N
N

N

HAL

open science

An implementation model for reasoning with complex
objects
Q. Chen, Georges Gardarin

» To cite this version:

Q. Chen, Georges Gardarin. An implementation model for reasoning with complex objects. [Research
Report] RR-0793, INRIA. 1988. inria-00075758

HAL Id: inria-00075758
https://inria.hal.science/inria-00075758
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00075758
https://hal.archives-ouvertes.fr

<]
J

I | IA B | Rapports de Recherche ,
UNITE DE RECHERCHE [l o
INRIA-ROCQUENCOURT [ N® 793

AN IMPLEMENTATION MODEL
FOR REASONING
WITH COMPLEX OBJECTS

Institut National
" de Recherche

en Informatique
et en Automatique

Qiming CHEN
Georges GARDARIN

" Domaine déVOlucéau' |
. Rocquencourt

FEVRIER 1988




. UN MODELE D'IMPLANTATION DE REGLES

SUR OBJETS COMPLEXES
Qiming CHEN Georges GARDARIN
SM Research Institute INRIA & Univ. Paris VI
16 Bei Tai Ping Lu SABRE Project
BEIJING 100039 BP.105,78153 LE CHESNAY-Cédex
China France

Résumé :

. Dans cet article, nous proposons tout d'abord une extension naturelle de DATALOG pour
traiter des objets complexes comme des prédicats imbriqués. Puis, nous introduisons une extension
du modéle relationnel avec des références pour représenter les objets complexes. Un modéle
d'implantation d'un langage de régles tel DATALOG avec objets complexes sur un SGBD
relationnel gérant des références est alors proposé.

Finalement, considérant l'implantation d'un point de vue sémantique, nous discutons les
problémes de slreté d'une question sur des régles @ prédicats imbriqués.

Mots-clés : Bases de données relationnelles, programmation logique, objets complexes,
prédicats imbriqués.
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In this paper, we first propose a natural syntactical extension of DATALOG for dealing with
complex objects represented as nested predicates. Then, we introduce the token object model which is
a simple extension of the relational model with tokens to represent complex objects and support
referential information sharing. An implementation model of a NESTED_DATALOG program is
defined by mapping it to the token object model which remains a straightforward extension of classical
logical databases. Through this work, we can accommodate two basic requirements : The availability
of a rule language for reasoning with complex objects, and the mechanism for mapping a complex
object rule program to a relational DBMS. Finally, the definition of the semantics of
NESTED_DATALOG through a mapping to the token object model allows us to discuss the safety

issue in NESTED_DATALOG.

Key-words : Relational databases, logic programming, complex object, prédicats imbriqués.



1. INTRODUCTION

Database (DB) and Logic Programming (LP) technologies are moving fast towards a
common destination. This holds true both from their common ancestor of mathematical logic and from
the complementary benefits they can provide. From a datbase point of view, the major efforts made so
far consist in the logical foundation given to relational DB [Gailaire84, Reiter84] and the extensions
proposed to reladonal DB to support rules. These extensions yield DATALOG, a pure Homn clause
rule language with a fixpoint semantics. DATALOG has been extended for handling functions,

negation and set terms [Zaniolo 85] [Zaniolo 86] [Beeri 86] [Kuper 86] [Kuper 87] [Abiteboul87]
[Gardarin87a] .

The handling of complex facts in logic programming is naturally integrated by using
funcdons. It is possible to query these facts using predicates containing functional arguments. This
facility makes logib programming more powerful and flexible than pure DATALOG based deductive
databases, although typing and large predicate extensions are not well supported. Extending deductive
darabase technology to handle complex objects has become a key issue for introducing it to engineering
applications. However, to directly support database reasoning involving complex objects, the
following problems still remain :

(a) The support of aggregation hierarchies with mutually nested tuples and sets, namely, the
description of the references among objects in a logic framework.

(b) The consistency and complexity of the rule language semantics against the possible introduction of
nested predicates, multilevel nested sets and so on.

(c) The support of information sharing, particularly, the link between a complex object rule language
and an existing object management system adopting sharing by references.

(d) The availability of inferences at any given level of an aggregation hierarchy.

These problems have been mvesngated prewously Speaking roughly, they were tackled
along the following two lines :
(1) Handling complex objects as nested functional terms [Zaniolo 85] [Zaniolo 86] [Beeri 86]
[Abiteboul87], which firmly stays within the FOL world but has obvious limitations in predicating
arbitrary objects and in supporting data abstraction and referential sharing. Most of these attempts
allow the database to store complex facts in non normalized relation and introduce an extended
relational algebra to deal with non flat relations.
(2) Defining a new theory for complex objects with an associated calculus and rule language.
According to the approach described in [Bancilhon86], complex objects can be built from atomic
objects by applying to them recursively a tuple and a set construct. Together with the subobject
reladonship <, which is essentially a containment relationship, the set of objects forms a partial order
lattice. This structure is used to define rule languages for reasoning about complex objects.
However, the implementation model of such languages has not been properly developed.



We concentrate in this paper on the extension of DATALOG for dealing with complex
objects. We first propose a natural extension of DATALOG for dealing with nested predicates, called
NESTED_DATALOG. With NESTED_DATALOG, any predicate, nested or not, can have a
database extension. To define the semantics of NESTED_DATALOG, we introduce the token
object model; it is a simple extension of the relational model with tokens to represent complex

objects and support information sharing. The token object model may be perceived as the
implementation model for NESTED_DATALOG. Indeed, it can be understood as a simple extension of
the relational model with tokens. Tokens are introduced to represent complex objects and to provide
links among composing sub-objects. The multilevel configuration hierarchies of complex objects are
represented in a level-independent fashion through the use of token values, as unnested sets or tuples
of tokens. The transition of inferences at different levels of the object configuraton hierarchy is made
by passing tokens through a kind of special predicates called token-predicates, which represent the
link between the token and the token value of a non-atomic object, thus associating the abstract
description of an object at a higher level and the more detailed description of it at a lower level. The
definition of the semantics of NESTED_DATALOG through a mapping to the token object model
allows us to discuss the safety issue in NESTED_DATALOG, which is not an obvious problem.

