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Abstract : Electric alternating currents running in a system of infinite cylin-
drical parallel conductors generate an electromagnetic field which is defined by a
potential ¢ : R2 — C. ¢ is harmonic in the exterior domain and satisfies a
Helmholtz equation in the cross-sections of the conductors. We study the

asymptotic properties of ¢ as the frequency tends to infinity, in particular the
boundary layers due to the skin effect.

Résumé : On considere le champ électromagnétique induit par la circulation

d'un courant électrique alternatif dans un systeme de conducteurs paralléles,

cylindriques, de longueur infinie. Dans une coupe transversale, le potentiel cor-

respondant ¢ : R2 — C est harmonique & l'extérieur des conducteurs et vérifie a-
lintérieur une équation d'Helmholtz. Nous étudions le comportement asymp-

totique de ¢ lorsque la fréquence tend vers l'infini et en particulier les couches
limites engendrées par l'effet pelliculaire.
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A BIDIMENSIONAL ELECTROMAGNETIC PROBLEM

1. INTRODUCTION.

This paper has been motivated by the numerical simulation of the
electromagnetic casting process (EMC). When the ingot is sufficiently long, the
electromagnetic part of the problem reduces to the search of a complex potential ¢

in R?, of class C1 with logarithmic behaviour at infinity, satisfying the conditions
Ap +2ia%(p +Cr)=0in Q,,1<kE<N;Ap=0 inQ°; 1.1)
here Qk C IRZ, 1 <k <N, are the cross-sections in the Xy, x2 plane of cylindrical
electric conductors in which run a current with angular frequency o ; 202 = TR0
~is a real constant where p is the magnetic permeability of the air and o the

conductivity ; iis the imaginary unit and the C,’ s are given complex constants.

Our initial purpose was to find a fast, accurate and reliable numerical
algorithm for solving Problem (1.1). We have been led to a theorical study of
Problem (1.1), partly independent of our original aim, which is the subject of this
paper. We shall report on the numerical éspects in a forthcoming paper.

Maybe because of its particular character, we have found few references in
the literature relative to Problem (1.1). All of them ([2], [4]) are essentially
concerned with numerical, practical or theoretical, questions.

In Section 2, we introduce some notations and recall a few basic
mathematical tools and results.

We feel it was necessary to construct with some details our mathematical
model ; this is the object of Section 3. In Section 4, because of their physical and
mathematical relevance, we define two specific problems, closely related to (1.1),
which are studied in the remaining parts of the paper.

For many applications, in particular for the EMC process, the coefficient o is
large and one can observe a very pronounced skin effect in the conductors, i.e. the

electric current j= 2ia2((p+Ck) almost vanishes in , except in a thin layer in the

neighborhood of an. This is a serious difficulty for numerical computations, in

particular since we are specially interested by the fields (current, induction,
Laplace forces) in the conductors. For this reason we analyse in Sections 5, 6 and 7



the behaviour of ¢ for large a. Section 5 gives some global estimates for the rate of

convergence of ¢ to a limit function 9. @s a tends to infinity. Section 6 contains
more refined local estimates. We construct in Section 7 a simple and accurate
boundary layer approximation of ¢ in the neighborhood of smooth parts of 0Q2,. All
these results are rather satisfactory and complete except in the neighborhoods of
corners of an for which many improvements remain to do ; in particular we have

not succeeded in getting a simple picture of the singularity of ¢ at a corner for
large o.

As a consequence of Proposition 7.2, it follows that, along regular parts of

0, ¢ satisfies approximatively a Robin type boundary condition. We show in

Section 8 how this property can be used, in the case where the 0Q,"s have no

- corner, for defining an approximation of ¢ which can be computed easily.

2. NOTATIONS AND SOME BASIC TOOLS.

An element of R? is denoted by x = (x;,x5) ; x|2 = x%+ x% B(x,6) is the open

ball with center x and radius §. d, and d, are the partial derivative with respect to
x; and x, and V= (05,95). For m 2 0, BT and 97’ are the m-th derivatives with
respect to x; and x,. For A R2,A is the closure of A, 0A is the boundary of A and
~ X 1s the caracteristic set of A. For a function v : A — C, v is the complex con-
Jugate of v, and 3% denotes the exterior normal derivative. For A — R2 open, the
symbols LP(A), H™(A), W™P(A) (Sobolev spaces), C™(A), Ccm(A), C™BA) (the m-th

derivates are B Holder continuous, 0 < B <1) and the corresponding norms

||.|le( A) - have their usual meanings for complex valued functions. We shall
also use the spaces I3,,(A),... and LP(9A)....

For an open set A c R2 9A is piecewise C* if 0A is composed of a finite

number of closed arcs which are C* and if for each interior angle y at corners

one has 0 < y < 2z ; furthermore we impose the condition 9A = 9A.



Let A < R? be an open connected set such that A° is bounded and let ®= @ be
an open bounded subset of A. We define

Wy (A =:A>C |

v 2 ) 9 _
TR ey S L W:dvelw), =121, @1

2

2
v =0V
Ivl ) " “Lz(d))

2 2
+[| 9,v +]| 9, ) (2.2)
o, "Lz(A) I uL2<A)

For a study of the space W%)(A), one can consult for example [6]. In parti-

cular, one has :

Proposition 2.1,

a) Wé (A) is a complete space for the norm "'"Wb A) -
b) C3°(R?) is dense in WR?).
O If dA is piecewise C, Wi( A) ={v|, | ve Wi(R?).

d) 1 € Wh(A), In(L+fx]) & WH(R).

The following result of potential theory is classical.

