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Abstract

The report is concerned with the Sensitivity analysis of simply
supported Kirchhoff plate with obstacle. The conical differential of the

displacement with respect to data is derived.
Résumé
Ce rapport traite de 1l'analyse de sensitivité d’une plaque de

Kirchhoff simplement appuyée, en présence d'un obstacle. On obtient la

différentielle conique du déplacement par rapport aux données.



1. Introduction :

We are concerned with sensitivity analysis of the following

variational inequality.

w ¢ K(Q)
fﬂAwA(c)S-_w)dxzfnf(gs-w)dx VéeKk (1.1).
. where .: ,
K=(¢eH2(Q)|¢I=0,¢z¢inm (1.2).
r

0 c R" is a given domain with the boundary I' = 4Q, f, ¥ are given
elements such that K = ¢.

We show that the unique solution of (1.1) is conically differentiable
with respect to the data i.e., f, ¥ and in an appropriate way with respect to
the perturbations of the domain Q. |

Sensitivity analysis of unilateral problems in the Sobolev space Hl(ﬂ)
provided by F. Mignot [11] is based on the potential theory in the so-called
Dirichlet space. If there is given a coercive bilinear form a(.,.) on

Hl(ﬂ)xﬂl(ﬂ) such that :
+ - 1
a(y,y)=<0,VyeH( . (1.3).

where :

y+ = max (o,y), y = max (0,-y)

then the a—pré)jection in Hl(ﬂ) onto a nonempty convex set { y = ¥} C

Hl(ﬂ) is conically differentiable [11l]. Here we must obviously assume that :
vy ert@ , vyen@ (1.4).

which can be verified.

However for an element y ¢ HS(O), s > 3/2 it does not follow in general
that y+ € Hs(ﬂ),‘ therefore the results of Mignot [11] cannot be directly
applied for the variational inequality (1.1).

We will show that the set K C Hz(ﬂ) N Hé (Q) is polyhedric [7,11,18,26]

and therfore the metric projection in the space Hz(ﬂ) N H(l) (1) onto K is
conically differentiable. c

Let us recall the notion of polyhedric convex set in the Hilbert space.
Let H be a Hilbert space , a(.,.) : Hx H=> R a continuous and coercive

bilinear form, i.e.
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sy zdllylly a>0,vyen (L.5).

la .2y =Myl Jlz1ly vy, zeH (1.6).

where a > 0, M are given constants. We assume for simplicity, that the
bilinear form a(.,.) is symmetric : a (y,z) = a (z,y) , V y,z ¢ H.

Let us denote by IIf = an a-projection in H of an element f ¢ H onto a
convex, closed set K C H. The element IIf satisfies variational inequality :

nf ¢ K
a(If - £,z -1If) 20, Vz €K (1.7).

It can be shown that mapping II : H » K is Lipschitz continuous :

[[me, - e ||, su]l£s - £ ||H , V £,,f, ¢ H (1.8).
a
For a given element y ¢ K we denote by :
CK (y) ={z¢eH |3 >0 such that y + 7 z ¢ K) (1.9).

the tangent cone.

Furthermore for a given element f ¢ H we denote :
Sg () = ( z € G (If) la (f - 1f, z) = 0) (1.10).

where CK(y) is the closure in H of tangent cone CK(y). It can be verified that

the set SK(f) is a closed and convex cone.

Definition :
The set K is called polyhedric if the following condition is verified for
all £ :

Sg (£) = { z € C(Nf) la (f - If,z) = 0) (1.11).

Let us assume that the set K is polyhedric, then for 7 > 0, r small
enough:

VheH: I(f+rh) =If+ 7 Ih+ 0(r) (1.12).
where S = SK(f),il 0(1)||H/r*6.with rfO uniformly with respect to h on compact
subsets of H.