Compared with previous approaches, the proposed framework for reasoning with complex
objects has the following distinct characteristics :

(1) It allows the user to query any predicate, even those nested in other predicates. Thus,'i't allows the
user to zoom in any particular level, while suppressing the details of other levels.

(2) Since the tokens provides links among different parts of a complex object, thus expands the
. aggre gatio‘n hierarchy to a level-independent ‘flat' scheme, it may be implemented on top of classical
‘relational systems. Such an iinplememation has already been considered by others; for example,
building an object-oriented interface over a relational backend [Kiernan87] or compiling logic
programming languages with nested terms into conventional relational algebra operations
[Al-Amoudi87] require similar concepts and methodologies to that presented here.

(3) It simplifies the semantics of LP with sets by introducing strong typing, which allows to map the
multilevel nested sets and tuples to only one level. Indeed, the token model does not refer any nested
predicate or set.

The rest of this paper is organized as follows : NESTED_DATALOG is presented in section
2 as a natural extension of logic programming over complex objects. Then, the token object model is
introduced in Section 3, as the implementation model of NESTED_DATALOG facts. Section 4 is to
offer the development of the mapping of rules from NESTED_DATALOG to the token object model
enhanced with DATALOG. Secton 5 presents the further discussions on the semantics and safety of
NESTED_DATALOG rules.



2. THE SYNTAX OF NESTED_DATALOG

To introduce our rule language, let us see how complex objects would normally be dealt with
as nested functional terms. As usual, {O1,07...0y} represents the set of elements 01,03,...0, and
(01,02,0,) is a tuple constructed with elements 01,0,,...0p,. The example given below includesa
complex fact registration with nested functional terms, which shows a natural syntax to
represent complex facts with the tuple and set constructor. As mentioned in [Tsur 86], predicates are
top-level constructs which cannot be parameters of other terms or predicates; thus only
registration is entitled to be a predicate symbol in this example. Courses, course, prof,
students, student are function symbols.

registration (cs, 1987, courses (
{course (231, db, prof (smith, male, 36),
students ({student (john, 17), student (jan, 18), student (hull, 20)})),
course (171, os, prof (smith, male, 36),
students ({student (lee, 18), student (jan, 18), student (hull, 20)})),
course (281, ai, prof (smith, male, 36),
students ({student (john, 17), student (lee, 18), student (hull, 20)})) })).

.Suppose we have queries such as

- (@) Find the set of student names Y professor x (name) teaches on course ¢ (course number).

(b) Find student lee's age.

To express and answer these queries in an LP system supporting functions, one must start from the
top predicate registration, then go all the way down to the points where the required information
can be found. Even for a very simple query such as (b) it could not be processed directly since
student (lee,18) has been treated as a functional term, thus cannot be taken as a predicate
in the same logical universe. The rule language we are now going to define will explicitely consider
nested predicates and support direct queries and rules.

We shall extend the above natural syntax to a rule language for complex objects, called
NESTED_DATALOG. We now define the syntax of NESTED_DATALOG. As COL [Abiteboul87],

NESTED_DATALOQG is a strongly typed language : We start with sets of atomic objects which are the
basic types. As usual, we use the following symbols :

(1) Constants : a, b, c, ... filler *_;
(2) Variables : x,y,z, ...;

(3) Type predicates : p,q,r...;
(4) Comparison predicates : =, <,<,>,2, ...



(5) Logical connectors : A, v, -, =.

A simple term is defined as being either a variable or a constant. For example, 1 and x are
terms.

The novelties of the language are to support nested predicates (which indeed exists already in
PROLOG or COL, but in that languages, internal predicates are considered as functions) and to be
strongly typed. Types and Complex terms may be defined as follows.

Definition 2.1 : Type
A type is defined recursively as :
(a) Any type predicateis a type.
(b) If p1, P2, -.- Py are types then p (p1,P2, ... Pn) is a type (called a tuple type).
() If p'isatype then p ({p'}) is a type (called a set type).

Definition 2.2 : Complex Term
A complex term is defined recursively as :
(a) If t1, tp,..., ty are simple or complex terms and p is a n-place type predicate, then
P(t1, t2;..., tp) is a complex term (called a tuple term). '
(b) If t1, t2,..., ty are simple or complex terms and p is a unary type predicate, then
p({t1, ©2,.-., t}) is a complex term (called a set term). ‘

A term t tagged explicitly with a type symbbl P, as p(t), is called a strongly typed term. The above
definition requires complex terms to be strongly typed. For example, a typed term p({q({x}) }) is
a legal NESTED_DATALOG term, but neither {{x}} nor p({{x}}) are legal with
NESTED_DATALOG since not strongly typed.

With the notion of complex term, one can construct a set of syntaétically well formed
formulas (in short, formulas) as follows : -

Definition 2.3 : Formula
(1) If pis a type predicate or a comparison predicate and t1, t),..., t, are complex terms,
then p(ty, t2,..., ty) is an atomic formula.
(2) Atomic formulas are well formed formulas.
(3) If F1 and F2 are well formed formulas, so are F1,F2 and —F1.



Definition 2.4 : Rule
A rule is defined as head « body, where the body is a formula and the head is an
atomic formula.

Definition 2.5 : Program
A program is a finite set of rules.

Definition 2.6 : Query ,
A query is a rule without a head, denoted as ?body.

