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NORMAL LIMITING DISTRIBUTION
FOR THE SIZE AND THE EXTERNAL PATH LENGTH OF TRIES

DISTRIBUTION LIMITE GAUSSIENNE
DE LA TAILLE ET DE LA LONGUEUR DE CHEMINEMENT EXTERNE DES TRIES

Philippe Jacquet et Mireille Régnier

Abstract:

This paper studies the limiting distribution of the size and of the ezternal path length of random
tries. We consider Bernoulli and Poisson models, for uniform or biased data. We prove the
convergence to the Gaussian distribution, as well as the convergence of the moments of any order.

Résumé: Dans ce papier, nous étudions la distribution limite de la taille et de la longueur de
cheminement exzterne des tries. Nous considérons les modéles de Bernoulli et de Poisson, pour
des distributions de données uniformes ou biaisées. Pour ces deuz paramétres, nous prouvons la

convergence en loi vers une distribution normale (i.e. gaussienne), ainsi que la convergence des
moments d’ordre quelcongue.
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NORMAL LIMITING DISTRIBUTION
FOR THE SIZE AND THE EXTERNAL PATH LENGTH OF TRIES

Philippe Jacquet and Mireille Régnier
INRIA-Rocquencourt
78 153 Le Chesnay-FRANCE

Abstract

This paper studies the limiting distribution of the size and of the ezternal path length of random
tries. We consider Bernoulli and Poisson models, for uniform or biased data. We prove the
convergence to the Gaussian distribution, as well as the convergence of the moments of any order.

Keywords : performance analysis, tries, distributions, complex analysis.
"ITINTRODUCTION

This paper is devoted to the study of tries. Tries are a basic tree structure associated to a
recursive partitioning process which appears in quite a large number of computing problems such
as: fast retrieval of digital data (Dynamic Hashing Algorithms: [2), [3], [6], [12], [13], [15], [19],
[22]), communication protocols (the Tree Protocol of Capetanakis and Tsybakov-Mikhailov: (1],
[4); [16], [17], [18]), polynomial factorization ([10], [14]), data compression ([25]).

The trie structure appéa.red initially as a device for storing a collection of digital data. A
binary trie is a binary tree in which the records are stored in the leaves. There is a maximum
number b of records that can be stored in a single leaf. Each record is assumed to be an infinite
sequence of 0 and 1. By reading this key, where 0 means “go left” and 1 means “go right”, we get
a path which starts from the root of the tree and reaches the leaf where the record is effectively
stored. The following picture gives an example of a trie where b = 1.

A trie can be dynamically built by successive insertions of the items. Note that the relative
order of insertions is irrelevant.

Our purpose is to determine the behaviour of the size of the trie, i.e. the number of internal
nodes, and of the external path length, when the number of stored records goes to infinity. These
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Figure 1

parameters describe the performance of the underlying probabilistic partitioning system. In the
case of trie data structure of hashing schemes, the size characterizes the storage occupation, and
the external path length the processing time in central unit. In the context of the tree protocol,
the size of the associated trie is exactly the length of the Collision Resolution Interval (CRI) that
separates colliding stations. The external path length is used to analyze the waiting time of the
customers.

We assume that the records constitute random bit streams; thus the size S, of the trie (or its
external path length) is a random variable conditioned by the number n of keys. As n increases,
those parameters have intricate (exact) distributions that, as we will prove, tend to limiting distri-
butions of simple form.

The process which generates the random keys is such that
I Pr(bit=0)=p
| Pr(bit=1)=g¢
with p 4+ ¢ = 1. This probabilistic model is a classical one ([11], [12], [22]). The biased case, when

P # ¢, is relevant in numerous problems; for example, versions of the tree protocol are optimized
using biased random bit streams ([4], [17]).

