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Summary: We consider some mized finite element methods for scalar second and fourth
order elliptic equations. For these methods we introduce and analyze some new postpro-
cessing schemes. It is shown that by a simple postprocessing, performed separately on each
element, one can obtain a considerably betier approzimation for the scalar variable than

the original one.

TECHNIQUES DE POSTRAITEMENT POUR CERTAINS
ELEMENTS FINIS MIXTES

Résumé: Nous considérons quelques méthodes d’éléments finis miztes pour des équations
‘auz derivées partielles scalaires, elliptiques, du second ou du quatriéme ordre. Pour ces
méthodes, nous introduisons et analysons quelques techniques nouvelles de postrastement.
On montre qu’un postraitement simple, effectué séparément sur chaque élément, permet

d’obtenir une approzimation bien meilleure sur la variable scalaire.

" Professeur invité dans le projet de M. BERNADOU (MODULEF) de septembre 1987 2
septembre 1988. _ .
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1. INTRODUCTION

The purpose of this note is to discuss some mixed finite element approximations of two
model problems; the Poisson equation and the biharmonic equation. For some problems

of these types, mixed methods have been applied with considerably success.

Equations for which the Poisson equation can be taken as a prototype arise in some geo-
physical problems (cf. e.g. [6,17] and the references therein) and problems in semiconductor
physics [12], and for these two applications very good results have been obtained with the
mixed methods of the Raviart-Thomas-Nedelec (RTN) [13,14] and Brezzi-Douglas-Marini
(BDM) [2,3] families. - ‘

The standard model problem for fourth order elliptic equations is the biharmonic equation
which arise as the equation for the deflection of a thin elastic plate. The other main
application of the biharmonic problem is the stream function formulation of Stokes and
Navier-Stokes equations. For the approximate solution of the biharmonic equation some

mixed methods were among the very first successful finite element methods introduced

[9,10].

In some recent papers F. Brezzi and co-workers [1,3] discussed some mixed methods for
the aforementioned problems. They considered a technique of implementing the methods
where Lagrange multipliers are utilized in order to impose interelement continuity of some
of the variables. The advantage of this technique is that by using local condensation
techniques the final linear system to be solved is positive definite. In addition, they showed
that this new Lagrange multiplier can be exploited in some postprocessing methods for

producing better approximations for some of the original variables.

In this paper we will first introduce an alternative to the postprocessing methods of [1,3] for
the BDM family. Then we will develop an analog postprocessing procedure for the Hellan-
Herrmann-Johnson (HHJ) family [9,10,11] for approximating the biharmonic equation.

Our postprocessing approach is rather general (and natural); it can be used for all methods
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in the RTN, BDM and HHJ families. In addition, it does not require that the methods
have been implemented by the Lagrange multiplier technique of [1]. In [16] we introduced
the corresponding postprocessing scheme for some mixed methods for the linear elasticity

problem.

Our exposition will be rather brief, since most of the estimates we will need for our analysis
are found in [2,3,4,7]. Our notation will be the established one, cf. [5]. For the specific

mixed methods we will mainly use the same notation as in [2,3,4,7].

2. SECOND ORDER ELLIPTIC PROBLEMS

Consider as the model problem the Poisson equation with non-homogeneous Dirichlet

boundary conditions:
—Au=f in Q,
(2.1)
u=up on T,
where (2 is a bounded domain in RN, N = 2,3, which for simplicity is assumed to have a

polygonal or polyhedral boundary T.
For the mixed approximation the equation is first written as an elliptic system:
q+gradd=0 in ,
divgq=f in Q, (2.2)
u=1up on 1.
Next, one introduces the variational formulation

(q7 p)_(dlv p, u) =<ug, pP:-n >, PE H,

(2.3)
(divq, v) = (f,v), veY,
and then the finite element method
(qh,p)—(din, uh) =< Ug, PN >, peHh CH’ (2 4)

(divqs, v) = (f,v), veEVLCY,



Above we have used the notation .
H = H(div; Q) = {p € [L*(Q)]V | divp € L}(Q)},
V=L*Q), (uv)= / uvdz,
Q

(P,Q)=/P'qd$, < u,v >=/uvds.
Q T

n stands for the unit outward normal to I.

