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APPROXTMATION OF GENERAL SHELL. PROBLEMS
. BY FIAT PIATE ELEMENTS
(PART 2 : Addition of a drilling degree of ireedom)

Michel BERNADOU and Pascal TROUVE
INRIA, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France

" Abstract -:

In this paper, we analyse an approximation of general thin shell problems
where the middle surface is approached by flat triangular facets, whereas the
displacement field is approximated by triangles of type (1) for the membrane

components and by reduced H.C.T. triangles for the bending component.

In this second part of the paper, we define a sixth degree of freedom : the
rotation around the normal. This introduces a "small" perturbation but has the
- advantage to make the implementation easier : indeed, the connection between
two adjacent facets is simply realized by imposing the continuity of the

displacement and rotation vectors at the vertices of the triangulation.

We prove the "pseudo-convergence"” of this method for sufficiently shallow
shells ; then we propose a new expression of the bending terms upon each facet
for which the approximation method is unconditionally convergent, for arbitrary
thin shells.
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APPROXIMATION DE PROBLEMES DE COQUES GENERALES
PAR DES ELEMENTS DE PLAQUES
(Partie 2 : Addition d'un degré de liberté de rotation)

Résumé :

Dans cet article, nous analysons une approximation de problémes de coques
minces générales pour laquelle la surface moyenne est approchée par un
assemblage de facettes planes triangulaires, alors que le champ de déplacement
est approché par des triangles de type (1) pour les composantes de membrane et

par des triangles H.C.T. réduit pour la composante de flexion.

Dans cette deuxiéme partie de 1l'article, on définit un sixiéme degré de
liberté : la rotation autour de la normale. Ceci introduit une "petite"
perturbation mais présente 1l'avantage d'une implémentation facilitée : 1la
connexion entre deux facettes adjacentes est réalisée simplement en imposant la
continuité des vecteurs déplacements et <rotations aux sommets de 1la

triangulation.

Nous prouvons la "pseudo-convergence" de la méthode pour des coques
faiblement courbées ; puis nous proposons une nouvelle expression des termes de
flexion sur chaque facette pour laquelle la méthode d'approximation est

inconditionnellement convergente, quelque soit la géométrie de la coque mince.



1 INTRODUCTION
For the analysis of general thin shell problems by displacement models,

there exists various finite element approach :

- the conforming methods, with the approximation of the geometry in explicit

form (CIARLET (1976)), or in implicit form (BERNADOU (1980)) ;

- methods which are conforming for the displacements and nonconforming for the

geometry (see BERNADOU-DUCATEL-TROUVé (Part 1)) ;
- nonconforming methods for the displacements (TROUVé (to appear)) ;

- completely nonconforming methods, for the displacements and the geometrical
approximation (KIKUCHI (1984)).

In the first part of this work, we analyse the approximation of thin shell
problems by a CLOUGH-JQHNSON method using flat plate elements. The construction

of the discrete spaces takes two steps :

(i) to each facet, is associated a conforming plate finite element, i.e.,
Pl-triangles for membrane displacements and a reduced H.C.T. triangle for the
bending displacement ;

(ii) the definition of compatibility conditions that have to be satisfied at
each vertex of the triangulation, i.e. the continuity of the displacement
vectors and the continuity of the tangential components (taken with respect to
the plane tangent to the continuous middle surface) of the rotation vectors.
The purpose of these compatibility conditions is : firstly, to enable the
definition of a single set of degrees of freedom at each vertex ; secondly, to
ensure the consistency between the sum of the elementary energies associated to

each plane facet, and the energy associated to the continuous surface.

From the convergence point of view, we have established :
- the consistency, without restriction, of the membrane strain energies ;

- the consistency of the bending strain energies for a class of shallow

shells ;

- some lacks of convergence in the case of a non-shallow circular cylinder ;

- the convergence of a new method for arbitrary thin shells, by introducing

a perturbation of the bending terms associated to each facet.