Proposition 2.2, Let v be an harmonic complex function on the open

domain A < R? with bounded complement. We suppose that v(x) = 0(In|x|) as

x| = oo. Then there exists complex constants d and e such that
v)=dIn x| +e+0 (lz[™),
938 v(x) =d 9% Injx| +0 (|x|"*++1)), k1o >1,

Next trace estimate will play an important role in Section 5.

Proposition 2.3. Let A c R? be an open domain such that A is Diecewise C°.

Then there exists a constant ¢ independent of v € HY(A) such that

112 254, < € 0l gaa, 10l 200y 2.3)



Proof. By a classical imbedding theorem (see for example [1]), for any w € L1(A)
such that 9, w e L1(A), € = 1,2, we have Wiz < Uwlpagy) + 1wz, +

logwllz1(a)), where ¢ is some generic constant. We apply this result to w = v2 and

by Schwarz's inequality we obtain

2 . 2
v <ec {fv + v (o, v + o, v )}
(I lle(aA)) {I "LZ(A) fvl lo, ||L2(A) 19y ||L2(A)

L%A)

<c v v .
I "L2(A)" "HI(A)

3. HEMAT MODEL,.

In R?® we consider a system of N cylindrical conductors parallel to the Xg

axis in an alternating electromagnetic field. We denote by Q, Qq,...QQy < R?

their cross-sections,that we suppose bounded in the X;, %, plane and set Q = U Qk.

Let 7, Eand H be respectively the tridimensional complex current, electric and
magnetic fields. We introduce the following assumptions :

a) I—f(oc1 KoXgit) = E(x; %) g iot €3 in the conductors, 8.1)
b) ﬁ(;x1 oXa,t) =H,(x, x,) e'im 5’1 + Hy(x, x0) e'iwt é; in ]R3, (3.2)
)7 =0 E in the conductors, 7=0 outside the conductors, (3.3)
d) 9, H+ p, ot E= 0 in the conductors, (3.4)
&)t H=7F inR, | (3.5)
DdivH=0 inRS. | (3.6)

Let us precise and comment these hypotheses. i is the complex unit ; o is

the angular frequency ; ¢ is the time ; B, 1s the magnetic permeability, in the
vacuum ; &j, &, &} are the unit vectors along the coordinate axis. (3.1) is assumed

to be valid only in the conductors ; supposing (3.1) valid in R3is physically not
realistic (see Sommerfeld [7]) and would lead to mathematical contradictions. In
(3.3), we suppose that the electric conductivity o is a same positive constant for all
conductors ; in fact, all results contained in this paper can be extended without
difficulty to the case where the conductivity is constant in each conductor but



different from one to another. (3.4), (3.5), (3.6) are standard Maxwell's equations
where in (3.5), we have neglected the displacement currents which is legitimate

for moderate frequencies. Finally, we observe that all fields are x; independent

and can be considered are mapping from R2 into C or C2.
From (3.1), (3.3), there exists j: R?2 - C such that
'j(xl KgXgut) = (X, %) e'i“’té:,; and
Jx)=c E() forx € Q, jix)=0 forx € QF, (8.7)
where x = (x, x,) € R2. From (3.6) and (3.2) follows the existence of a potential ¢ in
R2 such that
(H, (x),H,,(x)) = T3t p(x) = (3, 9(x),~9; 9(x)), x € R? (3.8)

where 7ot denotes here the bidimensional vector curl. By using in particular (3.1),
- (3.4) (3.7) and (3.8), we obtain

l?t(icouootp—j)=0 in Q,k=1,2,.,N;

this implies the existence of constants C, e C such that

j=iwuo o (p +Ck) in Qk,k=1,2,...,N. . (3.9
By (3.2), (3.5), (3.7) and (3.8), we have
“Ap=j in IR?; (3.10)

finally, with (3.7), (3.9), we obtain
“Ap=iop,oxe+f in R2 ' (3.11)

where y is the characteristic function of Qand f=i o u 00C, inLy, f=0 in QF,

For physical reasons, it is natural to impose to ¢ a behaviour at most
logarithmic at infinity. By Proposition 2.2 there exist constants d and e € C such
that

o(x) =d In|x| +e+ O (jx| ™) as |x| = oo, (312)
Without restriction of generality, we can furthermore impose the constraint
e =0 since the physical fields are independent of e.
On the basis of equations (3.11), (3.12) with the condition e = 0, we are now in
the position of formulating the mathematical problem we shall study.

Let Q=u,Q, c R? ; we suppose




a) Qk is a bounded connected open set, 1 <k <n; (3.13)
b) Q, N Q,=0 for k2 ;9Q is piecewise C*. (3.14)

For given constants Cy, € C, k = 1,2,...,N, the problem is to find ¢ leoc(le)
such that
~-Ap=2ia?y, p+f in distribution in RZ, (3.15)
o(x) = d Inlx| + 0 (Jx|™) as |x| — oo, (3.16)
where xo is the characteristic function of Q, f = 2i o® C,in Q,, f=0in Q°

and

o =p K, 0/2 >0;in (3.16)d € C is an unknown constant.

From potential theory (see for example NEDELEC [6]), it follows that Problem
(3.15), (3.16) is equivalent to the following integral problem : For given constants

€, € C, find ¢ & LAQ) such that
0@ =2 |5 In |&] (&) dE — 5= [ In & AE) dE. (3.17)

- Our first basic result is contained in the following.

Proposition 3.1. Problem (3.15), (3.16) has one and only one solution. Furthermore
€ WZZ’O%(IRZ), foranyp>1, ¢ e CLBR?) forany0<p<1, p € C(Q U Q).