For clarity of exposition we will perform our analysis for the triangular or tetrahedral BDM
family. The extension to the other mixed methods of [2,3,13,14] is trivial. Hence, we let
T be a regular partitioning of  into closed triangles or tetrahedrons and define the finite

element spaces as [2,3]
Vi = {u ev I ur € P, (T), Te 7;,} ’ (25b)
where Py(T), Il =k,k—1,12> 0, denotes the polynomials of degree ! on 7. .

In [2,3] quasioptimal error estimates have been derived for the above method. The analysis
of [2,3] relies on the existence of two special interpolation operators I : H — Hj and

Py, : V —V,. Here we only recall the properties of Py:
(divp, U — P;.u) =0, peH;, ue€evV, ’ (2.6)

and

lu— Prullo <Ch"|ul, if ueH"(Q) for 0<r<k. 2.m

For the finite element spaces at hand the operator P, clearly coincides with the L2-

projection from V onto V.

Let us also remark that the analysis can be performed without the explicit construction of
the operator II;. This is easily seen from the following line of arguments: Consider, for a

given index k, the pair (Hp, V}) as defined in (2.5). Then there is a corresponding method
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(Hx, Vi) in the RTN-family such that V4 = V4 and Hj C H, [14,13]. Now, it is well
known that the pair (Hy, V3) is stable, i.e. it satisfies the Babuska-Brezzi condition with
an apropriate choice of norms, e.g. the mesh dependent ones introduced in [15). Hence,
the pair (Hj, V}) is also stable with respect to the same norms and as a consequence one

can perform an error analysis as in [15, Theorem 3.1]. Recalling the meshdependent norm

|-llo,n as defined in [15]

lalls = llall + 3 hr [ ja-np? ds
T€Th oT
for

qe{ peH | p-nel?*dT), TeT }

the error estimates obtained are the following.

THEOREM 2.1. Suppose that the solution of (2.1) satisfies u € H"(Q) with r > 3/2.

Then we have

”q - Qh”O,h < Chalqls’ s = min{r -Lk+ 1}’ (2'8)

and

llu = uallo < CH (Il + ul), = min{r—1,k}, (2.9)

For a convez region () we have

e — wallo < CR(Igli-1 + juli), 1= min{r, £}, (2.10)
and
j Ch*igl,, s=min{r—1,k+1} for k>2, (2.11)
”'l_!l. —_ Pl,’l'ln <
u " n>iHv = l

Ch?|qlz for k=1. (2.12)

If we in addition have f € Vj, then the estimate (2.11) also holds for k = 1.

Proof: All the above estimates except the last result are essentially derived in [2,3].

L)}

»
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Hence, let us prove that (2.11) is also valid for ¥ = 1 when f € V. To this end, let
(z,w) € H x V be the solution to

(z’ p_) - (divp,w) =0, peH,
(2.13)
(divz,v) = (up — Pru,v), veV.
Due to the convexity of 2 we have
lzllx + [lwllz < C llus — Prullo. (2.14)

Now, let (z,ws) be the mixed finite element approximation to (2.13). By choosing v =

up — Ppu, p = q — qp in (2.13) we obtain in the usual manner
llun — Paull§ = (divz, up — Pau) + (2,9 — qa)
— (div(q — an),w) — (a4 — qn, z4) + (divza,u —us)
+ (div(q — qu), Paw)
= (2 — 21,9 — qa) — (div(q — qn), w — Paw)
+ (div(z — zp), un — Pyu) + (divzs,u — Pru).
Now, the last two terms above vanish by virtue of (2.6) and the definition of z;. Next,

consider the term (div(q — q4),w — Pyw). Since we assume that divq = f € V}, we note

that also this term vanishes. Using (2.14) and (2.8) we thus obtain
llun — Paufly = (2 — 2n,a — an) < [z — zallolla — qallo
< Chlzllla — anllo < C hllur — Pauflollg — qallo

which together with (2.8) proves the assertion. m

REMARK 2.1. For the lowest order method in the RTN family the assumption f € V;

yields the estimate

lur — Prullo < Ch?|ql.