Such results appear to be quite new ; and it seems that they do not rely on the

particular choice of the shell theory, neither on the finite element type (as

" far as general shells are concerned).



In this second part of the paper, we study :

(i) the combined effect of a CLOUGH-JOHNSON flat plate elements
approximation, on the one hand, and of a perturbation associated to the
introduction of a sixth degree of freedom to each node of the triangulation, on
the other hand ; this last degree of freedom would appear as a component of the
rotation around the normal, i.e. the drilling rotation (in this way, let us
mention the examples of BATHE-HO (1981), BERGAN-FELIPPA (1985), OLSON-BEARDEN
(1979)).

The introduction of this sixth degree of freedom facilitates the
implementation of the compatibility conditions : it allows to prescribe the
continuity of the displacement and rotation vectors at each node of the
triangulation. The present method consists to add a perturbation term to the
expression of the energy by affecting to the sixth degree of freedom a
fictitious stiffness coefficient k. This coefficient k must be taken
"sufficiently small" not to affect significantly the response of the system,
and "large enough" to avoid the ill-conditionning of the global stiffness
matrix. We will prove that the introduction of a sixth degree of freedom does
not change fundamentally convergence results, and we determine the bounds for

the admissible values of the coefficient k.

(i1) a new plane facet element method, unconditionally convergent for
general shells, that only necessitates the knowledge of the euclidean

coordinates of each vertex of the triangulation to describe the shell geometry.

Notations and references : In this study, we will use as constant references
the notations and results of BERNADOU-DUCATEL-TROUVé (Part 1) (*) ; specific

formula or theorems of this work will be recorded by adding a "I" symbol.

For instance, the variational formulation of the continuous problem is given

in (I, §2), and some results concerning a conforming finite element

approximation are presented in (I, §3).
O
(*) ... which summarizes BERNADOU-DUCATEL (Rapports de Recherche INRIA n° 660

et 674) et BERNADOU-DUCATEL-TROUVE (Rapport de Recherche INRIA n° 667).
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2 A NONCONFORMING METHOD : ASSEMBLAGE OF FLAT PLATE ELEMENTS

Subsequently, we shall assume the existence of a mapping z such that
<£f= 3(0), 1 being an open bounded subset of the plane%gz, and that the points
o= 3(2), where £ denotes the vertices of the triangulation %jh of O, are
known. As far as the implementation of the present approach is concerned, the

explicit knowledge of 3 is not necessary.

The approximate middle surface éZL being defined in (I, section 4.1), we

consider the plate elements of CLOUGH-JOHNSON (1968, 1970) - see the definition
2 ~ ~ ~ .

of the discrete space Xh - xhl X xhl X Xh2 in (I, section 4.2) -, and the

approximation of a sixth degree of freedom involving a perturbation- in the

variational formulation of the discrete problem. This approach enables to set

very simple compatibility conditions.

2.1. The compatibility conditions

\

It is essential to introduce compatibility conditions at the nodes of the

_mesh in order to.: - : _ - - - - -



-6 -

- define at each vertex of @Eh one and only one set of degrees of freedom, say
global degrees of freedom ; this point of view was adopted by
BERNADOU-DUCATEL-TROUVP’J (Part I), but we consider here another mean of writing

such compatibility relations by introducing a sixth degree of freedom at each

node ;

- obtain an approximation of the energy which should be consistent with the

"continuous" expression of the shell energy.

In this way, we consider two facets k' and k* of the approximate middle
surface gh which have a common vertex o (see I, Fig. 4.1.1). This common

vertex can be regarded as

. s -
(i) a vertex of the facet k - ¢h(l( ) ; thus, any displacement field Vi € Xh of
the surface g has the following components at the point of =0 (or at the

2 —~ .
p01nt st of 0, using 3 : ~h(2+) - 3 (E+) 2;(2+). To the displacement field
:z

h’ we associate the rotation vector w as follows :

2z + =i _+, =i+

wh(z ) = h(Z ). -8y (2.1.1)
where :

e -2 MR, Eh (2.1.2)