For example, against the complex object :

registration (cs, 1987, courses (
{course (231, db, prof (smith, male, 36),
students ({student (john, 17), student (jan, 18), student (hull, 20)})),
course (171, os, prof (smith, male, 36),
students ({student (lee, 18), student (jan, 18), student (hull, 20)})),
course (281, ai, prof (smith, male, 36), :
students ({student (john, 17), student (lee, 18), student (huil, 20)})) l} ).

one may define the rule

young_instructor (x, names{z}) ¢ registration (x, _, courses ({course (n, _, prof (z, _, g), _)})),
n> 200, g<40.

where the the young_instructor predicate as defined above gives the set of names of all the young
professors (age < 40) instructing courses such that (course_number > 200) in the department x.

3. MAPPING COMPLEX FACTS TO FLAT FACTS -

As mentioned above, NESTED_DATALOG is implemented on top of an enhanced relational

mcdel called tha tokkan ahiact madal In thig paner, for reasons of conci seness, we also consider
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that the semantics of NESTED_DATALOG is defined through its implementation, although it could be
defined in another way (e.g., by considering nested predicates as functions and by completing the rule
program with unesting rules). Thus, it is desirable to formally defined the mapping of
NESTED_DATALOG programs to the implementation model for their FOL-based evaluation. In this
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section, we describe the representation of facts with the token object model. We also present the
mapping from NESTED_DATALOG facts to token object model facts.

3.1 Token Object Facts .

In general a complex object is constructed progressively from more primitive lower level
objects, thus it has a configuration hierarchy. The representation of a complex object may refér other
objects or be referenced by still complex objects. To identify complex objects properly and uniquely is
important both for maintaining the system consistency and for supporting the information referential
sharing. Using surrogate [Meier83] or token [Woelk86] to represent abstractly an object with complex
structure is beneficial from both implementation point of view and conceptualization point of view. In
short, a token is an atomic object of a predefined type which uniquely identifies a complex object and
stands for the whole configuration structure of the object. For simplicity and convenience, an atomic
object needs not be associated with an additional token: It is identified by its own value.

The token object model consists in representing all complex object with flat relations (i.e.,
FOL predicates) and with tokens. Moreover, we support two special domains :
(i) One level sets of tokens.
(ii) One level tuples of tokens.
These two domains are the only structures allowed to represent the links between components of

complex objects. Similarly to the notions given in [Koshafian86] we can define formally the following -
two mappings. ’

Definition 3.1: Token Mapping
The Token Mapping t maps an object O to its token TO which is an atomic object
identifying object O. ’

Thus, mapping T simply gives the token of an object which belongs to an atomic type, the token
type.

Definition 3.2: Token Value Mapping -
The Token Value Mapping p maps an object O to its token value pO non-recursively
defined as :

(a) For an atomic object O, pO=10=0;

(b) For a tuple object p(O1, ..., Og) =0y, ..., T0p)
(c) For a set object p{Oj, ...,Op} = {101, ..., TOp}
(d) p(pO) =pO



Mapping p gives a structure of tokens which is a complex type. Indeed, it decomposes an object
into its elements and retumns a structure which is composed of the element tokens.

Some interesting properties of these two maﬁpings can be summarized as
1(t0)=10 = p(pO)=p0O
©(p0O) =10 p(t0) =10

3.2 Mapping Complex Facts to Token Object Facts

3.2.1 An informal presentation

How to map complex objects to the token object model, that is to a logical relational database
framework [Reiter84] with tokens, is the key issue to define a simple and clean implementation of
reasoning about complex objects. To illustrate the approach, we shall present examples. In the
examples, a symbol with a star such as s* stands for a token. In  general, the mapping of complex
objects to tokens and relations is characterized by the following rules :

(1) Each object O is represented by two separate elements : Its token tO and its
token value pO. _ :
The token TO is used to refer to O in complex objects including O. Thus, the fact that object A is a
component of object B is represented by referring the token of A in the representation of B, that is, by
including the token of A asa parameter of term B. This philosophy is applied level by level along the
configuration hierarchy of any complex object. Thus, in a normal token model object, there exist only
single-level, unnested set terms and unnested tuple terms, namely, all the elements of any set are
atomic. .
The token value pO is used to define the object content at a lower level than the token. For complex
objects embedded in O such as set and tuples, the tokens included in the token value pO refer to their
representation one level below.
Token values are predicated by the object type. That is, we use the type name as predicate symbol on
the terms sharing the type, such as with tuples :

prof (smith, pl*, 36)

prof (hoare, p2*, 49)
or with sets:

courses ({cl*, c2*, c3*})
Indeed, the standard form of the latter s :

courses (c*) where c* isthe tokenfor {c1*, c2*, c3*}.



Some predicates may have only one parameter, which can be an atomic term such as
man (john) .

In application to the above rule, an atomic object is represented by a simple term, such as
smith, as thereis no difference between its token and its token value. Thus, we can consider that an
atomic object is also represented by its token and its token value. As we do not allow duplicates, it is
easy to see that an atomic object need not be additionally identified: It is identified by itself.

A tuple object is represented by a token if it is an element of another object and by a tuple of tokens
or simple terms for its token value.
For instance, student in :

prof (smith, male, 36, student (john,17))
will be represented by :

prof (smith,male,36,s*) and student (john,17)
where s* is the token for (john, 17).

A set object is represented by a set term for its token value, such as :

courses({cl*, c2*, c3*}),
or a token (atomic term) if it is an element of another object, such as ss3* in

course (281, ai,p*,ss3*).

~(2) Token-predicates are introduced to rej)resé;nt the relationsh_ip between the token
and the token value of a non-atomic object.
Thus, token predicates associate the abstract description of an object at a higher level and the more..
detailed description of it at one level below. Token predicates are named with the object name
preceded by a "*", such as *prof .The first parameter of this predicate must be a token term. All the
token terms are atomic terms. Below are some examples.

*prof (p*, (smith, male, 36)).

*courses (c*, {cl*, c2*, c3*}).
note that c* is the token for the set {cl*, c2*, c3*} with three other tokens as its elements.