The estimate one gets without this assumption is [1]

llun — Prullo < C h2|julls.
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Hence, by assuming f € V, the maximal convergence rate is not improved, but the regu-

larity requirement on the exact solution is relaxed. ®

REMARK 2.2. The assumption f € V;, does not seem to be a severe restriction since in
practice we often have f = 0. Also, if f & V}, it is often possible to find a vector field Qo

such that divqe = f. Then one can use the mixed method to approximate q —qo. ® ,

REMARK 2.3. In the case when one can neither assume that f € V} nor find a field q
with div qo = f, the lowest order method can be modified with the technique elaborated
in [15]: Each T € T, is subdivided into N subtriangles or subtetrahedrons by adjoining the
center of gravity of T with the vertices. Let 7/, be the finer triangulation so obtained.

The modified method is then defined as
H, = {p € H | P € [C(T)]N’ Te ﬁn Pix € [PI(K)]N’ K e 7;;/2} ’
Vh={u€V| 'U.|T€P1(T), Te’I}.}

This method is easily proved to be stable and to satisfy the ”equilibrium condition” which

implies the existence of a projection operator P, with the properties (2.6) and (2.7). Hence

one obtains the error estimates v

la = qallos < Ch%lqls, s =min{r—1,2},
llu —uallo < CR'(lal + luli), 1= min{r-1,2}.
For a convex region ) we get
lu — unllo < C k' (lali-1 + |uli), 1= min{r,2}
and, in particular,
lun — Prullo < Ch**1|ql,, s = min{r—1,2}.

This modified method does not seem to be substantially more costly to implement than
the original lowest order BDM method, since when implemented e.g. as suggested in [1]

the size of the linear system to solve is not increased. m



Let us now define the
POSTPROCESSING METHOD.
 Let

Vi ={veL*(Q)| vir € Pss(T), T €T}

and define the approzimation uj € V) to u separately on each T € Ty as the solution to

the system

/ grad u} - grad vdz =/ fvd:c+/ qnnds Vv € (I -Qr)Vyr, (2.16a)
T T oT

Qru; = Qrua, (2.160)
where either QT = Py 1 or QT is the L%-projection from L*(T) onto Py(T). m
For this new approximation we obtain the following error estimate.
THEOREM 2.2. Ifu € H™(?), r > 3/2, and Q i3 convez, then we have
Chet(|qls + u|s+1), s=min{r—1,k+1}, for k>2, (2.17)
lu—uillo <
Ch*(lglz + lul2), for k=1. (2.18)

If we in addition have f € Vj,, then (2.17) is also valid for k = 1.

Proof: Let i € Vi be the L%-projection of u and define v € V;* through vr = (I-Qr)(i—
uy) for each T € Tj.

We now write

ol r = / grad ((I — Q7)(é — u})) - grad vdz

‘ (2.19)

= / grad (& — uy) - grad vdzx —/ grad (Qr (@ — u})) - grad vdz.
T T

Next, using (2.16a) we obtain
/grad (@ —u}) - grad vde = / grad (4 —u)-grad vdz
T T

+/ (a:n—qp -n)vds (2.20)
aT

< lu—dlyroh,r+ kY2 a-n - qu - nlloor - hp 2 |vo,or-
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By scaling and the fact that (I — Qr)w = 0 if w € Po(T), we get
bt P |lloor < Cllvllsr < Clolyr (2.21)

and

l[vllo,r < Cherlv|s,r- (2.22)
Combining (2.19) - (2.21) gives

vl < lu— 7 + h3/*llq - n — a4 - nflo o7

(2.23)
+1Q7(@ — up)la,7-
Hence, (2.22) and the inverse estimate
Q7 (% — ui)h,r < Ch'|QT(d — ui)lo,7
give
(I = @7)(@ — u)llo,r = ||vllo,r
12 (2.24)
< Chr(lu — dfy,r + by |l - n — qu - nllo,6r) + [|Q7(% — u})llo,r-
A squaring and summation over all T € 7}, yields ' v

- Qr)(@—up)lo < Chr{( Y lu—iaf} )2 +lla-n—qu-nllos} +1Qr(E—u})llo- (2.25)
TET,

By the definition(s) of Q@ and (2.16b) we have

1@ (& — ui)llo = |QT(Pau — un)llo < || Pau — unllo. (2.26)
Hence, the final estimates follow from (2.25), (2.26) and the estimates of Theorem 2.1.