=
=3 _+ 24
wh(z ) is a degree of freedom, independent of Vi (to be determined) ; (2.1.3)
(11) a vertex of the facet k = zh(l(-) : it suffices to replace the upper
script + by - ;

(iii) a point of the middle surface 9,’: then, using the notations of (I,
section 2.1), any displacement field v € v has the components : 3(2) -
vi(z)-a’i(Z), at the point T = 3-1(0) ; and we can associate to V the rotation
vector given by (see KOITER (1970)) :

-*-'_i-'-' A2y o v 3*_1);4
w(Vv) w (v).ai , Where : w (v) € (v3'#+b“vy) , w (V) € v“”\ . (2.1.4)

N

Remark 2.1.1 : Let us already point out that, by construction, the components
a2izh 3 i A ; i not the case of Zﬁ(z’“) which
This is fundamental if one wants to

conditions. easy to implement.
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Therefore, we adopt the following compatibility conditions :

2
(1) the displacement Vv, is continuous at the nodes o of the surface g, or

equivalently, at the vertices I of the triangulation %h , 1.e.

2 2 -
vh(Z+) - vh(z ) , VZ vertex of%:’ ; . (2.1.5)

=2
(2) the rotation wp is continuous at the nodes o of the surface g, or

equivalently, at the vertices I of the triéngulation% , 1.e.

w

=2 -
wh(2+) - 5, (Z) , VE vertex of 66}1 ) (2.1.6)

It remains to verify that the compatibility conditions (2.1.5) and (2.1.6)

allow to correctly define :

2 2
- a finite element space Y.n (then Wh by taking into account the boundary

conditions) ;

-a discrete problem.
2 =
2.2. The discrete spaces Yh and Wh

A convenient way to introduce the sixth degree of freedom at each vertex of

the triangle K of %jh consists in the following definition of the discrete
2

space Yh :

(2.2.1)

2 RN I - U Sy bils
Y, = ((vh,wh) € thihl : (vh,wh) satisfies the compatibility
conditions (2.1.5) and (2.1.6)} .

By noticing that the previous compatibility conditions enable to associate to
3 - 2 2 2
each function (vh,wi) e Yh a single set of values (vh(E),wh(E)) at each vertex
=

T of 66 , we can show that : dim Yh - 6Nh' where Nh is the number of wvertices

of the triangulation %jh' A practical manner to define the unique set of values

3 =

(vh(Z),wh(Z), > vertex of %jh} is to express the components of the vectors
2 -

3 - -
vh(E),wh(Z) on the orthonormal reference system (O,el,ez,e3).

Remark 2.2.1 : The definitions of the spaces ihl and i’hZ (see (I, section 4.27
- 2

and (I, (3.1.1), (3.1.2)) imply that : dim Xh - 15M.h, where M.h is the number of

triangles of ¢ . then we get dim( ) = 18M . Such a discrete space

rian h & % M P

(th}.hl) involves the following local degrees of freedom, associated with each

triangle K of %h with vertices 2:1, 22, 23 :



2 =23 = L= L= .= L= L= .
(DDLy (%), @) ) = (V1 (B)) 5 %y (Fp) & Yy (B3) 3 Vp(Bp) 5 Vipp(Fp) 5 ¥y ()
Vi3 (E) 5 Va3(Ep) 5 V3 (Bg) 5 Vg 1(F)) 5 Vg 5(Ep)
=~ L= L= L= ) =3 .
"h3 1Z9) 5 Vg 9(Z)) Vi3 1 (F3) 5 V3 p(F) 3 ep(Ey)

BT 5 oE]

and the corresponding elementary stiffness matrix is block diagonal, i.e.

- . 7]
Reo 0 0
[RL.] = 0 Rey 0 o
0 0 Req
| -

where RKm is a 6x6 membrane stiffness matrix, RKb a 9x9 bending stiffness
matrlx and Rl(d a 3x3 drilling stiffness matrix. In such a manner the functions
( ) € thxhl are determined triangle by triangle. Now, by using the
compatibllity conditions (2.1.5) and (2.1.6), we define a new set of global

degrees of freedom, associated with each vertex Z of% , 1.e.