Proof. For proving the existence and uniqueness of the solution, it suffices, by the
Fredholm alternative, to verify that, for £ =0, (8.17) admits only the trivial

solution ; we multiply (8.17) by ¢{x) and integrate over Q ; we then remark that the
left member of the resulting equation is real whereas the right member is purely

imaginary. Standard regularity results for the Laplacian operator show that
pe C(QUQ%Yand ¢ € W%é’(IR2) ; therefore ¢ € Cllof (R?) ; Proposition 2.2
implies that, in fact, ¢ € Cl’ﬁ(IRz), 0<B<1.

For a solution of (2.15), (2.16), we introduce the notion of total current defined
by

J = Jq Jjx) dx. (318)



Since 202 =0 p 0 O We obtain by (2.9)
N

J=2a2i ), Jo, (0 +Cp) (@) dx. (3.19)
k=1

Furthermore, we have the following relation :

Proposition 3.2. Let ¢ be the solution of (3.15), (3.16). Then
J=2nd.

Proof. By Proposition 2.2, we have %% = % +0 (R2).

Integrating Relation (3.10) on B(0,R), we obtain the desired result by using
Green's formula and (3.18).

" 4. TWO PARTICULAR CASES OF PHYSICAL IMPORTANCE.
In simulating the industrial process of the electromagnetic casting (EMC),
we have encountered the following particular case of the situation described in the

preceding section. For each 1 <k <N, there exists 1 <€ <N such that Qk and Qe
are symmetric with réspect to the axis Ox, ; furthermore C, = —C,; k may be

equal to ¢ in which case C,=0. The constants C, are obtained from the
specifications of the EMC installation. By uniqueness of the solution of Problem
(3.15), (3.16), it follows that p(-x;,x5) = - o(x, xy) for all (x; Xg) € R2 which implies
that d =0 in (3.16). As a consequence of Propositions 2.1, 2.2 and 3.2, ¢ € W%)(]R‘o‘)
so that by (3.15) ¢ satisfies the variational equation
jre Vo.VU -2ia®[qe¥ = [q fU Vv e Wi(R?). (41)
For mathematical convenience, we generalize somewhat the above situation

and consider the following problem. For given sets Q, satisfying (3.13), (3.14) and
for given constants C, € C,1 < k<N,findo € W(l)(IRz) such that

Ipe Voo - 2ie® [ 9T = [gfT Vo< Wh(RD), (4.2)

N
where Q= U Q,, f=2ia’C,onQ, f=0inQ"
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We shall study Problem (4.2) in details in the next sections. We however
immediatly remark that, by Propositions 2.1 and 2.2, a solution o of (4.2) will

behave at infinity as e +0 (Jx|™) and consequently will be a solution of the original
Problem (3.15), (3.16) if and only if the constant e = 0.

Another situation of interest is the case of a single conductor so that Q = Q.
In this context, however, the total current J defined in (3.13) appears as a data

and the constant C, as an unknown. By Proposition 3.2, the relevant problem then

reads : for givenJ e C, find ¢ € L?w (R?) and & € C such that

-Bp =2i a® g (p +&) in distribution in R2, (4.3)
o) =g~ Infx] +0 (jx| ™)) as x| > oo. (4.4)

In (4.4), the constant J is immaterial ; furthermore, from a mathematical
point of view, the number of conductors is a little importance. In the next sections

we shall consider the following problem : for given Qk’ 1 <k <N satisfying (3.13),
(3.14) find ¢ € L} (R?) and ¢ e C such that -
-Ap=2i a® xo(p +&)  in distribution in RZ, (4.5)

) =In |x| +0(]x| )  as |x| > oo. (4.6)

We conclude this section by two remarks.

Remark 4.1. The single conductor problem (4.3), (4.4) can be generalized in a
natural way for the case of several conductors : we prescribe the current Jj, for

each of them. By (3.5), this leads to the following problem :

loc
such that (3.15), (3.18) are satisfied und

18T« RI3NY

for given Jp,eC,1<k<N,find ¢ e L2 (IR2) and the constants Ck e C,1<Ek<N,

2i0®[o (p+Cy) Wdx=J,, 1sksN.

Clearly, by (3.15), the total current J will be the sum of the ;- This problem

which is mentionned in the literature [2] possesses one and only one solution. To a

large extent, its study, in particular the convergence when « tends to infinity, can
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be reduced to the ones of Problems (4.2) and (4.5),(4.6). For the sake of simplicity,
we shall not consider it in the following.

Remark 4.2, One can object that the problem introduced in Remark 4:1 is not
physical if the total current J does not vanish ; in particular, this will be always
the case for the situation of the single conductor. The following argument shows
that this difficulty can be overcome. To this end, we add to the system an auxiliary

conductor €., for which we prescribe a current equal to -/ ; we then translate in
a given direction. Let b denote the distance between the origin and the center of
gravity of Qy, ,, ¢, and ¢ be the solutions of the auxiliary and of the original

problems respectively. It is then possible to show that for any fixed a and for any

fixed bounded domain A we have |p,~¢ln = 0(1/b).

5. GLOBAL ASYMPTOTIC ESTIMATES.
As mentionned in the Introduction, we are interested in situations with

pronounced skin effect in the conductors. It is then natural to consider what
happens if we let the angular frequency o tend to infinity ; since 202 =y o O O, this

amounts to let the parameter a tend to infinity. Unfortunatel}; for Problem (3.15),
(3.16), it may happen for exceptional domains €2 that d becomes unbounded as «
tends to infinity ; see Remark 5.2 below. For this reason, we shall treat Problems
(4.2) and (4.5),(4.6). In order to insist on the dependence on «, we shall use

sometimes the notation ¢, &, instead of ¢, & ... We begin with Problem (4.2).