We will apply Theorem 1 to variational inequality (1.1) since in section
2 we show that the set KC H = HZ(Q) n Hé (Q) enjoys the property (1.11).
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This result combined with the material derivative method [28-35] is
used in section 3 to derive the form of so-called shape derivative w' ¢
HZ(Q) of the solution w to (1.1) in the direction of a wvector field
Ya,o. ,

The method of sensitivity analysis used here is proposed in [18] in
the case of the set { ¢ = %) C,Hg(ﬂ) with the slightly different proof of
property (1.11). The conical differentiability of metric projection in
the space HZ(O) N Hé(ﬂ) onto a subset with pointwise constraints is used
in [19] for the shape sensitivity analysis of state constrained optimal
control problems for elliptic systems. The proof of property (1.11)
presented here is simplified in some technical details compared to that
of [19].

We refear the reader to monograph'’s [3-5] for the general results on
variational inequalities shape sensitivity analysis of boundary value
problems is considered by many authors, we refer the reader to e.g.
(2,6,8,12-17,20,21,27-35] for the related results and the applicationms.
The related results on the sensitivity analysis of variational
inequalities can be found in [1,7,11,12,22-26]. The standard notation is
used throughout the present paper [9]. -



2. Sensitivity Analysis of Simply Supported Plate with Obstacle :

Let @ CR" be a given domain with smooth boundary I' = 4Q, n = 2,3,

Variational inequality (1.1) can be used as the mathematical model
of simply supported thin elastic plate subjected to perpendicular force
f @ ,x€eQcC R2. The displacement w of the plate satisfies the imposed
nonpenetration condition w(x) = ¢(xX), X € O, where ¢ describes the

obstacle. We denote :

a (y,z) = foAy Az dx, V y,z ¢ H (2.1).
H = HZ(O) N Hé(ﬂ)

H' = (HZ(Q) n Hé ()" denotes dual of H.
By standard elliptic regularity results for the Laplace equation it
follows that bilinear form (2.1) satisfies (1.5) (1.6). Therefore the
solution w = IIf of (1.1) is unique and it is Lipschitz continuous with

respect to f ¢ H’

[Infy - 0t |y < c|] £, - £ally, o V £, eH’.

In order to show that the condition (1.11) is satisied for the set
(1.2) we derive the form of the closure of tangent cone CK(u) for an

arbitrary element u ¢ K. We denote : H2n Hé H @ n Hé Q).

Theoreme 2 :

Let u ¢ K be a given element, denote :

E=2(u) = ({x € 0|u®) = ¥(x)) (2.2).
and assume that ¥ ¢ H2 n Hé , € is compact
2

Then G, (u) = ( ¢ ¢ H'n “o |4 20gq.e. onz) (2.3).

A proof very similar to that of theorem 2 gives also the following.

Corollary 1 : G (w) n [F - w]'= Ce() N [F - wl* (2.4).

here we denote :

2 .1 ' 2 1
FeHnH : fﬂA FA¢ dx = fo¢ fdx , V ¢ ¢ H" n H
w is the metric projection of F onto K and [F - w]l is the subspace of

Hzn Hé orthogonal to F - w ¢ H2 n Hé .
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For the convenience of the reader we provide the proof of theorem 2
[19]. Before we proceed let us establish the framework. It is not
difficult to see that :

H? n Hé = ( Gf| £ ¢ L2(0)} (2.5).
where G is the Green function of Q@ i.e. G = (- A)-l. We define the inner
Product in H2 n Hé by :

(Gf,Gg) = fh f(x) g(x) dx (2.6).

We note that the corresponding topology is that inherited from H2. For
purpose of this paper we define the C2 - capacity C(F) of a compact set
F c Q by

G, (F) = inf ( || £ ||2L2 |ef =1 onF )
we extend this definition to all Borel sets by :

02 (B) = sup { C2(F) |compact FcB')
a statement holds q.e when it holds except for a G - polar set i.e a set
of 02 - capacity zero.Observe that convergence of a sequence in H2 n Hé
implies pointwise convergence (for a subsequence) off a G- polar set. For

more on Capacities see [10].

Proof a Theorem 2 : We start off by observing that CK(u) (and in

particular also its closure) has the following properties :

it contains all non-negative elements of Hzn Hé .
if ¢i € CK(u), a, = 2 then Z ai¢i € CK(u).

b € CK(u), O0< € e C then : &4 e-CK(u)

¢ = 0 in a neighbourhood of Z then ¢ ¢ CK(u).

