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VATIATIONAL FORMULATION AND ALGORITHM FOR TRACE OPERATOR
IN DOMAIN DECOMPOSITION CALCULATIONS

Abstract

A new preconditioning strategy is proposed for solving
elliptic problems via domain decomposition techniques.
This preconditioner acts on the Steklov- Poincare's
operator (represented after discretization by the
so-called Schur complement matrix) through the addition of
a trace averaging and of the solution of a Neumann problem
per subdomain. Such a strategy can operate on arbitrary
geometries and unstructured meshes, gives the same role to
each subdomain and can be written in a variational form.
Two or three-dimensional numerical results are given to
illustrate the efficiency of this strategy.

FORMULATION VARIATIONNELLE ET ALGORITHME POUR LES
OPERATEURS DE TRACE INTERVENANT EN DECOMPOSITION DE
DOMAINES

Résumé

On propose une nouvelle stratégie de préconditionnement
pour la résolution de problémes elliptiques par des
techniques de décomposition de domaines. Ce
préconditionneur agit sur l'opérateur de Steklov-Poincaré
(représenté aprés discrétisation par la matrice complément
de Schur) par un calcul de moyenne de traces et la
résolution d'un probléme de Neumann par sous-domaine.
Cette stratégie peut opérer sur des géométries
arbitraires, sur des maillages non structurés, fait jouer
le méme rdle a tous les sous-domaines et peut étre écrite
sous forme variationnelle. Elle est illustrée sur des
exemples numériques bi ou tridimensionnels.

Mots-clés : Décomposition de domaines, opérateur de
traces, gradient conjugué préconditionné.
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1. Introduction. The idea of reducing the solution of
an elliptic problem set on a domain @ to the parallel solu-
tion of problems of same type set on subdomains Q; of Q is
ancient ([1],[2],[3]), but it gets new attention with the
present development of parallel computers.

These domain decomposition methods are based on simple
and intuitive ideas. Nevertheless, their numerical efficien-
cy is very sensitive to the choice of the computational
variables, that is to preconditioning. The approach propo-
sed in this paper uses an H'norm on each subdomain (§3). On
the product of the associated spaces, the problem takes a
classical variational form and is associated to an operator
which involves on each subdomain the successive solution of
a Dirichlet and of a Neumann problem (§4). This formulation
is then solved by a conjugate gradient algorithm (§5).

Numerical results will assert the efficiency of our
approach (§6): on significative two dimensional situations
(irregular mesh, discontinuous coefficients, crossed inter-
faces), the algorithm has converged in very few iterations.
Similarly, convergence occured in 14 iterations in the so-
jution of a Poisson problem set on a complex three-dimen-
sional geometry. -

It should be also observed that the present approach
'is the equivalent in a standard variational form (and using
standard discretization techniques) of the mixed variatio-
nal approach described in [4] within a mixed finite element
framework.

2. A Bimplifiedb Model Problem. We first deséribe our
approach on the following model problem:
{ - Au = f on Q,

u =0 on 30 ,

the domain © being decomposed as indicated in the figure
below. o



pa- D] Q,

Figure 1: the model problem

Our goal is to solve the above problem only on the subdo-
mains Q.. If we knew the value A of the solution u on the
interface S, then the parallel solution of

- Au; = f on Q,,
u; = X on S,
u; = 0 on 90 N 8Q,,

1
on Q, and 9, will achieve this goal. The problem is thus
reduced to the computation of X which can be done by the

following gradient algorithm operating on the trace space
Hi/2 (S)I:
00

data: X given in H}/%(s);

computation of the solution: for any i, solve the Dirichlet
problem:

~ 4Au; = f on Q,,
u; = X on S,

u; = 0 on N N ani;

computation of the gradient: for any i, solve the Neumann

problem (preconditioner)



- Ay, =0 on 9,
1 (9w ou,
—— = — |— + —| on S,
2 an1 anz
0 on 90 N ani;

<
i

updating: set X = X - p( ¥, + ¥,) and reiterate .

The domain decomposition method that we will now introduce
is simply a generalization of this algorithm.