- Proposition 51. Problem (4.2) has one and only one solution. Furthermore
Q€ CLA(R2) A W?’Olé (R?), 0<B<1,p=21,and there exists a constant e € C such
that

e =e+0(z[ ™M as |x| > co.
Proof. Multiplying (4.2) by (1+i), we see that the left member then defines a
continuous and coercive form on W31R2) defined in Section 2 ; existence and

uniqueness follows by Lax-Milgram's Lemma. Regularity follows from the fact
that ¢ satisfies (3.15). The asymptotic relation as |[x| = oo can be deduced from
Propositions 2.1 and 2.2.
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We now introduce the function 9. candidate for the limit of ¢, When

o — oo,

Lemma 5.1. In connection with Problem (4.2), there exists a unique function
P € W(l) (R2) such that ¢ = —Cp in Q, and Ap =0 in Q°.  Further-
more do__/dn e L20Q), where do_J/dn is the normal derivative, exterior to Q, of

the restriction of ¢ to QF.

Proof. It suffices to find ¢ € Wgﬁc) such that Ap=0and ¢ = C, on 0Q,. This

problem can be reduced to a problem of the form : find ¢ € G such that Jge Vo.VU =

[gc gv forall v e, where g is a bounded function with bounded support and
={ve Wé Q%) l v =0 on dQ} ; one remarks that the Dirichlet form is coercive on

G and apply Lax-Milgram's Lemma. That d¢/dn e L2(0Q) is a consequence of the
fact that oQ is piecevvise4C°°; see GRISVARD [3].

Proposition 5.2. Let ¢, be the solution of Problem (4.2) and (p be defined by

Lemma 5.1. Then asymptotically, as a — oo, we have :

a) "q)a_(poo"Wb(]Rz) =0 (a—1/2), b) II(P - |IL2(Q) 0 (a_3/2)

92 Poolz2an) = 0 (@™, d) [Vo, 12050, = 0 Q.

Proof. Set = Py~ 9o We have
-An-2ia®n=0 inQ, -An=0 inQF°. (5.1)
By Proposition 5.1 and Lemma 5.1, 1N e W(l)(IRz) but its normal derivative on
o2 has a jump which is equal to dy_ /dn. We multiply both equations of (5.1) by 7,

integrate respectively on Q and Q, use Green's formula and add the resulting
relations ; we get

Ir2 V|2 - 2 o2 la In|? = —l30 do_J/dn . (5.2)
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Let us take the square of the modulus in (5.2). The left member is bounded
from above by

2 2, .2 2 2 )
4\% +2a Y/ 22( + o Y/ 2if 21
19103 2+ 2 &Il /22l o +lanlly

and if we set A = IR2, @ =Q in (2.2). As far as the right member is concerned, we

can write by Propositions 2.3 and Lemma 5.1 :

Ao,
IJ T |* s ud"sz IniZs ., < <l Il 2

n "L70Q) L (BQ) 12 ((9)]

< & Unlfy (rey+lenlizg)

where ¢ is a generic constant independent of o ; partsa and b follow immediatly.
By Proposition 2.1, part ¢ is a consequence of parts a and b. By (5.1) and partb we

obtain that An| 2 = 0(a’?) and consequently A9, |22 = 0(a'/?); since (part

a) Il(paIIW}) (R2) = 0(1), we conclude by standard elliptic regularity results that

lo,l O = 0(c1/2). Consider a particular 2, and set {=¢_ - C, ; from the above

results we have [{] HAQ,) = 0(a*2) and (4] H(Q,) = 012y ; applying Proposition

(2.3) to d,f we obtain [9,{] 250y = 0(1), € =12 ; this proves part d of
Proposition 5.2. |

Next we consider Problem (4.5), (4.6). Let ¢ € C*°(IR?) such that ¢(x) =0 for

|x|]<a and ¢(x)=1 for |x] 2a + 1 ; a is a fixed number chosen in such a way that Q

c B(0,a-1). g(x) = A(¢(x) In |x|) is then a C*°(R?) function, with bounded suppoft

and vanishing on Q. Ry using variational methods as in the proof of Proposition
5.1 and of Lemma 5.1 we define uniquely w, and w__ e W%)(IRz) by the |
requirements

-Aw, =2 o? XqW,+&  indistribution in R2, 5.3)

w, =0inQ, -Aw_, =g in distribution in QF . (5.4)
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By Propositions 2.1 and 2.2, there exist { jand §__ € C such that

w () = &, + 0()x|™), w_ () =&__+0(|x|™). (5.5)
Set now

¢, =CInx|+w -¢, P =CInlx|+w_ -&__. (5.6)

Proposition 5.3. a) Problem (4.5), (4.6) possesses a unique solution (¢ b b Py

belongs to CHP(IR2) N WIZO"Z (R2), forany B, p with 0<B<1,1<p<+oo

b) There exist a unique function ¢ oo@nd a unique constant§ e C
satisfying the properties : ¢_, eHlloc(IRz), Poo =~ On Q, 9, is harmonic on
Qo @) =In |x| + 0 (Jx] ™) as |x| - oo.

o) (¢,,€,) and (¢_,E_ ) are given by (5.5), (5.6).