In summary, the predicated token value and the token predicate associated to the same object
form a pair which define the value and the identifier of a complex object (It does not mean that the
value should be physically duplicated: The predicated token value should be defined as a view of the
token predicate). Examples are :

prof (smith, male, 36). *prof (p*, (smith, male, 36)).

courses ({cl*, c2*, c3*}). *courses (c*, {cl*, c2*, c3*}).
The token value predicates can be involved in any reasoning at the appropriate level; the
token-predicates provide the transitions between levels.



3.2.2 A formal definition -

The mapping of facts from NESTED_DATALOG to the token object model is essentially a
replacement of the complex objects by the corresponding token objects. It may be performed in a
bottom-up manner, starting from the innermost predicates. In general, each complex object x is
replaced by a token Tx, while the token for an atomic object is just itself. The token value for an
atomic object x is also itself, as px=x.Letusrecall that by definition, for x =p(x{, ..., Xp)
px = p(TX{, ..., TXp )» for x = (X1, ..., Xp } px = (TXy, ..., TXp }. Based on this concept the above
mapping is defined as following.

Let x be a complex term of NESTED_DATALOG and u be a set of DATALOG facts, the
mapping
OF: X2 u
is called a fact rewriting transformation. Fact rewriting may be defined as following.

Definition 3.3 : Fact rewriting
Set QF of fact rewriting transformations defined recursively as :
(@) x> xe QF where xisan atomic object;
(b) if x =pT with T = (x1, ..., Xp) .
then x = { p(txi, ..., TXg). *p(tT, (Txy, ..., 'l:xn). }e Qp
() ifx=p(S), S = {x1, ..., X}
then x —» { p(tS). *p(tS, {tx{, ..., TXp)). } € QF

The rewrite result is the union of all the sets of clauses created by applying the set Qp of fact
rewriting transformations to the structure of the complex term in the innermost order (bottom-up). The
semantics of set union implies the removing of duplication. The order of applying the above mapping
rules to the nested object structures is important since token objects have level-independent
representation. A top-down NESTED_DATALOG to the token object model conversion will drop the
lower level information. A fact rewriting is valid if all the tokens introduced are distinct.

3.2.3. An example
The stepwise conversion of facts (innermost first) can be shown as following.

(stepwise results of fact rewriting (innermost first))
Complex fact
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registration (cs, 1987, courses (
(course (231, db, prof (smith, male, 36),
students ({student (john, 17), student (jan, 18), student (hull, 20)})),
course (171, os, prof (smith, male, 36),
students ({student (lee, 18), student (jan, 18), student (hull, 20)})),
course (281, ai, prof (smith, male, 36),
students ({student (john, 17), student (lee, 18), student (huil, 20)})) })).

step 1

registration (cs, 1987, courses ( -

{course (231, db, p*, students ( (s1*, sp*, s3*})),
course (171, os, p*, students ( {s4*, s2*, s3*})),
course (281, ai, p*, students ( {s1*, s4*, s3*})) })).

with the following DATALOG clauses generated:

prof (smith, male, 36). *prof (p*, (smith, male, 36)).
student (john, 17). _ *student (sy*, (john, 17)).
student (jan, 18). *student (s9*, (jan, 18)).
student (hull, 20). *student (s3*, (hull, 20)).
student (lee, 18). *student (84*’ (lee, 18)).
’step 2

registration (cs, 1987, courses (
{course (231, db, p*, ss1*),
course (171, os, p*, ssp*),
course (281, ai, p*, ss3*) })).
with the following additional DATALOG clauses generated:

students (ssy*). *students (ss1*, {s1*, 3% s3*)).

students (ssp*). *students (ss9*, {s4*, $o*, s3*}).

students (ss3*). *students (ss3*, {s1*, s4*, s3*)).
step 3

registration (cs, 1987, courses ({ c1*, c2*, c3* })).
with the following additional DATALOG clauses generated:

course (231, db, p*, ss1*). *course (c1*, (231, db, p*, ss1*)).
course (171, kb, p*, ssp*). *course (¢*, (171, kb, p*, ssp™)).
course (281, ai, p*, ss3*). *course (c3*, (281, ai, p*, ss3*)).
step 4, 5

11



registration (cs, 1987, c*).
with the following additional DATALOG clauses generated:
courses (c*). *courses (¢*, {c1*, c*, c3*)).

registration (cs, 1987, c*). *registration(r*, (cs, 1987, c*)).

4. MAPPING COMPLEX RULES TO FLAT RULES
4.1 Rule Language for the Token Object Model

The proposed rule language for the Token Object Model is an extension of DATALOG with
negation and sets. Since we must handle one level sets and negations, we use a version of
DATALOG able to handle correctly these features. Thus, we assume stratified DATALOG programs
where sets and negated predicates are computed before using them [Apt87].  The notations given
in [Beeri86] for representing set-oriented manipulation, such as <x> for grouping, and
member (x, X) for set membership are also adopted. We also extend the grouping notation to
allow tuple grouping, such as <(x,y)>. We assume here that the semantics of such a language is
well understood [Gardarin 87b].

The transition of inferences at different levels of the object configuration hierarchy is made by
passing tokens ﬂuough the token-predicates. This mechanism supports both top-down reasoning
and bottom-up reasoning along the object configuration hierarchy. In an actual logic program, the
direction of reasoning along the object hierarchy may not be fixed, but mixed with up and down
evaluation. ‘ '

In the case of top-down reasoning, suppose that a complex object A is a component of an even
more complex object B. A is abstractly repre'sented as a token term which is a parameter of the term
for B. When detailed information of A is needed, the program passes from the token level of A to the
token value level of A in terms of the token-predicates, and receives another term with more
information. The same evaluation principle applies to the components of A as well, and step by step
down along the object hierarchy. For instance, starting with the predicate B

course (281, ai, p*, ss3*).
the token p* of the professor teaching course 281 is obtained, then through

*prof (p*, (smith., male, 36)).

the program can pass to a lower level and receive more detailed information about the professor.