ISENV N N

These properties are simple consequence of thé definition of the
tangent cone. Property 4 above is immediate if ¢ is bounded and for
general ¢ is by taking limits.

Since convergence in H2 n Hé implies q.e. convergence for a
“subsequence, it is clear that the left side of (2.3) is a subset of the
right side. ' '

Let V ¢ H2 N Hé and suppose V = 0 q.e. on & = {u = ¥)}. Our object is
to show that V e CK(u).To this end let ¢0 denote the unique element of

CK(u) such that :

V-8l 4 = inf [1V-dl | ¢ € Cow) | (2.7)
using simple arguments we see that (2.7) implies :

($g-V,8) 2 0, ¢ € Co (W) (2.8)
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For simplicity let us define the linear map :

L = (y-V.$), ¢ ¢ KN H] (2.9).
Let f0 € L2 be such that :
¢y - V = Cf, (2.10).

If g= 0, then ¢ = Gg = 0 and hence belongs to C (u) Using (2.9) we
see that [f,g20. This says that £, = 0 a.e. If 0 < ¢ ¢ Cy then again

using (2.9) we see :
IfoA¢ <0, 0<¢ ¢ C0

i.e. that £,  is superharmonic. By Riesz decomposition we way write :

f.=Gu + h

0 (2.11).

0

where u is a positive Radon-measure and ho is positive harmonic in Q. For

clarity we break up the proof into small steps.

Step 1 : For all ¢ ¢ Hzn Hé :

J1dau < <HLIHTAL g2, g2 (2.12).

Indeed let 0 < f ¢ L2. There is a sequence of non-negative elements of Cg

which increases pointwise to Gf.

cf=11m¢n,05¢nec‘;
From (2.11) and (2.8)
L (6 = L (¢ ) = Jo_au

By monotone convergence we get :

[eran = 11m [4_an < L(cE)
Now it ¢ = Gf then :

fidan s [ddlyen =gy = IIIHIIfII2='=IIIHII¢I|“,\u

(2.13).

- (2.13) in partlcular tels us that if ¢ convergens to ¢ in Hzn Hé , it

also converges in L (p).
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Step 2 : If ¢ € Hzn Hé has'compact support then :

Joan = 14 : (2.14).
Indeed for such ¢, there is a sequence ¢ni C: converging to ¢ in Hzn Hé.
Then from Step 1 , ¢n also converges in L~ (pu) to ¢ and, L agrees with p
on Cg. Thus (2.14) is valid.

Step 3 : If ¢ € CK(u) then :

0 = [4du =< L (2.15).

0

Indeed let 0 < ¢ <=1, € ¢ Co

this :

Then £¢ ¢ CK(u) and also (1 - £)¢ € CK(u).

| Jesaw = L ¢4y < 18
because Lg = L(¢4) + L (1 - &)¢

and the last term is non-negative.

Now we let £ increase to 1 on Q.
Step 4 : p is concentrated on E. Indeed since y - » 2 0, if 0 < ¢ < 1,
b € Cg and - 1 < t <1, we have :
u-P+té(u - ) =0
in other words t¢ (u - ¥) ¢ CK(u). Using
It¢(u - ¥) du=20 (2.15).
-1<t<l or that : J¢(u-$)ds = O

Since u > ¥ off. E. this can only be true if u is concentrated on E.

Step 5 : p = 0. To show this note first that :
f¢0 du =0 (2.16).

Indeed we know L¢o = 0. So since ¢0 =0

on E, from (2.15), (2.16) is seen to be valid. Now ¢o -V = Gfo and we

knew that fo = 0. ,

So ¢0 - V is non-negative superharmonic and so either identifically zero

are strictly positive everywhere. Since I(¢0- V)du = 0, we must have u =

0.

