -

The estimate )
0.4277

completes the proof. [ ]

wo(1) =

B. Numerical evaluation of means and variances of L and W.

Means and variances of L and W are given in figures 2 and 3 as functions of A and p. These two
tables correspond to two types of packet length distribution. The results of figure 2 have been
computed under the assumption that all packets have a length of 10 slots, and those of figure 3
under the assumption that packets are either of length 2 slots, either of length 18 slots, with a
probability of 0.5. In each box of those tables are given respectively (from top to bottom) E(L),
Var(L), E(W) and Var(W).

First of all, we have to note the symmetry with respect to the value p = 2, for the values of
E(L) and V(L). This is not a surpnsmg fact since the functional equation (3b.4) is also symetric
with respect to the value p = 3. However, this remark is no longer true for the values of E(W) and
V(W). Indeed, we can prove ([1]) that E(W) is minimized at p = 2-v/2 ~ 0.586. A little reflection
will show that this can be expected, as p > ;— somewhat decreases the probability of wasting the
first slots. As A increases, the importance of efficient splitting predominates to reduce the value of
p that minimizes the mean delay to very nearly one-half when A — Ay,x. At last, by comparing
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the two tables, we can notice once more that the protocol performance is slightly affected by the
variance of the packet length.

5. CONCLUSION

We have analyzed the throughput and delay characteristics of a simple Stack Algorithm in the real-
istic conditions of Local Area Network communication, when the distribution of the packet duration
is given. The salient features of this algorithm are its simplicity (in terms of implementation) and,
as opposed to the well-known ALOHA or Binary Exponential Back-off algorithms (©ETHERNET)
systems [11}, [12], its inherent stability (under the assumption of a Poisson arrival process). The
algorithm is very robust and can be used with any type of traffic mixture (voice mixed with data,
for example). We restrict ourselves on the evaluation of some user-oriented parameters such that
throughput and delay. Some other parameters are of interest, for example, we did not extend
ourselves on the high robustness to channel errors, which is one of the typical properties of most
versions of the stack algorithm [3].

There are several versions of the stack algorithms that can be implemented (and slightly
modified) for our purpose. For example the stack algorithm with Q-ary, instead of binary, splitting
([5]) can be easily analyzed with exactly the same techniques. We know that Q = 3 optimizes the
throughput when the packets are one slot long. But this property does not persist when the length
of packet increases. For example, when all packets are of length M we can show expansion of the
marginal maximum throughput, following the techniques of proposition 3 :

1
max = 0.4114 4+ O(==)

when @ = 3, and
1
tmax = 0.3785 + O(M—)

when @ = 4. Thus the binary stack algorithm is better than the other generalized Q-ary versions.
It is also posssible to improve the tree algorithms by an adjustment that “saves doomed slots”
([3]). The throughput is higher, within few percent, but the robustness to channel errors slightly
decreases (risk of deadlocks).

In conclusion, we think that the basic binary stack algorithm, which we analyzed in this paper,
enjoys nice properties such simplicity, robustness and stability, and certainly is the best alternative
to the deficient binary exponential back-off protocol for Local Area Network communication.
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Figure 1

Curves Apnax M = f(M) for two examples of packet length disrribution.

/////151
>

e

y=f(x)

0-%-50 0-y-1

18



Figure 2

E(L), V(L), E(W), and V(W) while all packets have a length of ten slots.
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Figure 3

E(L),V(L), E(W), and V(W) while all packets have a length of 2 or 18 slots.
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