In this paper, we will prove the two following theorems:

THEOREM 1A: Let S, be the random variable representing the size of a trie which contains n
random keys. Asn — oo, the distribution of the random variable S,, once centered and normalized
(15]), tends to a limiting Gaussian distribution. Moreover, the moments of any order converge to
the corresponding moments. These results hold true for biased and uniform bit distributions.

THEOREM 1B: Let L, be the random variable representing the ezternal path length of a trie
which contains n random keys. As n — oo, the distribution of the random variable L,, once
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centered and normalized ([5]), tends to a limiting Gaussian distribution. These results hold true
for biased and uniform bit distributions.

Let P be the probability that the size (resp. the external path length) of the trie S, be equal
to k, and introduce the bivariate generating functions

P(z,u) = Z Pku kZ_ P(z u)

nk
ZPkuk-—'e 2 =P(z,u)e”* .
n!
n,k
Function P is also a Poisson generating function when z is fixed: it represents the probability
generating function (pgf) of Sny when N is a Poisson random variable with parameter z. Qur proof
will proceed in stages, as explained below for the size parameter.

1 Recursion and functional equations: We use the recursive nature of the tree process to set up
a non linear difference equation satisfied by P(z,u), namely (when b = 1)

P(z,u) = vP(pz,u)P(gz,u)+ (1 — u)(1 + 2)e”* .

2 Fzponential lower and upper bounds: The problem is to obtain good lower and upper bounds
for | P(z,u)| when u is fixed and z is large. The bounds will be of the form:

|P(z,u)] > |ee™*|
and
|P(z,u)| < ce®®!,
with 0 < & < 1, ¢ nonnegative and the respective domains of # and z to be made precise later.

3 Asymptotic evaluation: The problem is now to obtain a good asymptotic approximation for
P(z,u) for fixed u and large 2. Setting L(z,u) = log P(2,u), L satisfies a quasi linear difference
equation. From there we prove the estimate L(z,u) = O(z) and we determine the growth of
the moments P,(z,1) and Py,(2,1).

4 Central Limit Theorem for the Poisson generating function: The characteristic function P(z, e~ )]

- after normalisation using mean and variance estimates from Point 3 - converges as z — oo
to the characteristic function of a normally distributed varjable, namely e~t'12,

5 Limiting distribution under the Bernoulli model: There now remains to translate the previous
limit result under a Poisson model with parameter z to the case where n is fixed but large (the
latter is the so-called Bernoulli model). We make use of the Cauchy formula:

n! dz
P, (u) = 217%13(2’ u)e’:&_n_i_1




The integration will be done on the circle of center 0 and radius n. By this device and previous
estimates, results translate from the Poisson to the Bernoulli case.

For the external path length, the scheme of the proof is similar, as we will show in Sections VII,
VII and IX.

II RECURSION AND FUNCTIONAL EQUATION

The purpose of this section is to establish the basic equations which are satisfied by the pgf
of S,.. Let PF be the probability that the size of the trie S, be equal to k, and introduce the
- probability generating function (pgf) of the distribution of S,

Py(u)= ) Pku*

k

where u is a complex variable a priori such that |u] < 1. We introduce also the bivariate Poisson
generating function

P(z,u) = Z Pn(u)-‘:;!-e-'z

where z is an arbitrary complex variable. Note that when z is fixed as a real positive number, then
function P represents the pgf of Sy when N is itself Poisson with parameter z.

We will show that we can enlarge the region of the complex plane where P(z,u) is defined and
analytic with respect to the variable u.