~ = -k - .

vhi(z) - vhk(Z).(a.h.ei) , 1l=<i<3 ,

od(m) = L= M3 Vp3 4 (®) G . o 3 2 1<i<3

“h oy g ah3 v TRIS2
where ;j - -éj , 1<j=<3. Conversely, the relations :

5@ =-v. @ (K2 ) 1=i<3

hi hk ‘i’ o T2

5. () =dJa e @ 2,3y , p=1,2 ,

no,p n Ap n J n

=3 ~j + =43
o (D) = @ () g3
enable to define a 18x18 matrix [PK] such that :

(0DL, (5, B ) = (DD (¥, @) 1. (Bl

where

e 21 B T T ey Sty Ry s 8 -
L'VDGK(Vthh)] - [vhl(zi) ) vh2(zi) ’ vh3(zi) s wh(zi) ) wh(zi) s wh(zi))i-1,2,3j .
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In such a way, we are able to evaluate the elementary stiffness matrix in its

global form (which is not block diagonal any more), i.e.
[RG,] = [P ].[RL,]."
K K" LK :

Then, it suffices to assemble the elementary matrices RGK , for any triangle K

of‘%;h, in order to derive the global stiffness matrix.
O

2
Next, we equip the discrete space Yh with the norm (compare with (I,

(4.2.15)))

(v w)eyh-» ) [Z IV d||lK+||v 3||2K+|| "ox . (2.2.2)

Ke% o=

3 2 e ra 3 z I b+ 4
Existence of a bljectlon between the discrete spaces Yh and Yh - thxhl

= :
As the functions ( ) of the space Yh are completely determined by the
data of 6N, degrees of freedom we will associate to this set of values the set

h
(vh(z),wh(z), > vertex of ez;h}, by means of a simple extension of the

compatibility conditions, i.e.
3 (2) = 3.(2) and o () = @ (2 vE of % 2.2.3
vh( ) = vh( ) an wh( ) = wh( ) vertex o ’h (2.2.3)

The set of these new values is associated to the continuous middle surface éif
and we show in Theorem 2.2.1 that it defines one and only one function

-

(vh,wi) € (ih,xhl) ; therefore, we introduce the discrete space Yh :
-+ 3 = 1 2..,2 1
Yh - ((vh,wh) € thxhl} c (H(Q))DH (@)xH (Q) , (2.2.4)

(equipped with the usual product norm).

Theorem 2.2.1 : The compatibility relations (2 2.3) deflne a bijection
o ~3

Fh : Yh h , that associates to each function (v ,wh) € Yh one and only one

function ( ) € Yh

W Gy el 4@ el
Proof : (i) (vh,wh) € h (vh,wh) € h

[s3)

it is simpie consequence 2f rthe definitions (2.1.4), (2.2.1) and of the

relations §2.2.3) : we find the expressions



- 10 -

= - .
Vhi(Z) - vh(z).ai(Z) , 1=i=<3 ,
- =2 -
Yz ,® = 2D e (4@ T @] - BO 3@ 5@ (2.2.5)

wi(Z) - 3h(z).23(2) ,

which completely determine the function (3h'“i) € ?h - Moreover, the relations

(2.2.5) clearly define an -injection Fh .

N 3 - 2 3 2
(ii) (vh,wh) € Yh - (vh.wh) € Yh
Conversely, from the relations (2.2.3) and the definitioms (2.1.1) (2.1.2)
(2.1.3), we obtain for each triangle K+ of‘%E% :

SRR NOICOR VIR I C 2.2.6)
+
\zrm,p(f) -\/ag e’\pe""[vm,v(z) + bi(z)vhe(z)](zx(z).;;\‘*) +
(2.2.7)
+ T e’\#wi(z) Go.2h
aeh - /a—i—(z; vy () + b (D ()] (D) 2y

(2.2.8)

k4

DN SIS TR
@ EEED

2 2 =

which determine a unique element (Gh,w3) € thxhl - And, we easily check that
2
this element (Gh,ai) satisfies the compatibility conditions (2.1.5) and
2 =3 =
(2.1.6), 1i.e. (vh,wh) € Yh .
(iii) Finally, by combining the relationms (2.2.5) and (2.2.6) to (2.2.8), it
- |

is seen that the application defined in step (ii) is the inverse F * of the

h

injection Fh defined in step (i).