REMARK 2.4. The estimate one gets for a nonconvex domain , is
llw — ukllo < Ch*(luls + lals), s = min{r -1,k +1},

and this estimate is also valid fork=1. =



3. THE BIHARMONIC EQUATION

In this section we will introduce and analyze a postprocessing scheme for the HHJ family

for approximating the biharmonic equation.

In the presentation we will have the application to the plate bending problem in mind (for
an account of the application of the method for the Stokes and Navier-Stokes equations
we refer to [8]). Hence we consider the problem

DAY =g in QCR?

3.1
=6—¢=0 on . ( )

¥ v

Here 1 denotes the deflection of a thin plate due to the transverse lodding g. D denotes
the bending stiffness of the plate:

Ed®

D == '—12"(1 _ 62))

where d, E, o are the thickness of the plate, the Young modulus and the Poisson ratio,

respectively. The unit outward normal to I is in this section denoted by v = (1, 12).

For simplicity we will assume that the boundary I' is polygonal and that the plate is
clamped along I'.

If g € H%(Q) then there is a unique solution 1 € HZ() to (3.1). It is also well known
that the regularity of the solution 1 depends on the singularities arising at the corners of
Q. For instance, if all interior angles of Q are less or equal to =, i.e. if Q is convex, then

we have

1%lls < Cligh-1, (3.2)

provided that g € H~1(2). In the sequel we will assume that Q is convex so that this
estimate is valid. For the estimates for the lowest order method we in addition have to

assume that g € L2(Q).
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In the HHJ method one does not directly approximate (3.1). Instead (3.1) is written as

the system
1 N P il oo
IJT_—"’){(I + o)uij ~ 06ij(unr + ug)} + ——— % 6:):, 4,7=1,2, in
2
azu-j

- =0 i 3.3
e az.-aa:,- tg=0 in &, o ( )
$,0=1

oY
=3, = 0 on T

Here the symmetric tensor u = {u;;}, i,j = 1,2, has the physical meaning of bending

moments.

The variational formulation of (3.3), upon which the finite element method is based, can
be stated in different ways; cf. [4,7]. They all, however, lead to the same discretization and
hence we will turn directly to that. For the index k, k > 1, and for a regular triangular

partitioning 7, the finite element spaces are defined through

Wi ={y € Hy(Q) | jr € Pe(T), T e T}, (3.4a)
and
Vi={ueV,| uijir € Pry(T), 4,j=1,2, TeT, } (3.4d)

where 22 :
Wy = {ll € [L (Q)] x2 | U12 = U21, U € HI(T), 5,)=1,2,

T € Th, M,(u) is continuous across interelement boundaries }.
Above and in the sequel we denote

Z
My(V) = E Vij Vi Vj
i,j=1
and

My (v) = Z Vij Vi Tj,

i,j=1 :
where 7 = (1y, 1) = (v2, —v1) is the unit tangent to 8T for T € T;. The approximate

method is now defined as follows: Find (¥, un) € Wi x V}, such that

a(Uh,V) + b(V, ¢h) = 0) vV E Vh’
(3.5)
b(“h"ﬁ)'*'(g,‘to):oa p € Wy,
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where
a(u,v) = D(l oy ';1/{(1 + o)uij — 06;j(u11 + u22)} vij dr,
Ou;; &p 9p
bu,p)= S {- 0uij 00 1 + / M,.(0)22 ds)
: | T;T;. 'JZ_I oz j 6:::, ST or
andv

(g,¢)=/agsodw-

For the error analysis of the method we refer directly to the papers [4] and [7].

The analysis of [4,7] relies on two special interpolation operators £ : H%(2) — W}, and
Iy : Vi — Vi. For the analysis of our postprocessing scheme we will need the properties

of ¥4 and therefore we recall its definition. For 1 € H%(Q) given, X% is defined through

/(?/) — Enp)gdz =0, Vq€ Pr3(T) and VT €T, (3.6a)
T
/ (¥ —Zap)gds =0, Vg€ Pio(T') and VT' €I, (3.6b)
TI
(¥ —Zny)(a) =0 Va€ Jy, (3.6¢)

where I, and J, are the sets of all sides and vertices of Ty, respectively.
Y4 has the following properties for ¥ € H"(Q), r > 2,
b(v,) —Zpyp) =0, v EV, (3.7)

and

l¥ — ayll; < Ch"lll
for 7=0,1 and [!= min{r,k+1}.