Proposition 2: Let P(z,u) be the generating function for the size of random tries. It is defined

and analytical for every z and u, such that |u| < 1/(p**! + ¢>+') and it satisfies the functional
equation:

P(z,u) = uP(pz,u)P(qz,u) + (1 — u)es(2)e™% , (1)

with the notation

]

Proof: According to the recursive definition of tries, the number I of internal nodes of a trie 7

with laft cnhtria T2 and rioht anhénd
vavdl 201V SUOLTIC £g il Tighnv SUST

KT) = I(To) + I(T) + 1 - x(IT| < b).
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Here, x(P) is the characteristic function of property P (i.e. x(P) = 1 if P is true, x(P) =
0 otherwise). Applying to this equation the algebraic methods defined in [7] , one may derive
“directly” (1). And from (1), one gets the recurrence:

Po(u) = -+ = Py(u) =1

Pa(w) (1~ (" +¢") = u 3 ( )pJP (w)g™ Pa_j(u),

0<j<n

which shows that the P,(u) are rational fractions and insures the analyticity of P,(u) for |u| <
1/(p**! + ¢**!). Moreover, chosing |u] < 1/(p**! + ¢*+!) and noting = max(Ju/(1 — u(p’*! +
¢**1)) , 1), we get |P,(u)| < B"~! by induction. The analyticity of P follows.

III EXPONENTIAL LOWER AND UPPER BOUNDS

We said previously that z and u were complex variables. It will prove convenient in order to
treat the Bernoulli case, to have z vary in cones with vertex 0. Thus, we note:

Cys = {z; |arg(2)| < 8}

with & between 0 and . All over this paper, the notation V(a) represents a neighbourhood of a.

Proposition 3: For every 8 € [0, F| there ezist a €]0, 1|, a neighbourhood V(1) and positive
constants ¢, ¢z, such that, for u € V(1):

z2€Cs = |P(2,u)] > ¢1]le”*%|,

2 & Cs = |P(z,u)e?]| < eze®¥* .

Proof: We arbitrarily fix « in ]0, 1[ (we shall give constraints on « only for the second part of the
proposition). We proceed by induction. To start the recurrence, we choose A such that:

z€Cy and Re(2) > 4 = |ep(2)e™ "% < 1 and |e~*%| < -;- .

Since P(z,1) is 1 and P is uniformly continuous on compact sets, there exists V(1) such that, in
the domain Dy = {z € Cy, A < Re(2) < %} x V(1), P satisfies:

|P(z,u)] > 2[e™°%].
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Assuming p < ¢, let the D, be the domains {z € Cy, A < Re(2) < A<} x V(1), m being an
integer. They satisfy: '

(2,%) € Dyny1 ~ Do => (pz,u) € D and (¢z,u) € Dy .

For (z,u) in Do, |P(z,u)e**| > 2 holds. Let us suppose that the inequality holds for every (z,u) in
D,n. Assuming |u — 1] < 1 and |u} > 3, one gets, from (1), for (2,4) in Dm41 — Dot

[P(z,u)] 2 §4lem 7] - Jem2] = 26|
And the first assertion follows by induction over m.
2€Cy and|z| 2 A = les(2)e~ )%l < 1 and e~k « % .

The proof of the second assertion proceeds similarily. It is convenient to note S(z,u) = P(z,u)e*.
We have the following functional equation, which is derived from (1),

S(z,u) = uS(pz,u)S(qz,u) + (1 — u)ey(2) -
At first, we choose a such that for every z outside Cy
€] < ol

thus cos@ < a < 1. Now, one can chose A such that:

Since S(z,1) is €% and § is uniformly continuous on compact sets, there exists V(1) such that,
in any domain of the form F = {z ¢ Cy, A < |z| £ %} x V(1), S satisfies:

IR TR _alzl
(9(2z,u)] < ze™ .

DO =

We complete the proof with the same type of induction as for the first part of the proposition.

IV ASYMPTOTIC ESTIMATES FOR THE POISSON MODEL

This section provides various estimates on P(z,u) and its logarithms, and concludes by a
determination of the mean and variance of the size of tries under the Poisson model.

Proposition 4: For any cone Cg, 0 < § < I, there ezists V(1) such that L(z,u) = log P(z,u) be
defined and analytic when (z,u) € Co X V(1). Also, in that domain, there ezists a constant B >0
such that

|L(z,u)} < B-|2],
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_uniformly in u.