Proof. We only check part a. Direct calculations show that (¢ wSy)» @8 defined by
(6.5), (5.6), is solution of Problem (4.5), (4.6). Suppose it has two solutions and
denote their difference by (v,n). Then, by Propositions 2.1 and 2.2, v e W(l) (R2) and
satisfies the equation -Av = 2i a?(v+n) which implies v =-7non R2; since v(x)=

0(|x|_1) as |x| » oo, we get n = 0. Regularity results follow as in the proof of
Proposition 3.1. '

®
We now study the convergence of ¢ o towards ¢_ . The arguments of the proof
of Proposition 5.2 apply to w o andw__; in fact, as easily checked, Proposition 5.2 is
valid when we replace ¢ «and ¢ by w, and w__ respectively. By (5.6), it remains

to estimate the term (¢ o~ boo) To this aim, congjder the domain B(0,r) \ Qforr
large enough. By Green's formula, we obtain
do,, dw, ~w) do,, dw,~w)
e Worwd = Po———) =lago,n (WoWod 7 = 9o—7—1 (BT
where the normal is exterior to Q and B(0,r). We use the asymptotic behaviours of

Poor W, and w__ as |x| — co. Standard arguments show that
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f30 9o QW —w  Ydn =-¢&_ [1q dw ~w, )dn =0 ; furthermore, as r — oo, the

right hand-side of (5.7) converges to 2z (§ —£_). It follows from above that

co; 1 dPo,

1 do 41
|&,~¢ed = |52 foa Wawy 5= | <512 200, 1%a e = 0(a ")

L%
Summarizing this discussion, we have got :

Proposition 5.4. Let (9 ,§,) and (¢_,E_) be given by Proposition 5.3. Then :

2) 10,0 ool 2y = 0 (@9,

B) 19,0 + Eutodlzzg =0 (62,
O 10,0 oolz250)= 0 (@),

) 1 Vo200 =0 1),

e) |&,~¢..| =0™.

Remark 5.1. The estimates of Propositions 5.2 and 5.4 are identical except for part
b.

The next result, which is probably not optimal, will not be used later ; we
quote it without proof.

Proposition 5.5. Let ¢, and ¢ be defined either by Proposition 5.2 or Proposition
5.3. Then

“(pa_q)oo“ Lo°(R2) = 0 (a—1/2).

The following estimate, difficult and certainly not optimal, concerns the
convergence of the normal derivative as a tends to infinity. We shall prove it at the
end of Section 6.

Proposition 5.6. Let ¢ , and ¢__ be defined either by Proposition 5.2 or Proposition

53. Then “ \Y ((Pa_q)oo)"Ll(aQ) = 0(((1/11'1(2)_1/2) .
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We conclude this section by an example and a remark.

Example 5.1. The system consists of one conductor with circular section i.e.
Q = B(0,R). For the non physical problem (4.2) we obtain the trivially solution ¢ o=

Poo ="~ C1 on R2, More interesting is Problem (4.5), (4.6) we consider now. Here
9,®) =¢_(x) =In(x) for |x| >R and ¢ o®)=—-&6 =InR for x| <R, whereas,
for |x| <R, ¢, is of the form
P, x) =~ éa +a, J(1+0) alx]). (5.8)
In (5.8), J, denotes the Bessel function of order 0 ; the complex constants & o

and @, are determined by imposing the continuity of ¢ o and of its normal

derivative on dQ. Explicit calculations using the asymptotic expansions of Bessel
functions show that all estimates of Proposition 5.4 are optimal.

Remark 5.2. For Q = B(0,R), let (¢ «5,) be the solution of Problem ( 4.5), (4.6)
and b;x be the solution of the initial problem (3.15), (3.16) with C, =1. Clearly
(";3; =(1/£) o o« BY Proposition 54 and the above discussion of Example
5.1, im $y=6.o=InRand 9,x) =(1/8 ) In(x) alx| 2 R.IfR =1, there is no

possible convergence ¢ p a8 0 - o0 on any subset of QF. In fact, for any €, there
exists one and only one domain homothetic to Q for which the same phenomenon

occurs with Ck =1,k=1,2,.,N.

6. SOME LOCAL ESTIMATES.
In this section ¢ o and ¢__ will denote the functions defined either in
roposition 5.3.
“We first note that if A « R?s a bounded open set such that A does not contain
any corner o_f 9, then for any m we have : ¢ « and ¢_ belong to H™(A U Q) and to
H™ANQC). Loosely said, the restrictions of ¢, and o__ to Q or to QF are C™ except

at the corners of 0Q. These properties are consequences of standard regularity
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results for elliptic equations.In order to investigate properties in the neighborhood
of 3Q, we introduce the following local transformation of coordinates. Let I'cdQ
be a smooth arc. One of its end point, say P, can be a corner of 9Q. I" admits the

parametrization (y,(¢),7,(¢)) where ¢ is the arc length parameter such that P

corresponds to ¢t = 0. With @ = (nl(t),nz(t)) denoting as usual the unit normal

derivative exterior to €2, we set

(21 7%5) = (71(E5),75(E9)) + £,(n1(E9)no(Ey)) ' (6.1)
As well-known, (§;,§,) defines a local orthogonal curvilinear system of
coordinates,
the metric of which is given by the quadratic form
2 2 2 &1
d&y +s7(§,60dEy 5 s(§.8) =1+ 1—2'@2—) ; 6.2)

R(&,) is the radius of curvature of I', where R(§,) > 0if Qis "convex" at the point
of I' with parameter t=§,. We shall denote par Dl1 and Dé the [-th partial

derivatives with respect to &; and £, respectively, so that, for example, the scalar
product of two gradients has for expression
> -
- Vu.Vv=D,u.Dv+ Dyu.Dg/s% 6.3)

To P, end point of I or to any @ interior point of I', we associate an open rectangle T
as shown in Figure 6.1 and 6.2. In particular we suppose :

a) the system of coordinates (§;,5,) is defined and regular in ,—1:,

bTNnQ=xeT | £, <0} andTNnQ¢ =xeT | €, > 0} are non empty"

and satisfy the cone condition,

c)P e_i‘orQ eT.