In the case of bottom-up reasoning, one can start with certain known information about an
object, use this information to find the corresponding token of the object, and then pass to the upper

12
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level where the token works as a parameter of other higher-level terms. For instance, in the above
example the query "which course professor smith teaches ?" can be processed by starting with
*prof (p*, (smith, male, 36)).
to receive the token p*, then pass to
course (281, ai, p*, ss3*).
and get the codrse number 281.

It is worth noting that by modeling objects in the way mentioned above, and by introducing
the special token-predicates, the token passing evaluation can be carried out via the usual DATALOG
inference mechanism. A rule program is actually stratified in the sense of "computing a token before
using it", and as usual, "computing a set and a negated predicate before using it". Associated with
each DATALOG program, a Token Passing Graph can be given showing the stratification of the
evaluation.

A To illustrate this approach, let us see how it works on the example given before. In the
expressions given below, a capital symbol stands for a set; a symbol with a star such as s* stands
for a token.

Facts (ground formulas)

registration (cs, 1987, c*).
courses (c*).

*registration (r*, (cs, 1987, c¥)).
*courses (c*, {c1*, c2*, c3*)).

course (231, db, p*, ss1¥).
course (171, kb, p*, ssp*).

course (281, ai, p*, ss3*).
prof (smith, male, 36).
students (ss1*) .

students (ss2*).

students (ss3*) .

student (john, 17).
student (jan, 18).

student (hull, 20).

student (lee, 18).

Rules

*course (c1*, (231, db, p*, ss1*)).
*course (C2*, (171, kb, p*, ssp*)).

*course (c3*, (281, ai, p*, ss3%)).
*prof (p*, (smith, male, 36)).
*students (ss3*, {s1*, s2*, s3*}).
*students (ssp*, {s4*, s2*, s3*}).
*students (ss3*, (s1*, s4*, s3*}).
*student (s1*, (john, 17)).
*student (s7*, (jan, 18)).

*student (s3*, (hull, 20)).
*student (sq*, (ee, 18)).

(a) Find the set of student names Y professor x (name) teaches on course ¢ (course number).

: 13
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teach (x, ¢, <y>) :- *prof (t1, (x, _, ), course(c, _,t],t2), *students (t3, S),
member (s, S), *student (s, (y, _)).

7- teach (smith, 231, Y)  succeeds with unifier {Y/{john, jan, hull}}.

(b) Find student lee's age.
?7- student (lee, x). succeeds with unifier {x/18}.

(c) Get the name set Z of all the young professors (age < 40) instructing graduate level courses
(course_number > 200) in the department x.

young_instructor (x, <z>) :- registration (x, _, t1), *courses (t1, C), member (tp; C),
*course (t2, (n, _, t3, _)), *prof (3, (z, _, g)), n> 200, g <40.

?- young_instructor (cs, Z) succeeds with unifier {Z/{smith} }.

From the above example, we can see that the proposed token passing approach can be
employed as a simple technique for building deductive databases on complex objects. It firmly stays
within the logical database framework (indeed, DATALOG with stratification). It does not refer any
nested predicate. It provides links among different parts of a complex object and expands the
aggregation hierarchy to a level-independent 'flat’ scheme. It accommodates in the LP system the
philosophy of sharing support found in conventional data management. It has the capability of
handling mutually nested sets and tuples. It simplifies the semantics of LP with sets by removing the
nesting of sets. More importantly, these features can easily be integrated to existing relational
DBMSs supporting DATALOG. Since tokens are handled as atomic terms without special treatment,
the proposed system can also support classical applications without using tokens.

4.2. The Mapping of Rules

slla o

1 this sect 01

we only consider simple head. A simple head contains at most one level nested
predicates with set arguments. Moreover, nested predicate in a simple head should not appear in the
rule body. Indeed, up to section 5, we only allow one level nesting for sets in head. Further nesting
in head (e.g., nested tuples and nested recursion) will be considered in section 5 of this paper.
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Let v be a NESTED_DATALOG rule head. A mapping
O : V= u
which maps v to a corresponding DATALOG elements in the token object model is called a head
rewriting transformation.

Definition 4.1 : Head Rewriting
" Set Qp of head rewrite transformations from NESTED_DATALOG to DATALOG
defined recursively as : '
(@ v—ve Qg where vis a constant, a symbol or a filler;
(b) if v is a variable, then p({v}) — <v>e Qg
(c) if (v1,v2,...vn) is a tuple, then p({(vl,v2,..vn)}) — <(vl,v2,..vn)> e Qg
@ ifvi 2>uy,..,vg—=uye Qq,
then p(vy, ..., vp) = p(uy, ..., Up) € QY

Similarly, let v be a NESTED_DATALOG atomic formula appearing in a rule body, u a
DATALOG expression in the token object model, the mapping
WB: Vv—u
is called a body rewriting transformation.

Definition 4.2 : Body Rewriting _ ,
Set Qp of body rewriting transformations from NESTED_DATALOG to DATALOG
defined recursively as :
(@) v—ove Qg where v is a constant, 2 symbol or a filler;
() if vi—>uy,..,vy—>uge Qp,
then p(vy, ..., vp) = *p(t, (uy, ..., up)) € Qp
© if voue Qg, then p({v]) = *p(t, {u}) e Qp
where t's are token variables.

A body rewriting is valid if all the token variables introduced are distinct.

Body rewriting is not sufficient to get a DATALOG body: It only introduces tokens and token
values in a single expression. We further need to expand this multi-level expression to a conjunction
of DATALOG predicates; also, we must introduce the member predicate to handle sets. The
expansion applies in a top-down, "outermost first" and "depth-first” fashion, step by step unquoting
the expression from the outer level to the inner level, while generating lists of single-level predicates
from the left to the right. The final list of predicates is yielded by the bottom-up, innermost-first
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concatenation of these lists. We shall give a definition by an algorithm for the expansion.