Proof: The existence and analyticity follow from Proposition 3, as P is analytic and non zero. Let
us set, for (z,u) € Cg x V(1):

o(z,0) = log(1 — 1= ;‘():fff))e—z) gz = L) losl)

We get a “linear” form for (1):

©(z,u) = pe(pz,u) + qp(gz,u) - %—u—) , (2)

with |g(z,2)/z| < Cle**e~%|. Let now :

1
Dn= {(z,u); ueV(), z €Cs Re(z) < q_"}

be an increasing sequence of truncated cones, and B, be:

Ba = sup lg(z,u)l.

2€D,
As the maximum on D, is obtained either for z in D,_, or for z satisfying the equation (2), with
pz and ¢z in Dy, we get:

n

By < Buoy+C e~ (1=)9”

<Bo+C ) e (=a¥™" < p.
n

When z is real positive, P(z,u) is the pgf of the size of trie when the number of inserted records
is itself Poisson of parameter 2 (this is the so-called Poisson model). The mean X (z) and variance
v(z) of this pgf are defined as:

X(z) = Py(z,1)
% 2
o(2) = Pus(2,1) + Pu(5,1) - (Pu(z1)) -

By extension, we will name these last expressions “mean” and “variance”, even when z is not a
real positive number.

Corollary 5: For z varying in a cone Cy with  €]0, %[, the mean and variance are O(z) when
z — 00, and

L(z,e™) = iX(2)t - g({—)tz +0(21%)

for z € Co and t in a neighbourhood of 0.



Proof: L is analytic with respect tou = ¢'* and thus with respect to ¢, when t is in a neighbourhood
of 0. Computing its first derivatives, we get, for u in V(1) or ¢ in v0:

L(z,u) = iX(2)t - ?-%zltz + g.(8).£%,

where g, (t) is analytic. Applying the Cauchy formula on a contour C included in V'(0) and encircling
o i
XO= 59, Mo
v(z) 1 L(z,e*) do

2 " 2info W

9:(t) = 2:7r M:’_:ft))d

where L= is upper bounded on the contour (we can redefine V(0) as interior to C). Thus X(z),

v(z) are functions that are O(z). Moreover, g,(t) is also uniformly O(z) within ¢.

Remark: We proved, in passing, that the cumulants (the coefficients of the expansion of L(z,e*)
with respect to t) are all O(z2).

To prove the convergence to the normal distribution, we need more precise estimate on the
growth of X(2) and v(z). .

Lemma 6: The mean and variance X(z) and v(z) under the Poisson model satisfy the equations:

X(2) = X(pz) + X(g2) + 1 — ep(2)e™”
{ v(z) = v(PZ)+ v(g2) + (2X(2) — 1 + ep(2)e ™% )es(2)e™"
Asymptotically, we have:
X(2)~ z Q1(2)
{ v(z) ~ z Q2(2)
where &1 and G2 are upper and lower bounded by strictly positive consiants. Whenp=gq = %, ¢y
and Q2 are also periodic in log,(z).

Proof: = The equations are derived from the definitions and (1). The asymptotic values are
derived by the methods (Mellin transform [8]) developed in [8, 12, 20, 22]. An extensive analysis,
with numerical computations of the variance, is given in [23] .
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V CENTRAL LIMIT THEOREM FOR THE POISSON MODEL

Theorem T: The distribution of the size of the tries in the Poisson model, once centered and nor-
malized, converges to the normal distribution. moreover, the moments of any order of the centered
and normalized distribution converge to the corresponding moments of the normal distribution.

Proof: Let o(2) be the standard deviation y/v(z). According to the previous propositions, we
have the estimate

. : 2 3
P(z, e't/o(z))e—ti(Z) - ezp{—% +0 (O’Z;(tz))} .