2

The discrete spaces Wh and ﬁh

In order to take into account the boundary conditions of the clamped type on
- -
the edge z(ro) , 1i.e. “Nro -0, auvhﬂro = 0 , we introduce the discrete space

a 2 3 = =2 - 2: -
- (e €Y s v@=-0ada® -0 , vIer) . (2.2.9)

Indeed, such a definition leads, in relation (2.2.5), to the recovering of the
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conditions : v, (8) = 0 i wyy ,(® =0 L u-1,2, adu =0, VEET,
Conversely, such boundary conditions give, in the relations (2.2.6) to (2.2. 8),
the boundary conditions of the definition (2.2.9). Thus, the bijection F,,
defined in Theorem 2.2._1, enables to introduce the discrete space wh - F (?I ),

i.e.
- Y'v = 0 d = Q 2.2.10
((],])e ’hII‘ an wI‘ ). (2.2.10)

Remark 2. 2.2 : In BERNADOU-DUCATEL- TROUVE (Part I), it has been pointed out
that the boundary conditions along zh(l‘ ) were not of the clamped type. In a
similar way, the conditions : h(2) - 3 and Vi (2) =0, a=1,2, VZ € I‘ ,
‘would only lead here to :

3 cH -3 ,
o WA+ viher, .

3(2)'&h ./_ =3 +

= +
vh3;“(2 ) =e h(Z ) L, k=12,

assuming that : 23(2) .;i+' » 0 (which is easily obtained for h sufficiently
' » 0 and 8 » 0.

small). In general, these conditions involve h3|1‘ 3|I‘
At least, by noticing that we have : (E) 3.;* - 63 + 0(h) (see (I, (5.2.15),

(5 2.33))), and by conjecturing that wh admits an O(h)-estimate, we would get :
3(2:)-0(h)and (2)-0(h),vzel‘ ‘

“h
From the implementation point of view, it appears advantageous to introduce
a sixth condition, i.e. ¢ ~g(2+) =0 , VZ € I‘o , so that boundary conditions
2
reduce to : (2) - 0 and wh(}:) - 0 . V2+ € I‘ . In particular, these

conditions are sufficient to ensure boundary conditions of the clamped type for
the discrete problems respectively associated to the faceted middle surface and
the continuous middle surface. From a mathematical point of view the

introduction of this sixth boundary condition : 3341, - 0 (resp whlI‘ - 0),

conserves a sense when h approaches zero, as we have x.hl o0 H (K) (resp.

xhl C Hl(n)). Moreover, let us remark that the usual conforming discrete
problem (see (I, §3)) admits a solution (-\.;h,ni)' that satisfies implicitly
3 3
nhlro = 0 (in fact n, - Oonil) .

0

2.3. The discrete problem associated to the faceted surface

Let us consider a displacement field (\~7 ) € Yh of the faceted surface g .
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We can define, triangle by triangle, the components of the corresponding strain
tensor (:;haﬁ) and the components of the change of curvature tensor (;haﬂ)’
"i_'.e.