3. The Original Problem. Consider the domain 2, pafti-
tioned into subdomains Q; as indicated on Figure 2.

90

51 52 -+ Q2
T ' .I'2 :
aQDP, 81 S J LN
S3 Sy, 3
L3 Q3 SaFu Q Ty
A\~ 4
BQN

Figure 2: definition of the subdomains and boundaries.

Let us introduce the boundaries (see Figure 2)

o = 3, U aq,,
r, =aq, N ae, ,
s, = 9, - ;- interior( 3Q, N 8%;),

together with the spaces



v = {v € H' (R ;RP), v = 0 on aQD},

<
fi

{v € H' (?,;RP), v = 0 on ri},

Voi={veH (@ ;R), v=0onru S; }-

As in [1], the pairing 5 (u,v) will denote a given scalar
product on V,, X will be the product of the spaces V;, and Y
will represent the space of traces on S of functlons of V.
In addition, Tr;‘(x) will represent any element 2z of '
whose trace on S; is equal to A. Finally, we introduce the
elliptic form

aum 6vk

a; (u,v) = J.Q_Amnkl (x) Y

dx, 9Ox

Under these notations, the problem to solve writes

Find u € V such that
2: a; (u,v) =<f,v>, VveEV,
i

4. Domain Decomposition of the Original Problem.
4.1 Introduction of an operator of Steklov-Poincaré’s type.
We first define a trace operator @, from V, into Y
‘satisfying

(C) 2: @, (v) = Tr(v), V v € V.
i

For example, at the continuous 1level, we can set @, (v) =
Tr(v)/2. A different definition should be used at the fini-
te element level in order for condition (C) to be still
satisfied after discretization. A possible choice will be
described in §6.

For w = {(w;} € X = T1 V. . we then :



a; (z;,v) =0, V v € Voir

r

z;, €V,, z; =X on s,

define the usual Steklov-Poincare’s operator by

< ShA, A> = > a; (z; , Tr; ' (A7) , = ¥ A’ € ¥,
3

and solve the Neumann problems

a; (W, ,v) = < 8Sx , o,

jiv> , VY veEeyv ,

d’- e V. .

1 1

our final operator is now defined from X into itself by
A(W) = (U, ) .

. Remark 4.1: In computing aj(zj,Tr31(A')), the choice of the

representative element of Tr;'is of no importance since, by
"construction, 2z, 1is orthogonal to any component of this
element in Ker (Tr;) .

4.2 Analysis of #. Assuming a; to be symmetric positive on
V;, we introduce the operator K; defined on V; by

gj(Kiu,Kiv) = a; (u,v) , Yuvev ,

and the operator B defined on X by B{(w;)} = (K;z,} . By
construction, we have:

(A(w) ,Ww’') = 2: ai(wi,wi') = 2: < 8x , o w, >
i i

=< 8\ , x> = Z: a; (z; ,Tr;' (1))
3 :

2 aj(z,2;7) = (B(w),B(u)).
J

Therefore, & is a self-adjoint positive operator from X in-
to itself, and can be decomposed into the product # = B'S8.
In particular, standard conjugate gradient algorithms
operating on # will converge in Im(B') with rate

1 - cond(B)
1 + cond(B)




Moreover, from the abqye relations, we have
(AW, w’) = < 8x , A’'>,

In other words, #£ 1is a preconditioned version of the
Steklov-Poincare’s operator S. Such operators have been
extensively studied in [5], [6], [7], [8]. Compared to
them, our operator # adds a Neumann problem associated to
the boundary condition

al],!i _ Z 8zj
én; 'y an;’

J
which sends the dual of X back in X. The introduction of
this preconditioner together with the averaging «; is the
main originality of the present approach.

Remark 4.2: The degrees of freedom in the definition of the
operator # are the choice of the trace averaging a«; and of

the scalar product Ei(u,v). The choice of «. has already
been discussed. As for the scalar product, the best possib-
le choice would be:

a; (u,v) = a; (u,v)

-( K;= Id), because then the Neumann step corresponds to the
exact inverse of the Steklov-Poincaré’s operator introduced
in the Dirichlet part. With this choice we can expect # to
have a very small condition number. Unfortunately, if TI'; is
empty, a,; (u,v) does not define a scalar product on V.. In
that situation, the best choice is then

K
a; (u,v) = a; (u,v) + 2: U,V > <vV,v;, >
k=1

with {v;} a sequence of elements of V; adequately chosen.
At the discrete level, this means adding positive diagonal
terms to the matrix associated to a; (u,v).