Since |v(z)| > A.|2| , we have: o < 7%1-. Thus:

P(z,eit/a(z))e—itx(z) —e T,

when z — oo, uniformly in any neighbourhood of ¢t = 0 (since asymptotically we have eit/7(2) €

V(1)).
VI. BACK TO THE BERNOULLI CASE

Now, we are able to finish the proof of our main Theorem 1 about the normal limiting distri-
bution of the size of tries under the Bernoulli model. We make use of the Cauchy formula:

n! dz
Pa(w) = 3= § Pt

the integration being done along the circle |z] = n as illustrated by figure number 2. We first
evaluate the integral, using the asymptotic development of P(z, u) derived in the preceding sections.
The Bernoulli mean and variance follow from this computation, and their asymptotic estimates are
given in Lemma 8. Hence, the limiting distribution result will follow.

We first proceed with the evaluation of:
_itX(n) it
) e VW P (eVV ™),
Using the Stirling formula and noting: z = ne*, this is: Ve I, (1+0(2)) with:

it X(n) ” .
—_ . i :
I, = e e VN / P(ne' eV )eme" e=inbgg

-



This is an integration on the contour in Figure 2.

yA

<V

Figure 2

We split this integral into two parts, inside and outside the cone Co. First, for 0 < |6| < Omax,
we use the developments of ¢'?, X(ne'?), and V(ne'?), valid on the cone Cy,,, ., namely:

X(ne'®) = X(n) + nX'(n)i0 + O(né?)
V(ne®) = V(n) + O(nf).
The change of variable y = \/nf yields the integrand:

"en 2 - 2
e_%(y_s‘/:_'f( )t)z & Vn) nX (n) +o(1, g )

When n — oo, the bounds of integration also tend to infinity, and the dominated convergence

12 V(n)=nX'%(n) 2r 1
=e T VG \/— 1+ 0(—=)).
/I;|<oma: n ( (\/-E))

Second, we prove that the contribution for |f] > 8,4, is negligible. From Proposition 3, we

theorem readily gives:

have: .
|P(z,u)e?| < €™ = O(in-).

Hence:
1t X(n) 2 V(n)=n X"( )

WP = TR (14 0( 7))

This computatiion gives in passing the asymptotic expressions of the Bernouili mean and vari-
ance, for which we can state asymptotic estimates:

10



Lemma 8: The mean X B(n) and the variance Vg(n) under the Bernoulli model satisfy:
Xp(n)~ X(n)
Va(n) ~ V(n) — n.X"*(n)
an < Vg(n) < fn .

for some positive reals o and S.

Proof: The upper bound follows from Lemmas 5 and 6. To get the lower bound, one derives (E1)
and gets:

Q(z) = V(2) - 2X"(2) = Q(p2)+ Q(gz) +¢(2)

where ¢ can be shown to be strictly positive. Thus ¢*(0) is strictly positive, and it follows from
basic properties of Mellin transform that Q is at least linear.

W the mai 1A. ightf fL ul
e can turn to the main Theorem 1A. As a straightforward consequence of Lemma 8, WiAe)
is bounded iff |¢| is bounded. Thus, we can rewrite our estimate of P,(u) as:

—itX(n) —it 2

) = oy,

Applying the Levy’s Continuity Theorem yields Theorem 1.
VII. THE EXTERNAL PATH LENGTH: THE GENERATING FUNCTION:

We turn now, in this section and the following one, to the study of the external path length. The
proof scheme is roughly the same as before.

Proposition 9: Let P(z,u) be the generating function for the ezternal path length of random tries,
and let P(z,u) = P(z,u)e?. P(z,u) satisfies the functional equation:

P(z,u) = P(puz,u)P(quz,u) + ep(2) — ep(uz).
Moreover, P(z,u) and P(z,u) are defined and analytical for every z and for ju| < (p*+! + qb+1)1/b+l,l

Remark: This appearance of a new connection between u and z, in the terms P(puz,u) and
P(quz,u) implies the differences between the following proof and the preceding one. Unfortunately,
the cone Cy is not stable by the transformations: z — puz and z — quz, when u is complex. Thus,
to be able to exploit the functional equation, we restrict ourself to u ranging in a real interval.
Then, P,(u) is the Laplace transform of the distribution.