Step 6 : We claim h0= 0. For this we use property 4 of E;?Gj. Let D be a
relatively compact open set containing Z. Using proposition 1 in
Appendix. We see that there is a, 0 < f ¢ L2 such that Gf = 1 on D . Let
¢ € C: s.t. ¢ =1 on D. Then ¢ - Gf vanishes on D and hence ¢ - Gf ¢
Ce(w). Hence L($-GE) = 0, But L(4-GE) = ffoA(¢-cf) - fho[A¢+f] - fhof.
Because ho is harmonic. Since f >0 we get ho = 0. Thus L = 0 or that V ¢

CK(u) which completes the proof of Theorem 2.



We are now in the position to derive the form of the conical
differential of solution to (1.1) with respect to the right-hand side of

this variational inequality.

Theorem 3 :

Assume that ¥ ¢ Hg (Q), let w = IIf denotes the solution of (1.1),
then for any h ¢ H' = (Hzn Hé)' and for ¢ > 0, € small enough
N{f+eh) = NIf + ell’h + O(¢) (2.17).

where || 0(e) [] 2 @)/ = O with € + 0.
The element Q = II'h is given by the unique solution of the following

variational inequality :
Qe sS@ = (¢ ¢Hn Ho |¢ =0 q.e. on 2z, [édu = 0) (2.18).
JpQae - @axz[h - ax, veesm

Proof :
From Corollary 1 it follows that the set (1.2) is polyhedric, hence

Theorem 3 follows from Theorem 1.

3. Shape Sensitivity Analysis.

We derive the form of so-called shape (Lagrange) derivative of the
solution to (1.1) in the direction of a vector field V(.,.). First, we
define a family of domains : { Oe} C Rn, € € [0,6], depending on a given
vector field V(.,.).

3.1, Family {Qel.

let V(.,.) € C ([0,6) ; C'(R™;R™) be a given vector field. We

denote by :

T, (V) : R" 4 R, ee (0,8) (3.1).
the mapping defined as follows :
TG(V) X) = x (€), €€ (0,6) (3.2).

where x(e¢) is given by the unique solution of the following system of

ordinary differential equation.

4 x(t) = V(t,x(t)), t € (0,6) (3.3).

x (0) - X (3.4).
we denote :

a =T (V) @ - {XeR™ | 3 XeQ such that (3.5).

x(0) = X and x(e) = X}
In particular we have for ¢ = 0 :
Q= T V) (@) _ (3.6).
We will denote by DT (X) the Jacobian of the mapplng (3 2) evaluated at X
e R" by DT (X) inverse of matrix DT (X) and by DT (X) the transpose
of DTel(X).



3.2 Shape Derivative :

Let us recall that the shape derivative w'= w'(Q) of the solution
w = w(Q) to variational inequality (1.1) in the direction of a vector
field V(.,.) is defined as follows :

w =w-Vw. V, V=YV(,.) (3.7).
where w = lim (weoTe- w)/e (3.8).
€0

here wee Hz(ﬂe) N Hé (Oe) denotes the unique solution of wvariational

inequality (1.1) defined in Qe, e € [0,68].
o 2 1 . '
weEK (B)=1{(4¢¢cH()NH(R) |4 2% in O) (3.9).

faeAwe A(¢-w€)dx = Inef(¢-w€)dx V ¢ € K(Oe) (3.10).
2, n 3,.n
where f € L"(R") is a given element. We assume % € H(R'), n = 2,3,
supp ¥ C O, therefore for ¢ > 0, ¢ small enough K(De) is nonempty, convex
closed subset.

Let 56 be an extension of W, to an open neighbourhood of Q.
Theorem 4 :

For ¢ > 0, € small enough

wlo =W+ ew'+ 0(e), (3.11).

where ||0(e)||H2(0)/e -+ 0 with ¢ ¢ 0.
The shape derivative w' € Hz(ﬂ) is the unique solution of the following

variational inequality.

w' € Sv(ﬂ)
[ acg-wyax = - g; v 52 (aw) 32 (4-w)ar, V4 €5 (@) (3.12).
here we denote by :
v(x) = < V(0,x),n(x)>, x € 30 (3.13).
the normal component on I' = 30 of the vector field V(O,.),

5,@) = (4 € B (@] 4 = - v3¥onan, (3.14).