(3.8)

In this section the mesh dependent norm ||-[|o,4 is defined through

WlEa= 3 (il 3 b [ Jughas ). (39)

1,j=1,2 TeT:



12

Since only the component M, (V) is assumed to be continuous along interelement bound-
aries, v;;jsr is here defined as the limit of v;; when approaching 8T from the interior of

T.

Note that the definition of the norm ||-|lo,s is now slightly different from that given in

[4]. However, one easily checks that the following estimates still hold. For some of the

estimates for the lowest order method we now need the assumption g € L?(12).

THEOREM 3.1. Suppose that the solution of (3.1) satisfies o € H"(Q!) with r > 3. Then
we have '

lu—upllor < ChO||%|ls42 where & = min{r —2,k}, (3.10)

Ch*=¥|ls for k>2 where s=min{r,k+ 1},

l¥ — ¥l < { (3.11)
Chll¥|ls for k=1,

and

: Cho||¥|lsy1  for k=2 where 3=min{r—1,k+1},
I — $nllo < | (3.12)
Ch*(Il¥lls + llglle) for k=1. m

For the analysis of our postprocessing method we will need an additional estimate which
can be derived by adapting the arguments given in [4] and using the property (3.7) of Z;.

EMMA 3.1

v

Q ano hpma
vy wev vwve

hwrah e HT(O) »
~oe Y — AL \ﬂu}’ r

Ch|||ls4+1 for k>2, where s=min{r—1,k+ 1},
lon — Bapllx < (3.13)
CR2(II¥lls + llgllo) for k=1. m

Before introducing our postprocessing scheme we recall the that the normal shear force

along an edge T" € I, is given by

oAy 1
v ~ (1+0)

Qy =-D a_ay‘(ull +_u22) = Q,,(u). (3.14)

¢
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Hence, from the finite element solution (ux,%s) we can calculate an approximation to the

(Note that for the lowest order method this "approximation” vanishes.)
Now, let us define our
v POSTPROCESSING PROCEDURE.

Let
Wi ={e € L*(Q) | ¢ir € Pes1(T), T € T}

and

9’y 0%p " Y 0% 9 Py %
0z2 9z * 9xk 022 " 0z10z Ox1022

Ar(b,0)= D [ (Ap g (1= o) )} da.

The improved approzimation ) € W to v is now calculated separately on each T € T,

L

through the conditions
| Yi(a) =yn(a), Vae€hNT, (3.16a)

arin) = [opdot [ (M) 5E +Myr(m) 5~ Qulun)e} ds,

(3.160)

Vo € Wi with p(a) =0 fora€ JyNT. ]

REMARK 3.1. Since ¢ in (3.16b) vanishes at the vertices of T € 7T}, the concentrated

forces at the corners do not have to be calculated and the condition is equivalent to

0
Ar(¥5,0) = /T g dz + /8 ML () 5E - Velune) ds,

Vo € Wir with p(a) =0 fora € JzNT,
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where
oM, (us)

Vo(ur) = Qu(un) + 5

is the approximation to the ”effective (or Kirchhoff) shear force”

oM, (u)

Vo(u) = Q, + =5

The error estimate for the new approximation 3} will be given in the following norm

¥ = dillin = (D Il — bill3 )72

TeT

For the error analysis of the higher order methods we assume that ¢ € H"(Q) with r > 7/2,
which implies that the shear force @, is in L?(8T) for T € T;. (When this assumption is

not valid, one can apply the estimate for the lowest order method.) |

THEOREM 3.2. For the postprocessing scheme (3.16) we have the following error esti-

mates.

For k=1 and g € L}(Q):
1% —¥illi,n < CR2(II%lls + llgllo)- (3.17)
For k> 2 and ¢ € H"(Q) with r > 7/2:

¥ — ¥rllipn < CR®||Y|le+1  where s=min{r—1,k+1}. (3.18)

Proof: Let Qp be the Lagrange interpolation operator onto the space of continuous piece-

wise linear functions:
{fec@)| freP(T), TeT }.

Further, we denote by ¢ € W} N C(Q)) the Lagrange interpolate to .