Proof: With the notations of I, £ being the external path length of a trie 7, one has:
b
L(T) = LTo) + L(T) + T - Y ix(IT] = j).
. j=1

Again, one gets "directly” (1) with the algebraic methods defined in [FRS85b]. To get the analyt-
icity, one makes use of the following majoration.

11



Majoration Lemma: For any R < there exist two constants C and § > 1, such

that:

(pb+1+q;+1)l +1
P(u) -
l——nﬁ(—,——l < C.p ™8™ |u| < R.

Proof: A is chosen such that: W < A < 1. From the condition:

lu| <R < <1/q

(P! + qb+1)1/b+1

and from the inequality: (p* + ¢")"/™ < (p**! + qb"'l)l/b+1 < 1, one gets:

(ug)" AmH

dng:n > ng == < .
’ 1- (u(pm+g») /™ n

nlogn
Now, we fix v > 1 and one can choose C' > 1 such that: sup <n, 'fﬂl‘)nl'__‘_| < C. At last, we

Jui<R

choose 1 < 3 < v such that: AC(A4f°8%)" < 1. We have then: |P—"n(7"—)| < Cy~nlogn o Cp—nlogn,
Then, we can prove the result by induction, for n > ng:

:Pﬂ(u) (u‘I)n | Pnl(u) PnZ(u)
] < —_—
" n! I 1-ur(p"+q) n1+§<n nl!  n2!

As:nllognl + n2logn2 > n(logn — log2), one has:

-n.c2 .ﬂ—n(log n—log 2) < Cﬂn log n

iPn(”)| Artl
<
n! n

Proposition 10: For every 0 € [0, §[, there ezists a constant: 0 < my < 1, a real neighbourhood
of 1, V(1), and positive constants cy,cp, such that, for u € V(1):

Procf: m, is arbitrarily fixed, m; < 1, and we proceed by induction. We start the recurrence with
A such that:
e]zlcosO > 26]2[”‘1
2€Csand R(z)> A= e
ex(jz]) < €kl

With Dy as before, noticing |P(z,1)| = |e?| = €!*I¢*?, 2 similar argument of compacity yields:
|P(z,u)] > 217",

By induction, this equality holds on the increasing domains Dy, as:

(pr)™ +(qu)™ >1 ,u € V(1)

ue V(1) > ~
0 < |es(2) — ep(uz)| < 2e41™,

12



Finally, for z in the compact set {|z| < A4, Arg(z) < 6}, the continuity of these functions ensures
the existence of ¢; such that: ‘

=™

[P(z,u)| > cre
To derive of the upper bound, we note v = |1 — u| and we choose A and V(1) such that:

1/2¢2R1Y7 5 172601 5 1 |2 > A,u € V(1)

les(2) — ep(u2)] < 1/4e*! < 17262 121 > A,u € V(1)

1Pz, u)] < 1/22H1* | 2 € Dy

The majoration is proved by induction in the increasing domains D,, as:

{lp(z’")l < 14PN L als

(PVF 4 TV VT = (1 - HV)(1+0(v)) < 1

VIII. ASYMPTOTIC ESTIMATES FOR THE EXTERNAL PATH LENGTH UN-
DER THE POISSON MODEL:

This section is devoted to an asymptotic development of the logarithm of the generating function
P(z,u). We also derive asymptotics for the mean and the variance of the external path length
under the Poisson model.

Proposition 11: For any cone C5,0 < 8 < I, there ezists a neighbourhood of 1, V (1), such that
L(z,u) = logP(z,u) be defined and analytic when (z,u) € Cy x V(1).

Proof: This follows immediately from Proposition 10, as P(z,u) = P(z,u)z is analytic and non
zero.