¢ 20 q.e. on Z, f¢ dp = 0 )

. Proof :
First, we transport variational inequality (3.9), (3.10) to the
fixed domain Q using the mapping (3.1). It follows that the element :

W = w ol € H (), ¢ € [0,6) - , B (3.15).
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satisfies :
v € K = (¢ € K@ Hy(@) | ¢ = $° in 0) (3.16).

© WS¢y 2 [ ES v rax, v 4 ek (3.17).

here ¢€ = ¢0Te, for ¢ > 0 , € small enough supp ¢€ c qQ, £€ = 1€foT€,
7y, = det (DT ),
af(z,¢) = [y, laiv (a_.v2) aiv (A, .V)dx (3.18).

. ' -1 * -1
with Ae =7, DT€ . DTe (3.19).

we denote :

z‘=w-¢,e<¢>=d1v<A V)

z2¢ e K, = {¢ € HX(@) n H (n) |¢ 20 in Q) (3.22).
a®(z%,¢ - 2% = f £ - z ) dx - a*(¥°, ¢ - z5) (3.23).
Veexr

By application of Theorem 3 combined with Theorem 1 of [29] it follows

that for ¢ > 0, ¢ small enough :
€

2 =2%+ eZ + 0(e), in H €0)) (3.24).
where é € H (@) satisfies the following variational inequality.
Z S S(O)
Jpz 8 (4 - 2yax = [ £ 4-2rax - a (Z,4-2) (3.25).

- a(y,6-2) - a(¥,¢-2) V €S ()
In view of (3.21) i =W - &, hence :
v;r € S() ,
IOA w A($-w)dx > fﬂé(¢-w)dx - a(w,é-w) (3.26).
- a$, 6-2), V¢ € S(@)

where we denote :

%= V. Ve n (@) (3.27).
£ = div (£V) (3.28).
a(z,4) = J (- divV AZ Ad + 5(2) A + AZ§(¢)} dx (3.29).
. vV Z, ¢eH(0)

€ () = div (A'.V9) (3.30).
A’ = div VI- DV - "DV (3.31).

Since the shape derivative w’ depends actually on the normal component v
of the vector field V(.,.) on 81, hence for any vector field V(.,.) such
that v(x) = 0 on 4Q it follows :

w = Vw.V (3.32).
and from (3.26) we obtain the following Green formula :

Jp vy a4 ax - [£6 ax - & w,8) - a(v.) (3.33).
which holds for all ¢ € {S() - S(Q))} and all V(.,.) such that v(x) = 0
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For an arbitrary vector field V(.,.) and the test function ¢ smooth

enough, integration by parts, in view of (3.33), leads to :
- Jop wuvyag ax + [ 54 ax - s ) - ahe)
3 y 9¢
- Jv2 w2 ar
a0 dn dn
therefore, in view of (3.7); (3.26), it follows that :

' ) B gt
fko A(¢-w')dx = -I V 3 (8W) 7. (¢-w') dr
an
. funthermore :

welnn=¢- WV, ¢ €S@)s= sv<d)

since we can select V(0,.) with the support in a small open neighbourhood

of @, which completes the proof of Theorem 4.

Appendix :
Proposition 1 :

Let K C @ be a compact subset of the bounded domain Q. Let G be the
Green function of Q. Then there exists an element f € Lm(ﬂ), f = 0 such
that Gf = 1 on K.

Proof :

Let D be open relatively compact, D D K. Then we know 3 u finite
measure on 3D such that Gu = 1 on D. '

Let 2§ = dist (K,3D). Let ¢ be radial, ¢ € C", vanishes off B(0,6)
- and [¢(x)dx = 1.

Let x € K fixed and y € 4D. Then G(X,Z) is harmonic in B(y,$).
So : for all x € K and y € 4D :

¢x,y) = Jo (x,2) ¢(y-2)az

therefore integrating relative to u :

for all x € K :
1= J ey wiay) = [ o2 [o5-2) weay

and I¢(y-Z) p(dy) is ¢® with compact support in Q.
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