X9

Figure 6.1 Figure 6.2
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Lemma 6.1. Let T be a rectangle as defined above and let ¢ : R2—» R Lbea

function such that @, 0, 6 and 82 6 belong to L°(R2) and 6 =0 in T°. Then for

any m =1,2,3,..., we have as a tends to infinity

a) 6™ Dg'(fPa-%o)ﬂW}) (R2) = 0 (a—llz) )
b) 6™ DX~ 12y = 0 (@3,

Proof. We shall prove Lemma 6.1 only for m =1 and for 9, 9., defined by

Proposition 5.2. The estimates relative to m =2 can be obtained with similar
arguments by an induction process. The situation corresponding to Proposition 5.3

is treated easily by considering the function ¢ o Poo + Eq~C see Proposition

00
5.4.b.We start as in the proof of Proposition 5.2 with n=¢,~¢,. Multiplying
B1l)byve Co(T), we obtain after integration by parts

Ir2 ‘-V*n. Vo - 2i o2 Janv=-[3ode_/dn v. (6.4)
In the coordinates (€1:€5), by gsing in particular (6.3), (6.4) becomes
frz s DynDiv+s1Dyn D,v)-2ia® fys nv == [ Dip_(0,,)v(0.E,)dE, (6.5)
where { is the image of T N Q in the (€,,65) plane. We set v = -Dow in (6.5), where
w e Cg‘(i’) and T is the image of T in the (§;,¢9) plane ; after integration by parts,

we obtain
Jr2 6 D1Dyn Dyw + 5™ DZ n Dyw) - 2i o fggs Dynw =
= IR D1Dy9p (0,8,) w(0.£,) dE,
~Ir2(Dys Dyn Dyw +Dy (s') Dyn Dyw ) + 2i o [gDos nw . (6.6)
In a first step, we assume that 6 e C3IT), therefore we can set w =6z with
Z e Cg‘(f’) ; after some elementary calculations, we get with ¥ = Dyn = D2((o a—(pw):
Ir2(s Dy (6¥)D,z + 571 D,(6%¥)D,z) - 2i o [gse¥z=
- jr 0 D1Dyo_(0.£,) z(o,éz)dg2
~Ir2 (Dys Dyn Dy(62) + Dy(s™) Dyn Dyl62)) +2i o® [ D,s 1 6 2

+IR2{s D16 (¥ Dz -2 Di¥)+s™1 Dyo (¥ Dyz—-z D¥)).  (6.7)
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From classical results of regularity 6 D;Dy¢ oo(0:69) € C(0Q), therefore it follows
from (6.7) that

(0 ) = - [D,(s D) + Dys™ D1 (6 %) e HI(D;
since ¥ has a compact support included in T, we deduce from the hypoellipticity
of £ that 6% e Hé(T). Then by density we can set z2=6 ¥ in (6.7). In the last term

of the right member, we replace 6 ¥ DY by ¥ D(6Y) - ¥ ¥ D6 ; We use_
Proposition 2.3 and Proposition 5.2 parts a, b and obtain the estimate

2 . 2 2 1/2
0¥ -2 Chd <CleD; D 0¥
I qu o -2’ 100, [ SCIODIDyoud s 0 A0 5 o 10% 10 o)
—1/2
o° ¥
1671 o +C P17 ¥
+C Ve o v 6.8
[ nmmz)(a I uW( 2t IVl oo o) (68)

~where Cis a generic constant independent of & and 6.

From results of GRISVARD [3], § Dlqu) oo € L2(BQ), where &(x) denotes the
distance from x to the corners of 0Q ; clearly |o(x)] < &(x) ||V6||Loo(lR2) and

le D;Dyo i 1200) S Cl| Ve I 00 %O(R2) After a convenient treatment of the terms 0%y

in (6.8) and by using classical inequalities, we obtain for C 1ndependent of xand 6

- ae .2 V ap
0V¥] 5 o, SC o™ IVOL oo o 10¥ Vol ooz » 69

2a)®
this proves parts a and b of Lemma 6.1 when 6 ecg°(T) ; parts c follows

from Proposition 2.3.

‘Now we consider the case where 6(x) = g(x) = distance from x to dTif x €T

and 6(x) = 0 if x € T ; then we can find a sequence of 6, € C8°(T) such that

6, converges to g everywhere,

and [V6, | ooz <A +2) 12 Ipeoqsy
We obtain (6.9) for 6 =g as the limit for =6, by using the Lebesgue Theorem. The

general situation is treated easily by noticing that |6(x)| < gx) Vo] L°(R2)
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Lemma 6.2. Let A c Q° be an open bounded set. Then

“q’a—(poo“Lz(A) =0 (a™).

Proof. Set n=¢,—¢_, andletw e W%)(ﬁc) satisfy the relations
Aw=7yx,in Q , w=00n3Q, (6.10)

where y, is the caracteristic function of A. By Grisvard's regularity results [3],

there exists a constant ¢, independent of n such that II%;LZQH L2 S¢ Inl L2A) Let

To be such that QU A < B(O,ro). By Green's formula, we have for r>r:

w

dn
"TIHL ) ]Q AB(O,r -"'!:’ggn !33(0 ,.)(TI a—’i—) (6.11)

- n and w belongs to W%)(IRz) and are harmonic in ( B (0,ry))Y’. By Propositions 2.1
and 2.2, these functions and their normal derivatives behave respectively like as

0(1) and O(|xl'2) as |x| tends to infinity ; we conclude that the second term of the
right hand side of (6.11) vanishes. Lemma 6.2 then follows from (6.11) and from
Proposition 5.2¢ or Proposition 5.4c.