Lemma 12: Let X(z) and V(z) be the mean and the variance of the external path length under
the Poisson model. They satisfy asymptotically:

logz 1
z °}§I ~ T+ 1+ 1/2H2/H) + o(2).p # ¢
X(z)=
zlogz 1 - z =q=
T " @(7 +1+1/2log2)z + zP({log,(2)}) + O(1),p = ¢ = 1/2
and
zlogz  2H2  2(y+1), 1
V(z) = 7T (gt T ) grlertoeia

zlog? z 2
log?2 log

2(7 + 1+ 1/2log2)zlogz + 22P({log, z})logz + O(2),p = ¢ = 1/2

with:H = plog % + gqlog %, H2 = plog? p+ qlog® q, and P(u) a periodic function with mean 0.
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Proof: The proof is given in Appendix. By differentiation of (1’), one gets functional equations
for X (2) and V(2). Using Mellin transform yields the asymptotic expansions.

Proposition 12: For z varying in a cone Cy with § €]0, 7{ and 0 < -t < ET”ATOSF" we have:

zlogzt+ zlog? 2

L(z,e") = 7 7

1
t’/2+0(@ .

Proof: The proof makes a large use of the Mellin transform method. We note:

{ o) = -log - APy
L(z,u) = logP(z,u) = z+ L(z,u).

From (1’), the function L(z,u) satisfies the functional equation:
L(z,u) = L(puz,u)+ L(quz,u)+ g(z,u) - (1 — u)z.

If we note: o
Li(s) = / L(z,u)z* 1dz
0 L ]

6i(s) = /0 " (62 8) = (1 = w)2)e*tdz

the Mellin transforms of L(z, u) and g(2,u) when they exist, we get formally the functional equation:

L‘

u

_ gu(s)
©) = TGw-

As g(z,u) is O(2) when z — 0 and O(z~™) when z — 0o, g%(s) is defined for R(s) €] - 2,~1[. The
pole at s = —1 is simple, with residu (1 — u), thus g}(s) can be continued for R(s) €] — 2,+oo[.
The pole at s = ~1 contributes by: —z. The smallest root of the equation:

(pe')™" +(ge')™ =1
is, for t in a neighbourhood of 0:

s(t) = =1—t/H + B +0().

with: 8 = —1/22H+""(i‘;§f°l°5 2 Thus, L3 (s) is defined in the strip ] — 1, 5(¢)] and:
L(z,e') ~ ga(s()z~*" - 2.

When [t] < i Alos > one can develop z=*(*) around 0:

| ] \
20 = 14 li’g;t +1/2(Blogz + l-‘g—zi)tz +0(z"1/%),

14



Combining with: gz(s(t)) = ag + a1t + a2t® + ... yields L(z,e~*). From the definition of the
cumulants and the results in Lemma 1, "ag,a; and as are obtained by identification.

IX. BACK TO THE BERNOULLI CASE:

We can now finish the proof of our Theorem 1. To get the limiting distribution under the
Bernoulli model, we proceed as in VI, making use of the Cauchy formula:

n! . dz
Pn(’l.t) = m/P(Z,u)e ;t_ﬁ

The Bernoulli mean and variance will follow from this computation, as stated in Lemma 13 (see
also [KP87]). Surprisingly, the Bernoulli asymptotic order of the variance is strictly smaller than

the Poisson asymptotic order, i.e. O(n) in the uniform case and O(logn) in the biased case, instead
of O(nlog® n).

We split the integral into two parts. We note z = ne'®, and using the Stirling formula, the
integrand becomes: |/Z=e?(™®) with: ¢(n,0) = L(ne*,e') + n(e? — 1) — inf. As in Section VI,
one can develop X(ne*?) and V(ne') for 4 around 0, which yields:

#(n,0) = X(n)t + g[V(n) - nX"?(n)] - 1/20(0 — X'(n)t)? + ¢(n,0).

with:9(n,8) = —nX'(n)6%t/2+ O(n8%t+nlognd3t+ nlognt?). This gives, in passing, the formulae
for the Bernoulli mean and variance. One can state an equivalent to Lemma 8.
Lemma 13: The mean Xp(n) and the variance Vg(n) under the Bernoulli model satisfy:
Xg(n) ~ X(n)
Va(n) ~ V(n) — nX"*(n)
an < Vg(n)<Pfn ,p=q=1/2
anlogn < Vp(n) < Bnlogn ,p#4¢

for some positive reals a and .