4.3 Variational writing in X. To define the right hand side
of our new problem, we solve the Dirichlet problems

( a; (z2?,v) = <f,v> , ¥YVvEV,,

0
zi € Vi



and the Neumann problems

a; (W3 ,v) = 2: a; (2}, Tr}‘(aiv))-<f,Tr}‘(aiv)>, Vvev, ,
j
Wi e v, .

In that framework, the problem to solve can be wrltten un-
der the equivalent form

(P) Solve #(w) = - {wg} in Im(B8") ,

within the identification u = z; + z9 on Q.

Equivalence proof. Let w be the solution of problem
(P), solution which unlquely exists from Lax-Milgram’s lem-
ma. Let u be the field given by
u =12 + 2! ongQ.
By construction the traces of z; and z0 are compatible on
the interfaces S; and are equal to zero on the boundaries
'y . Thus u belongs to V.

Now, 1let v be any element of V. On each subdomain, v
can be decomposed into

v = v, + Tr;'(Tr v) with v; = v - Tr;' (Tr v) € Vg, .

Therefore, by construction of u, z

2: aj(u,v) = 5: a; (z;
J

. and 2}, we have

+2%, v; + Tr; ' (Tr v))

J j

= E: <f,v;> + 2: a; (z; + 29, Tr; ' (Tr v))

3 3

= 2: <f,v;> + E: a; (z; + 29, Tr"(§:a v))
J

= 2: <f,v;> + EEEE aj(z; + 2}, Tr;' (x;v))
J

E: <f,v > + E: a, (v, + w‘, v)

+ E:E: <f, Trj'(;Vv)>
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= Z <f,v, + Tr}‘ (Tr v)> + Z ai (b + 4], v).
J i

But, by construction of w, we have vy, = - w? and thus we
finally get

E: a; (u,v) = 2 <f,vj+ Tr;' (Tr v)> = <£,v> , Vv € V.
J J

In other words, the solution u that we have constructed is
the unique solution of our original problem.

S. 8olution Algorithm. The solution algorithm that we
propose 1is a standard conjugate gradient method ([9]) ap-
plied to the inversion of # on Im(8"). It writes

INITIALIZATION
For ) given in Y, solve the Dirichlet problens:
a; (4; o,v) =<£,v>, VvEVY,,
u; = A on S,;,

0
U o € Vi
compute L; (V) = 2:(aj(uj,Tr}‘(aiv)) - <f,Tr}1(aiv)>) ,
J
VvEVi;
solve the Neumann problems:
5;(‘9{'0: V) = L; (v), VVEVi,

®i,0 €V

—~

<
3, (®; 019 ,0) = f‘ L (@;,0)7

o
=
c
ct
o
Q.
o
Il
M

BEL W; o= @; o and R; (V) = L; (V).

A

LOOP ON n: for n =0 until satisfied do

computation of #Aw

R

i Yi,ni

<
compute A= L
J

solve the Dirichlet problems:



11 *

a; (z;,v) =0, VVEV,,
z; =X ons§,;, '

1
z, € V;;

compute L, (V) = Z(aj (z; ,Tr;" (cxiv))) , VVvEY,;
]

" solve the Neumann problems:

5,‘(‘4’11 V_) =L;(v), VVvEYV,

v, € V..
descent
set r =Z a; (W av;) o= Z L; (w; )
J J
set o, =4, /x,
set:
[ Ui ner = Y ,n T Py 25
‘pi,n+1 =(pi n _pn Wi,

lRi,n+1(v) = Ri,nkv) - P, L (v).

computation of the new descent direction -

- < '
compute 4, , =.Z 3 (8 ne1 1@y 1) = SRy g (95 00g)
J J
or alternatively dn+1= dn - P, g: Lj( wj’n+ @j,n+1);

stop if |d_,,/d, < 10°%;
dn+1
set wl,n*1 i,n+1 + d wi,n *

Remark 5.1: Observe that the linear forms R; (V) and L, (V)
only operate on the traces on S; of the functions v. This
simplifies their computation. Moreover, this means that, in
the algorithm, we just have to compute and store the traces
on S; of the functions ¢; and w;.