Definition 4.3 : Expansion
Let u be the hierarchically structured expression resulting from the body rewriting of a 4
NESTED_DATALOG body formula, C be the conjunction of a list of DATALOG
predicates separated by commas, the mapping :
e:u—C ,
defined by the BODY_EXPANSION algorithm is called an expansion.

Below we give the BODY_EXPANSION algorithm. To be clear we shall use <First | Rest>
to represent the first and the rest elements of a list, and use capital character to represent variables for
sets; the type symbols with or without * precedence are not distinguished unless especially marked,
thus a type symbol can mean p or *p.

[Algorithm BODY_EXPANSION]
Let u be the hierarchically structured expression resulted from the body rewriting of a
NESTED_DATALOG body variable, the body rewrite expansion of u includes the following steps

(1) Replace the outermost *p (t, (W) by p(u), and*p(t, {u}) by p (*p (¢, {u}).

Example : *p(t, (q(x,y), z)) isreplaced by p(q(x,y), z) .

LA

(2) Replace the outermost p(uj, .., Up) by P(S1; vees Sp)s 415 +-s Gn
where for each u;, if
(@) uj is an atomic object, a variable or a filler, then s;j=u; and q; =J;
(b) uj =p; ¢, (), where (u';) represents a tuple,
then s;=t; , and q; =p; (t;. ('));
©) uj =pi @G (i),
then sj=t; , and q; =pj (tj, S;), member (u’j, S;), where S; is a variable for set.

This step transforms a hierarchical expression to the conjunction of a list of expressions, while
the first one is a "well formed" predicate.

Example 1: *p (x, *q(ty, (a,b)), *r(t2, {y})) isreplaced by
*p (x, t1, 12), *q(t1, (@,b)), *r(t2, Y), member (y, Y). ' ¢
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Example 2: member (y, Y) is replaced by itself.
Example 3: member (*p(t, (x, a)), Y) is replaced by member (t, Y), *p(t, (x, a)) .

We denote the conjunction of a list of expressions, transformed vfrom the hierarchical
expression shown above, as <First | Rest>, the First is a "well formed" predicate and to be -
appended to the right end of the predicate list yielded; then each expression of the Rest is to be
applied by the same mapping described above. This process is to be propagated in a "depth-first"
fashion along with each expression, until no new expressions generated.

(3) The final resulted list of predicates is the level by level, bottom-up (innermost-first) unquoting
and concatenation of all the previously resulted predicate lists.

Thus if we denote the mapping described in (1) as €1, the mapping described in (2.a, 2.b,
2.c) as A, and the whole mapping described in (2) as &), the mapping described in (3) as
sj , by using the FP functional form notation given in [Backus78], it is clear that
E = €3 .€2 .E]
€7 = [First, o (€2) . Rest] . A
where First and Rest are viewed as functions, meaning get the first and rest elements of a list;

function forms '.' means composition, ‘o' means apply-to-all, '[ ]' means list construction
(e.g.[f, g] : x = <fix, g:x>). ‘

A body rewrite expansion is valid if all the set variables introduced are distinct. We have now
all necessary elements to define rule rewriting.

Definition 4.4: Rule Rewriting
A Rule Rewriting from a NESTED_DATALOG rule
R¢ : head; ¢ body-variable., condition expressions
toa DATALOG rule
Rj : head) :- body]
consists of the follows : -
(a) arewriting from the head, to the head; ;
(b) a transformation of symbol "«" to ":-";
(c) a valid rewriting from body-variable; to the intermediate expression u, followed by a
valid rewrite expansion from u to the list of predicates in the bodyy;
(d) add condition expressions to the body.

A rule rewrite is valid if all the above transformations are valid.
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[Example]

NESTED_DATALOG rule
young_instructor (x, names({z})) « registration (x, _, courses ({course (n, _, prof (z, _, g), _)})),
n > 200, g <490.

head rewriting
(head )
young_instructor (x, names{z})
(result of head rewrite)
young_instructor (X, <z>)

body rewriting
(body )
registration (x, _, courses ({course (n, _, prof (z, _, g), _) }))
(result of body rewriting)

*registration (tg, (X, _, *courses (t, {*course (tp, (n, _, *prof (t3, (z, _, £)), _)) D))

stepwise results of body expansion
registration (x, _, *courses (t], {*course (2, (n, _, *prof (13, (z, _, £)), _)) 1))

registration (x, _, t1), *courses (t], {*course (t2, (n, _, *prof (t3, (z, _, £)), _) )

registration (x, _, t1), *courses (t{, C),
member (*course (12, (n, _, *prof (t3, (z, _, g)), ), O)

registration (x, _, t1), *courses (t1, C),

member (tr C). *course (ty (n *nrof (ta. (z o)), 1)
'~ WS N\NTLY Ty TEERRAww \N"L? \**? 2 ryeve \‘J, \*™ OIS =77

registration (x, _, t1), *courses (t, C),
member (t3, C), *course (t, (n, _, t3, _)), *prof (13, (z, _, &)

DATALOG rule with tokens
young_instructor (x, <z>) :- registration (x, _, t), *courses (t}, C), member (t3, C),
*course (t3, (n, _, t3, _)), *prof (13, (z, _, g)), n>200, g <40.

18



5. FURTHER DISCUSSIONS ON THE SEMANTICS OF NESTED_DATALOG
5.1 Strong Typing of NESTED_DATALOG

NESTED_DATALOG is a strongly typed language. The mapping from a
NESTED_DATALOG fact or rule to the set of DATALOG clauses with tokens essentially consists in
the conversion of objects to tokens and token values, and the conversion of types to predicates,
therefore transforming all the nested terms into predicates, referred to as fully predicated. Indeed,
to have a NESTED_DATALOG fact or rule to be computable based on the token object model
requires the converted set of DATALOG clauses to be fully predicated, and to have the resulted set
of DATALOG clauses to be fully predicated requires that the original NESTED_DATALOG fact or
rule to be strongly typed.