Proposition 6.1. Let A < QF be an open bounded set such that A contains no corner
of 0Q. Then for any m =0,1,2,... we have

10,0 ool gmepy = 0 (&7 D).

Proof. We remark that by Lemfna 6.1c we have the estimate ||¢,~¢_ I g = 0(at)

for any m = 0,1,2,... and any I’ < dQ such that T contains no corner of 9Q.
Together with standard regularity results and Lemma 6.2, this implies
Proposition 6.1.

As an immediate consequence of the important Proposition 6.1, we have for
example the following.

Corollary 6.1 For T c9Q such that T contains no corner of 9Q and for
any m=0,1,2,..., we have

IIV(¢a_¢w)|le(r) =0 (a}).
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We conclude this section by the proof of Proposition 5.6. By Corollary 6.1, it
suffices to prove Proposition 5.6 when we replace dQ2 by a small arc I" one end point
of which is a corner ; we can assume that I'c T n 9Q where T is a rectangle as
shown in Figure 6.1. We use Proposition 5.2a, Proposition 5.4a and Lemma 6.1a

with m =1 and 6 =g, where g(x) =0 if x € 7° and g(x) is the distance from x to 97T if
x € T. We deduce immediately the relations |g D, Dy nly 2y =0 (@"2) and
lg D% ull L2 = 0 (a71/2) : from this last estimate and the fact that n is harmonic in
Q°, we obtain that |g D%nﬂ LAT A 00 = 0 (o 1/2) ; then we can conclude that

lg 3 M1 ep ~ o= 0@2), €=1,2, 612)

Setting w =dynand A=Tn Q°, we have by a classical imbedding theorem and

Schwarz's inequality

2
lelw|® o <Cle |w|2||L1(A)+j>=Z1 19; @ lw| ™1,

2

< 2 } 13
<C {IlgIILomz)llwlng(A)+E(2lla,(gw)llL2(A)llwllL2 +19; gumnwn ) - (619

Len

Since [wlp2y, = 0("12), it follows by (6.12) that the right hand side of (6.13)

is 0 (a71) ; furthermore we observe that along T, the arc length parameter &, is
0(g) ; consequently we have obtained the estimate

1EY 2wl oy = 0 (@), ‘ 614)
For 0 <7y <1, we can write |w| = 52(7‘1)/2 [5%/2 lw(It~" |w|” so that by Hélder's
inequality we obtain |

ol iy < 17220 UEM2 w 20 M7 Tl - (6.15)

By Proposition 5.2d and 5.4d, we know that [w] L2 is uniformly bounded with
respect to « ; from (6.15) with y =1/ln «, we readily obtain the final estimate

1960 @ M1y = IWlp1m = 0 (a/In o)), e=1.2.

7. A BOUNDARY LAYER APPROXIMATION.

As in the previous section, ¢, will denote here the function defined either in

Proposition 5.2 or in Proposition 5.3. Our purpose is to study the behaviour of ?,
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for large « in a conductor section Q, Wefix £, 1<k <NandsetA-= Q,. We
furthermore set Ng=1= (p +C, for Problém (4.2) and n, =n =9+ & for Problem
(4.5), (4.6). - |

We first remark that na satisfies in A the following Helmholtz homogeneous

equation

CAng#2ia®n,=0 in A. (7.1)
It is well-known that F(x,y) =% Hé((lﬂ)a lx—y|) is a fundamental solution of this

Helmholtz equation where H. (1) is a Hankel function. It follows that n o @dmits for

x € A the representation

dn
M) = !aA {ﬂa(}') F(xy) F(x,y)
y

(v)
} du(). (7.2)

| Then, by Proposition 5.2, 54 and by the asymptotic expansion formulae of the
Hankel functions (see for example [5]), we immediately deduce the following

Proposition 7.1.Let x € Aand d be the distance of x to dA. There exists a

constant Cmn such that for a 21/d we have

-ad
e

oy & n,)| <C,, ™" ,  mn=01,2,...
" v od

Consider now a smooth arc I" = 9A such that the end points of I" are not

corners of dA. With the system of coordinates (€,,€,) introduced b}; (6.1), I is the

set of points (0, o) 0 < €y < Ego. Furthermore there exists § > 0-such that

0ol © A and su

V=[x ! —6<§1<0 0<¢&

2 < 502

corresponding to §,=— 0 to 9A is equal to 5. We defined in V an approximate u , of

n, by the relation

rr # N 1 Q—!')aél P i
Up\S1s6g) = —— € N \UsS9) (7.3)

VEGES)

where s is given by (6.2). We remark that u,=n, onl.
As in Section 6, Dg and Dg denote the partial derivative of order £ with respect

to &, and §,, whereas R = R(£,) is the radius of curvature of I'.
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Proposition 7.2. For any m =0,1,2,... we have
a) DG (n,~u )l o0 =0 (672

b) |DF D, (1~ oo =0 (@72).