Remark 5.2: The above algorithm is modular and, since it
does not involve any relaxation parameter, is completely
transparent to the user. Moreover, it has a high degree of
parallelism: most of the CPU is devoted to the solution on
each subdomain of independent Dirichlet and Neumann prob-
lems. The only "rendez-vous" are the trace averaging opera-
tions which occur twice per iteration.

6. Numerical Results. Our numerical results deal with
the Laplace operator for which we have

a; (u,v) = Jn.ﬁi Vu.%v .

1

The spaces V; are approximated by finite elements of P1-
Lagrange type. The trace operators «; are defined at each
node of the interface by the formula

A
(@, (V) (M) = { a, (9, ,0,)/(&a, wk,ok)')J v(M, )
J

where ¢, denotes the weighting function associated to the
node M, . The three-dimensional coding was done within the
MODULEF finite element 1library in a multielement, multi-
problem and multitasking framework.



Figure 3

The first computed geometry is described on Figure 3.
The internal mesh (on Q,) had 1222 triangles and 669 ver-
tices, the external mesh (on ©,) had 1440 triangles and 780
vertices. For the pure Dirichlet problem, the algorithm has

converged in 4 iterations for g,=B,=1 and in 3 iterations
for g,=0.1, B,=1. :
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Figure 4: the T shaped domain

The second test considers a pure Dirichlet problem set
on the T-shaped domain treated in [10]. On this example, the
algorithm has converged in 2 iterations.

Figure 5: the "square cross" rectangle

The domain for the third example is the rectangle
=]0,4(x]0,2[ which is divided in 4 subdomains with®
cro§sing interfaces, as indicated on Figure 5. For both
choices g, =B =ﬁ =8,=1 and 8,=1.,8,=10.,8;=0.1.8,=0.01, the

algorithm has converged in 5 1teratlons 1n the case of pure
Dirichlet boundary conditions.
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Figﬁre 6: the "oblique cross" rectangle

The fourth domain that we have treated is the unit
square divided as indicated in Figure 6. Here both the pure
Dirichlet and the pure Neumann problem were considered,
with 8,= 10" if x,- x, < 0 and B,= 1 if not .. For the
.Dirichlet (resp. Neumann) problem, convergence was reached
after 3 (resp. 8) iterations in the case of 4 subdomains
and after 6 (resp. 20) iterations in the case of 8 subdo-
mains. Taking 200 triangles per subdomain instead of 100
did not change the number of required iterations.
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Figure 7: the "checkaboard" domain

The next domain that we have treated has 100 subdo-
mains, 20000 triangles and 10201 nodes. On this domain,
represented in Fiqure 7, we have treated both the pure
Dirichlet and the pure Neumann problem. For B, =1 everywhere
convergence was reached after 40 iterations for the
Dirichlet problem and after 74 iterations for the Neumann
problem. For .= 1 in the wide strips and 8,= 10"3 else-
where, the Dirichlet (resp. Neumann) problem did require 54
(resp. 173) iterations to converge. Observe that there were

1701 (resp. 1737) nodes on the interface for the Dirichlet
(resp. Neumann) problem.
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Figure 8: three-dimensional geometry

Our 1last numerical example deals with the complex
three-dimensional geometry of Figure 8. The domain here is
divided in 4, contains 937 nodes, with 83 nodes at the
interfaces. Dirichlet boundary conditions were imposed only
on the internal hole. Convergence occured after 14
iterations.

On all our numerical tests, we have observed that the
number of iterations before convergence was independent of
(i) the initial value of the trace X,

(ii) the values of the right hand-side,
(iii) the discretization step.
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7. Conclusion. In conclusion, all these numerical
tests assess the validity of the conjugate gradient
algorithm when operating on the product of traces, at least
within the framework of a scalar elliptic operator and of a
moderate number of subdomains. Corners in the decomposition
can be handled easily provided that the averaging trace LF
be properly defined and be present in the Neumann step.
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