For example, 2 typed NESTED_DATALOG term
p({ q({x}) })
corresponding to the two level set type p({ q({q'}) }) can be mapped through the body rewrite and
_expansion rules to the conjunction of a list of DATALOG clauses with tokens
*p(ty, { *q(t2, (x)) }) by body rewrite
p(t1), *p(t1, P), member(ty,P), *q(tz,Q), member(x, Q) by body rewrite expansion

However, neither {{x}} nor p({({x}}) can be mapped to a set of fully predicated DATALOG
clauses with tokens, through the mapping rules given above, since they are not strongly typed
thus cannot have fully predicated images in the DATALOG universe. This is why they are not
legal NESTED_DATALOG terms and cannot be evaluated on the DATALOG framework with
tokens.

5.2 Tolerant Reconstructions

It is obvious that the body formula of a NESTED_DATALOG rule must belong to a type of ~
objects actually defined in the database, or a virtual type constructed from actual types. To guarantee
. the head formula to have interpretations associated with the conditions specified in the body, it must
belong to a type which is properly reconstructed from the type of the body formula.

The type reconstruction has been an interesting issue for a time. However, reconstructions
can be made on different purposes. For information retrieval, we need the results of reconstructions
to have a tolerant structure for holding the information obtained from the original structure. For
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example, the rewrite from type p ({p'}) to type p' may not be a structure tolerant reconstruction
since the first type has higher level set nesting than the second type. Below we define a restricted type
reconstruction called Tolerant Reconstructions which guarantees the rewrite results be the
assembles of the parts from the original type. The renaming problem is not to be particularly
mentioned; however, the definition given below may be extended with more renaming (i.e., a
predicate name can be replaced by a new predicate name).

Definition 5.1 : Tolerant reconstruction of types
Let types be represented as (a) p; (b) p (P1,---» Pn); and (¢) p ({p'}) where recursively
p' and each p; are types, the set II(p) of Tolerant Reconstructions of type p is
defined recursively as
(@ p e II(p) .
(b) for p (p1,--» Pn)» Vie (1., n} pje II(p) .
(c) for p (P1s-» Pn)» Vie {1,.,n} pje II(qQ) = pe II(q) .
@) for p ({p'}) and q({q}), p'e II@) = pe II(g).
() p1 € II(p2) Ap2e I(p3) = p1 € II(p3).

From the above definition we can see that the reconstruction of a type p may either be smaller

or bigger than p, but all the parts of the reconstructed type are obtained from p. For example, given
. the simple set type p({q(qy.-.-, dn)}) (set of tuples), the following tolerant transformations will

rewrite it to a tuple type (tuple of sets) with an appropriate structure to hold the information from type

P: ’

since fori= 1....,n, qje Il(q) (case b of the above definition),

then {qj} € II(p) - (case d of the above definition),

then ({q1}, ... {an}) € II(p) (case ¢ of the above definition).

5.3 Determinism of NESTED_DATALOG Programs

In this section, we would like to study the determinism of the semantics of a
NESTED_DATALOG program. This is a major issue which has already been well addressed within
the DATALOG framework. Let us recall that a DATALOG program with negated predicates and sets
is said to be stratifiable if no recursion crosses negation or sets. In that case, the program has a
unique minimal model! for all instances of the EDB which may be computed strata per strata [Apt87].

With the semantics given to NESTED_DATALOG, itis simple to state the following proposition :

Definition 5.2 : NESTED_DATALOG Stratification
A NESTED_DATALOG program is stratifiable iff its mapping to DATALOG is
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stratifiabie.

To guarantee that the mapping of a NESTED_DATALOG program to be safe, one must
guarantee that predicates are nested according to a given order, that is, the stratification according to
nesting is required. It is then possible to demonstrate that a sufficient condition for a
NESTED_DATALOG program to be safe is that the following properties holds :

.(a) Each rule is strongly typed.

(b) For each rule, the type of the head is a tolerant reconstruction of the types of the body.

(c) The program can be stratified according to sets and negations.

5.4 Variable Scope of NESTED DATALOG and Extended Reasoning

In pure DATALOG, there is only one sort of variables, the atomic variables. In certain
DATALOG-like language with sets, such as in LPS [Kuper 87], there are two sorts of variables, the
atomic variables and the set variables. In the DATALOG with tokens described in this paper, three
sorts of variables are introduced, they are the atomic variables, the set variables, and the tuple
variables. However, in the NESTED_DATALOG, in principle there is no need to restrict the scope
of variables, they can be atomic, or mutually nested tuples and sets of any order.

In a NESTED_DATALOG query, if a variable is an atomic one, the answer to the query
under the token passing approach will return the actual value as the substitution to the variable.
However, if a variable is a non-atomic one, the normal query processing terminates with a token for
the variable returned. For example, let us consider the NESTED_DATALOG fact

r (¢, q({p(a, 1), p(b, 2)1)
which is transformed to the following clauses of DATALOG with tokens :

1(c, to*). *r(t*, (c, tg™).
qt0*)- *q(*, (t1*, 12*).
p(a, 1). *p(t1*, (a, 1)).
p(b, 2). *p(t2*, (b, 2)).

The following NESTED_DATALOG query with an atomic variable x B

r'x) «r (¢, q({p(x, D}))
can be transformed into the query of DATALOG with tokens

r'(x) :- r(c, t), *q(t, S), member(s, S), *p(s, (x, 1)).
and has the answer x = a.

However, the following NESTED_DATALOG query with a set variable x
r'({x}) «r (c, q({x})
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is transformed into the query of DATALOG with tokens

r'(<x>) :- r(c, t), *q(t, X), member (x, X).
and has the answer X = {t{*, t2*}, which is just a set of tokens. If tokens are made transparent to
users such an answer may not be considered as the appropriate termination of the query processing.