~ 3 1 .~ ~ y

Theph) = 2 “ng.aVha, g

(2.3.1)

~ 2 ~

Phap"n) = Vh3,a8
Then, the elementary bilinear form associated to the triangle K e@zh is given

by :

-~ 2 .3 B 3 ~ 3 = ~3 ~3
AKh[(uh"'h)’(Vh'“’h)] - al(h(“h’vh) + k("h’w_h)LZ(K) , (2.3.2)

where we have denoted for any (u.h,nh),(vh,wh) € Yh

~ = = ~g = ~ g ~g = ~pg=
IR I NSO A R AL CR IR A C R EAAC RIS
, o (2.3.3)
k > 0 constant, independent of K ,
~3 ~3 ~3~3 1,.2
(72,a2) w932 fa agtagt . (2.3.4)
h“h’ 20 T Y T ®h
Similarly, the elementary linear form is given by :
2 - 2 1.2 3 2
£ (V) = fK PV /% d¢tdg” , vy e . (2.3.5)

Thus, the variational formulation of the discrete problem associated to the

faceted surface can be stated as :

2 -~ =
Problem 2.3.1 : find (u.h,ng) € W such that

-~ 2 A3 2 3 r: 2 2 3 2
L Ag Gy, (el = L favy) o, YOyae) €W,
kel k¥,
with the definitions (2.3.2) to (2.3.5).

In order to pursue the mathematical analysis of this problem, it is
convenient to associate a new discrete problem formulated on the continuous

middle surface to the previous one. By using the bijection Fh defined in
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theorem 2.2.1, the discrete problem 2.3.1 may be rewritten in the form of a

discrete problem defined over the space W, i.e.

Problem 2.3.2 : find (%,n)) € W such that

h
% 3 - 3 - 3 - 3. -+
. . -+ 3 2 3
with the following correspondences for any (vh,wh) - Fh(vh.wh) , and any

- 3 2 3 .

- - ~ 2
o [Gpoon), Gy 0] = 5 (v

> 3 = 3 ~3 ~3
b, [(vi 0 ),(w 0 )] = (w6, ) ' (2.3.6)
kh' Vb e th B2
Eenneen) 7 )

and where :

A IG6D) Gao] = T (e Gpoed), (0] + & b [Gyad), G 61 2.3.7)
KeC

“h

6 (0] = T £ (e (2.3.8)

ke,

8]

2 o~ 2
Moreover, it is clear that, if the solution (u.h,ni) € Wh of the discrete
* 2 o
problem 2.3.1 exists, then we have : (-L:.h,f].i) - ~Fh(u.h,ng) , with similar
expressions " as (2.2.5) (this is a consequence of the fact that Fh is a

2
bijection between the discrete spaces Wh and ﬁh).

Let us add that, due to the contribution of wﬁ in the linear form Gh[.], one
should expect that ni ¥ 0 on 0 ; at best 'we can conjecture that this

nonconforming method states an estimate like “"131“0 g~ o).

3 ERROR ESTIMATES ; THE CASE OF QUASI-SHALLOW SHELLS

In this paragraph, we establish sufficient conditions on the stiffness
coefficient k that ensures the existence and the uniqueness of the solution

(E:,qg) of the discrete problem 2.3.2 ; and we prove the following estimate

o kg2 342 .1/2
AR-202 + a2 HY? < cawe) [N,
v h'*0,Q v
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valid for a class of shallow shells 3; such that : |b£|< €, Ibﬂ |< e , where ¢

is a "small" geometrical parameter.
3.1. Abstract error estimate

In order to derive error estimates directly between the solutions of the

continuous and discrete problems, we give an "abstract" error estimate :

Theorem 3.1.1 : Let us consider a family of discrete problems 2.3.2 for which

there exists a constant B > 0 , independent of h , such that

BRSNS o) = Ayl Gy Gl ¥ €Ty (3.1.1)

Then, there exists a constant C > 0 , independent of h , such that :

o k2 g 32 1/2 . 1/2
u-u fI54Hln )¢ < ¢ inf [([u-v ||-»*{|w I3 +
ABEAE o0 05 o
h’ ' h’ h
-+ = 3
+  sup |a(vh,wh) + k(o , h Lz(ﬂ) Ah[( wh) ( h)]l
- 3 - 1/2

] + )(3.1.2)

f -G
. sup |£G%,) (@001

- 3. =+ 1/2
@ odrel ||4+||ohuo,n> /

*
where u (resp. (-\Sh,ni)) denotes the solution of the continuous problem (resp.
of the discrete problem 2.3.2).