Normalizing ¢t as t/+/n (or t//nlogn) yields by a dominated convergence theorem:

ama:
amJ- logn

gmos

Applying the Levy Continuity Theorem yields Theorem 1B.

IX CONCLUSION
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We have considered the distribution of the size of the tries , and of the external path length,
in all cases, -the uniform and biased cases, under the Poisson and Bernoulli model-. We proved
the convergence to the normal distribution. The method makes a systematic use of generating
functions and complex analysis, which prove to be a valuable tool. Our approach enables us to
asymptotically solve non linear bivariate difference equations. Another nice feature is the derivation
”in passing” of the growth of the moments of any order. Thus, it generalizes and completes previous
results for mean and variance. In particular, there comes out a rather surprising difference between
asymptotics of Poisson and Bernoulli variances.

One expects this scheme to have other applications. Qur results can be extended to Markov
models. Markov models are adequate when the keys come from textual data: the transition matrix
is then formed with the transition probabilities from one letter to another [24]. Our analysis is a

particular case of a stationary process over a binary alphabet.

This work can be put in parallel with our results on other parameters on tries. In [11], we
studied the height of tries and the depth of insertion of a random record (also independently
analyzed in [21]), with a different method. We extensively used the Mellin transform ([9]) and
showed the limiting distributions to be either gaussian or periodic doubly exponential. .
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APPENDIX

This appendix is devoted to the derivation of asymptotic expansions of the mean and the
variance of the external path length, under the Poisson model. More precisely, we want to prove
the Lemma 12. We make use of the Mellin transform {8]. The mean and variance can be defined
by the derivatives of the bivariate generating function. Derivating the functiona)] equation satisfied
by P(z,u) yields the functional equations satisfied by X(z) and V(z):

X(2) = X(pz) + X(g2) + 2(1 - fo-1(2)) .
V(z) = V(pz) + V(g2) + 2[pz X" (p2) + ¢2X"(g2)] + 2(1 ~ fo-1(2))

+2z2fo-1(2)X (2) + Zz[fb-_l(z)z + (bzi_—;)"

e~ %]
with: fy_1(2) = (1 + 2/1! +--- + zb/bl)e2.

From the first equation follows easily a functional equation satisfied by X'(z) or Q(z) = 2X'(z).
Then, the Mellin transform of X(2), Q(z) and V(z) are:

.oy sT(s+1)
1 9=z (r~*+4q°)

ey 2T + 07+ 07(5) + 63(6)

1 —(n—s L a—3s)
- \ LI § J

~

wit?:gl(z) = 2(1 = fo—1(2),9}(s) = —1/3.%’12)— and g3(2) = 2zf,-1(2)X(2) + 2*[fo-1(2)* +
-1

W] The function X*(s) has a double pole at s = —1. Computing the residues yields t.he
terms azlogz + fz in the asymptotic expansion. In the uniform case, the poles s; = —1 + 2T

log 2
contribute by a periodic term zP({log,(2)}) to the mean.

V™ is the sum of three terms. Considering the order of g(z) at 0 and oo (O(z?) and O(2~™)),

one sees that g, is analytic in ]—2, +o0o[ and notably around s = —1. Thus, m—fi%q—_—q contributes

by a linear term az while ITG?-.:L:;)(;—_') (resp. IT(;";%;Y) have a triple (resp. a double) pole at
s = —1 and thus contributes by a term azlog’ z + 8zlogz + vz (resp. azlogz + Bz). Computing
the residues gives the coefficients as stated in Lemma 12.
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