®
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First, using (3.6¢) and (3.16a) we obtain

1Qa( — )10 = 1Q(Ert — o)llap
= ||Qa(Za — ¥n)lls < ClIZap — ¥alls-

(3.19)

Next, let us estimate ||(I — Q4)(% — %})|l1,5. For convenience let us denote z = (I —

Qw)(b — ¥7).
Since @4z = 0, standard interpolation theory gives
lzlls,r = |z = Qnzll1,r < Chrlzly,r (3.20)
Now, the exact solution (¥, u) of (3.3) satisﬁes
ar9) = [gode+ [ (MAZE+ Mr@)FE - Qo) ds, € HAD)

Using this, (3.19b) and recalling the definition of z we get

AT(z,Z) =AT("Z - "/"l‘nz) = AT("/; -, z)

0z 0z (3.21)
+ /aT{M,,(u - ““5; + M,,,(u.— uh)a— —Q,(u—uy)z} ds.

Let us estimate the terms in (3.21). Since 0 < o < 1/2 we have

Clzl3 r < Ar(z,2) (3.22)
and

Ar($ = ,2) < Clgp — pla,7l2l2, 1. (3.23)
Further, Schwarz inequa,li.ty and a scaling argument yield
0z 0z
LT{MV(U— u;.)-é;-i-M,,,(u—u;,)-é;-} ds |
<Clhr [ (1Mu(u= ) P+ M (a =) P) /2 b [ (32141 22 ) asp
aT

< C(hy /a UM (a=wa) P+ | Mar( = w) P) ds)'72 el
' - - (3.24)
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To estimate the last term in the right hand side of (3.21) we treat separately the cases
k=1and k > 2.

For k = 1 we have Q,(us) = 0 and since we assume that DA%y = g € L%(Q) we can use

a trace theorem [8, Theorem 2.5., p. 27] to estimate as follows

_ _ 0AY
_/aTQ,,(u—u;.)zds_—/aTQ,,(u)zds—D -y z ds

oA
< DIZ 2 s psonlelnor < Cllllr + llloa)lzlr 8.25)
< Chr([[$lls,r + ligllo,)lzl2,T,
where we in the last step used (3.20).
For k > 2 we assume that r > 7/2, and hence we get
- / Qu(u = up)zds < (b} / | Qu(u—us) [* ds)'/*(h7? / 2 ds)'/?
aT aT . aT (3.26)

< ot /a 1Qu(u =) [ d9)2fel s,

where we again used a scaling argument in the last step. Combining (3.20) through (3.26)

now gives

lzllr < Chr{lp=Plar+(hr /aT(I M,(u—uy) 2 + | M,r(u—us) |)ds)'/?+ Er} (3.27)

with
Er = hr(|[¥lls,r + ligllo,r) for k=1
and

Br= (hgr/ 1 Ou(u—us) P do)/2 for k32
oT

Recalling the definitions of z, M,, M,, and ||.|lo,s, (3.27) now gives
I = @u)(& — ¥l < Chr{( Y b — $,7)/% + [lu = usllo,n + E} (3.28)
TeT,
with

E=h(ll$lls + llgll) for k=1

»
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and

E=(Z h:}/aTIQ,,(_u—-uh)Pds)l/z for k>2.

TET,

Now, by local scaling arguments (cf. [4]) one can show that the following estimate
(X W [ 1Qu(u—m) P ds)/7 < CWlplloss with & = minfr — 2,k
TET, or

follows from (3.10). Hence, the asserted estimates follow from (3.19), (3.13), (3.28) and

standard interpolation estimates. =

REMARK 3.1. Note that when the method is used for approximation of the Stokes and
Navier-Stokes equations (cf. [8]), then the estimate above contains a quasioptimal L2-

estimate for the postimproved approximation of the velocity. =

REMARK 3.2. If the stronger regularity estimate

[¥lls < Cligllo

is valid, then one obtains the following error estimate for the higher order methods with
k>3
I —¥illo < CR%|]l, with s = min{4,k+2}. n

REMARK 3.3. In [1] it is shown that the lowest order method in the HHJ family can
be implemented as a slight modification of Morleys nonconforming method. It was also
shown that the approximation for the deflection so obtain converges with the same order
as our postprocessed approximation. Hence, at least in applications to the ;v)ylate bending
problem, the lowest order HHJ method is most efficiently implemented as suggested iq

(1] =
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