Proof. We consider only the case m = 0 since the treatment of the general

situation needs essentially the same tools. We use the expression of the Laplace

operator in the (§;,6,) system of coordinates and write (7.1) in A, image of A in the
(§,,€5) plane. Setting w =n_-u , we obtain after some calculations

D (s Dyw)+2ioc®sw=z, (7.4)

I-daly

1
2(81,82) = — Dyl Dy M) (&;,89) — 1(0,65) (7.5)

4%, &) RAE,)

From Lemma 6.1b and Proposition 6.1, we easily deduce that we have uniformly

with respect to 0 <&, <&,

12 Mokl g =0 @), 2=1,2 ; |n0,£)| = 0™ (7.6)
Then (7.5) and (7.6) imply that
280 2, =0 @>?)  uniformly for 0 <&,<&,. (1.7)

For &, fixed, we multiply (7.4) by w ; after an integration by parts, we obtain since
w(0,6,)=0:
I“‘E)a s |D1w |2 d&, +2i o2 J(-)s s|w|2d§1 I <

2 £l L2 g0 10CEDN L2 s 0) + |5 w Dyw (8.8 5 (7.8)
by (7.3), (7.6) and Proposition 7.1, the second term of the right hand member of (7.8)
is (0(™%). Then (7.7) and (7.8) imply the estimate [wl; 2 50 = 0(a™"?) and
ID,wlz2s 0= 0(¢"52) ; with (7.4) and (7.7) we have furthermore |D2w]| L2%50) =

0(a~%2). We conclude by standard arguments.

" Remark 7.1. Results similar to those of Proposition 7.1 can be derived by using
directly the Helmholz equation (7.1) instead of the integral representation (7.2).

!
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This method is more complicated but can be generalized to the situation where «
is variable, i.e. the conductivity is not constant.

Remark 7.2. Suppose that in the definition (7.3) of u o We replace s8(€;,€5) by 1 ; then

in Proposition 7.2 we loose one order i.e. 0(c~3) and 0(o"2) are replaced respectively

by 0(a™2) and 0(c™L).

Remark 7.3. Because of the exponential decay of 7 o and u_ in the boundary layer,

L2 estimates are better than the L° ones. From the proof of Proposition 7.2 we
obtain for example

=12
n.,—u ' = 0 (x
" a “a " L2(V) (

) gl = 0. (7.9)

- 8. AN APPROXIMATION OF 9, IN Q° SATISFYING A ROBIN
BOUNDARY CONDITION.

Our purpose is to define a "cheap" approximation of ¢, For the sake of

briefness, we shall consider only Problem (4.2) ; Problem (4.5), (4.6) can be treated
in a similar way. In order to insure the validity of this approximation we must
introduce a severe restriction on the regularity of Q ; in fact we shall suppose that

0Q 1is of class C°. (8.1)
Let ¢ be the solution of Problem (4.2). Suppose we know ¢, Or an appro-
ximation ¥ o of o 90 0€2. Then, because of Hypothesis (8.1), the results of Section 7

allow to define an explicit and simple approximation of ¢, in Q.
Consider Proposition 7.2b with m =1 and V being replaced by V n aQ. Si

Ng= ¢, + C, we obtain immediately by (7.3) :

Proposition 8.1. Let ¢ o be the solution of Problem (4.2) and assume Hypothesis
(8.1). Then

g (0 +C = 00D 1<k<N
| g ~2ul0at C) g = 0@ 1sksN,

wherez  =(1-i) a - %'R# and R is the radius of curvature of 0%,



25

Proposition 8.1 shows that ¢  satisfies approximatively a Robin boundary

condition on 9L. This leads us to introduce the following exterior problem :

find ¥ e th)(ﬁc) such that

A¥Y, =0 in Q°

dn"‘ ) on 3Q,, 1<k<N, (8.2)

where the unit normal 7 on 9Q is exterior to Q.

Proposition 8.2. Let ¢ be the solution of Problem (4.2) and assume Hypothesis

(8.1). Then
a) Problem (8.2) has one and only one solution,

-5/2
¥ .
b) o =¥l 70 = 0™
_ -3
| c) lo, ‘I’aIIL2 = 0(x ™).
Proof. Problem (8.2) admits the following variational formulation
N
I V‘I‘ Vv+j 2, ¥ v=-2 Cf a0, 2 Yo e Wy @) (8.3)
k=1

Point a follows from (8.3) as an application of Lax-Milgram's Lemma. Set

w,=¥, -9, Since ¢ € W(l)(ﬁc) and is harmonic in QF, we obtain from 8.3 :

N .
Je Vuw, Vv+j Z,w,v= Z; (o —2z, (p +C, ), Vv e Wg ). (8.4)
an dn _
We set v =w_ in (8.4) and recall that z, = (1-) @ -~ 1/(2R) ; we take the imaginary

part of this relatlon and obtain the estimate ¢ by Proposition 8.1 ; replacing in (8.4)
R = '

with v =w, we conclude that | Vw | 12@) =0 (a2 ; together with part c, this

proves part b.

Remark 8.1. Besides those shown in Proposition 8.2, other estimates can be

obtained . For example, with some extra calculations, one can prove that

9 = ¥al oo = © ). (8.5)

Furthermore, it is possible to extend ¢, to R2 by the boundary layer approximation

introduced in Section 7 and produce estimates relative to 2. We shall not pursue
this way. On one side these estimates are direct corollary of the preceeding one or
can be obtained by using the same tools ; on the other side due to the very
restrictive Hypothesis (8.1), they are of limited interest.
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Remark 8.2. Numerical tests show that for many practical applications, ¥, gives

avery satisfactory approximation of ¢, if 0Q is regular. If 0Q has corners,

the definition (8.2) of ¥, is still meaningful ; however we get only very poor

theorical error estimates which are confirmed by numerical experiments.

Remark 8.3. If 9Q has corners, Proposition 8.1 is still valid when we replace
L2(B§2k) by L") where I' is a closed part of 9, without singularity. In a

forthcoming paper, we shall present successful numerical computations obtained

with a method which takes advantage of this fact.
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