To solve this problem we have developed the notion called Extended Reasoning, that is, if
the query processing turns out to an answer with tokens involved, those tokens will be replaced step
by step by their associated token values, until no token occurrence in the derived answer. Thus the
above query will have the final answer of

The extended reasoning is handled automatically by the system and need not be expressed explicitly
in the user's program. It includes the following steps (we suppose that tokens form a special type of
constants which can be recognized by the system) :

(1) For each token t* occurring in the answer, search the token predicates *g(t*, u), where g is any
predicate symbol. Then replace t* by u.

(2) If u is still a token or a construct including tokens, do (1) again for each token appearing in u;
otherwise, return g(u) as the replacement of t* in the ﬁnal answer.

5.5. The Handling of Complex Head Formula

To restrict the head formula of a NESTED_DATALOG to a simple formula with only one
level of set nesting, as mentioned before, is necessary since under the token passing approach, a
complex head formula with nested structure would be mapped to more than one formula with tokens.
As this is not allowed by the definition of Homn clause, the result would not be computable in the
framework of DATALOG with tokens. In this section, we show that the above restriction does not
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the proposcd mapping. The general idea can be described as following.
Suppose a NESTED_DATALOG rule containing the set of variables {x1, X2, ..., Xk} of any
sorts in the head and the set of variables {x1', x2', ..., Xp'} in the body, is represented as
head (x1, X2, .., Xk) & body (x1', x2' ..., Xp").
where {x1',x2', ..., xp'} D {x1, X2, ..., Xk} . If this rule succeeds wrt the EDB, with substitution
0 for the set of variables xj, X3, ..., Xk, then the head is considered as the construction with
the substitution 0 for its variables. That means we can introduce a simple atomic formula called
abstract head formula denoted as
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H(x1, X2, «ey Xk)
and receive the variable substitutions through evaluating

H(x], X2, w Xg) & body (X1'y X2's «ey Xp")
and then introduce a nesting rule : .

head (x1, X2, .., Xk) & H(x1, X2, w0ey Xk)
to reconstruct the rule head.

Definition 5.3 : Nesting rule
Given a flat atomic formula H(xy, X3, ..., Xk) and a nested rule head head (xj, x3,
.. Xk), a nesting rule constructs the complex facts head 9(xjy, X2, ..., Xg) for
every possible substitution 0 such that 6(xy, X3, ..., Xk) holds in H.

Let us recall that given the rule

head (xj1, x2, ..., Xk) « body (x1', x2', <.y, Xp"),
such that {x1’, x2', ..., Xp'} D {X{, X2, ..., Xk} and the head is the tolerant reconstruction of the
body, the set of substitutions for the variables x1, X2, ..., X| in the head contains and ohly contains
the substitutions of the same variables in the body wrt the EDB. Based on this rule semantics, we
can introduce a mapping for complex heads. For the rule shown above, let B' be the list of
DATALOG clauses with tokens mapped and expanded from body, and H (x1, x2, ..., xk) the
abstract head formula introduced, for any substitution of X15 X2, ..., Xk Wrt the EDB,

if H (x1, x2, ..., xk) « B* holds ‘

then head (x1, x2, ..., xk) « H(x1, x2, ..., xk) holds.
A proof skeleton may be given as follows :

1. Let 6 be any substitution for xi, x3, ..., Xk wrt the EDB,
H (x1, X2, <y Xk) &« B’
holds means 6B' € EDB and 6H € IDB.

2. 0 is a substitution for the variables in body wrt the EDB.

3. Ois also a substitution for the variables in head wrt the IDB, and ‘ -
O(head) « O(body)

Some rules may be without bodies, such that

course (231, db, prof (x, _, ), _) .
which are evaluated directly against the facts of the EDB with the semantics defined below. To map
such rules to the target model, we must first rewrite them as follows : Rule r (x1, X2, ..., Xg) is

converted to the rule
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r (X1, X2, ey Xk) & T (X1, X2y ey Xk)
which can enter the general framework defined above. ’

Finally we demonstrate the handling of complex head by the following example.

N
b

Rule with complex head
cos (x, prof (pn, pa), stds ({std(sn, sa)})) &
course (x, _, prof (pn, _, pa), students ({student (sn, sa) }))

Query S
? cos (x, prof (pn, pa), stds ({std(sn, sa)}))

Step 1 : Introduce simple parameterized head formula
P (x, pn, pa, {(sn, sa)}) « course (X, _, prof (pn, _, pa), students ({student (sn, sa) }))

Step 2 : Mapping to DATALOG with Tokens

Step 3 : Evaluating . 3 0
In this step the above query has an answer substitution |
{231/231, pn/smith, pa/36, {(sn, sa)}/{(john, 17), (jan, 18), (hull, 20)}} Y

Step 4 : constructing the head with the above substitution
course (231, db, prof (smith, male, 36), : !

students ({student (john, 17), student (jan, 18), student (hull, 20)}))

6. CONCLUSION

In this work, we try to accommodate two basic requirements : A logic framework on which
the consistent reasoning of complex objects is available, and a natural style of complex object rule

langnage which represents hierarchical structures naturally, Thus, from theoretical point of view, we
propose a natural non-1NF rule framework that can be mapped to the classical 1-NF rule
framework. We formally and precisely defined the necessary mappings. From a practical point of
view, that demonstrates the possibility to support engineering applications on top of relational

systems (the performance issue is another question) .
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In "this paper, we started with describing a natural rule language -called
NESTED_DATALOG for dealing with complex objects and supporting the deductive retrieval
and reconstruction of nested predicates. With introducing the Token Object Model, we show that itis
possible to map NESTED_DATALOG to DATALOG on top of a relational DBMS supporting the
token concept. By starting with NESTED_DATALOG and studying how hierarchically structured
facts and rules can be converted to a set of "flat" clauses for the FOL-based reasoning, interesting
properties of NESTED_DATALOG programs can be inferred. We present an example of such
properties with stratification. Other interesting properties, such as safety, could be studied. To go
further along this line will be a significant future work.
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