Proof : The assumption (3.1.1) involves the existence and uniqueness of the
solution (u.h r;h) of the discrete problem 2.3.2. Then, we can write for any
( ) € W

% -

3 342 | +% + 3 % » 3 3
ﬂ("u-h h"-#"'"ﬂh'wh"(),n) = Ah[(u':'vhlr’h'wz)»(u;:'vh»nh'wh)] ’

and by wusing the fact that (3,0) is the unique solution of the continuous

.72”\\ crimle  elad /.’ -.\ 1/ 3 3\ f(-'
XL (fi) sucn that a{u,v) + k(g ,e 2 - _\V)

+ = 3 2 L
Vv eV, Vw € L"(Q) , we obtain :

<3

‘- PO - N
problem : Iind (u,n ) €
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-k - - = =% <

2 43 32 3 3 3
By - lgllm, ol @) = a@-Vy vV * KCopmymoy) 2 o)
b @ ET + k) - ALG e G e+ GLD
2% = 3 3 % =
+ (Gh[(uh'vh,"h' h)] - f<uh'vh))

Now, the continuity over (1-11(0))2 X H2(0) of the bilinear form a(.,.) involves
the existence of a constant M such that : a(;;,;) < M“;“V. “;;“—0 . V-\;,;; € v , and,
thus we get for any (3,(03),(3,03) eV x Lz(ﬂ) :

- - 3 .3 2 32 1/2 2 n.32 1/2
2@ + k0% = supt 0 QRIZHIS M 2RGS0

therefore, we obtain in the decomposition (3.1.3)

¥ 2920 3 32 172  swpMK) o2 g 32 (172
g eling-ailly 7% = = dE-Sllllllo, % 4

oGy + k0D 20 - AplGpee) . Gy 01l
+

1
tg SWP, =~ 22 .32 <1/2
P G, N T
- - 3
+ l sup lf(wh) - Gh[(wh’ 9]’1)]'
B 1/2

3 - 02 1,312
By combining this last inequality with the following triangular inequality :
%02 .0 32 (172 - > 02 32 (1/2 #9203 342 (1/2
(“-‘;'-‘;h"-v**'“"'h"o’ﬂ) / = (“u-vhllvﬂl(f’h“(),ﬂ) / + (“-‘;h--‘;h“vﬂlwh-ﬂh"(),ﬂ) / ,

and by taking the minimum with respect to (3 ,wi) e ﬁh' we deduce the

inequality (3.1.2) where C = sup(l-f% , 14-% , lp)‘

Let us remark that, in estimate (3.1.2), we find the usual approximation
-+ = u2 352 (2 :
theory term  inf (||u-vh||_.+||0-wh||o g)" » and two consistency terms involving
(;h,wh)eﬁh v ’ .
the bilinear forms a(.,.) and Ah[(.,.),(.,.)], and the linear forms £(.) and
Gh[(.,.)] (compare with (I, (5.1.2)).

. - o 33 v 3w 3
3.2. Estimate of fa(v, W) + k(. 0,),2 gy - A1V ,wh),(wh,oh)]l

In order to evaluate the first consistency error, let us consider any pair

of functions (;h""g) and (Gh,ai) € ?h , and let us denote by (;h';3) and
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2 -~ z

(wh,ﬁg) the functions, that belong to Y, , resnmectively associated through the
bijection Fh defined in Theorem 2.2.1 ; then, using the correspondences
(2.3.6), we have :

- - - - 3
a(Vy ) + KCop, 0012 0y - A Lpa0) . G, 00)] =
5 o ~ 202 3 3 ~3 =3
= Z ([a(vh:wh)lK' aKh(vh’w )] + k[(w ’eh)Lz(K) = (wh’oh)Lz(K)]} .

<G,

- - ~ =2 = .
But the estimate of la(vh,whnx - aKh(vh,wh)I is obtained through the
decomposition (I, (5.2.2)) and the inequality (I, (5.2.3)) ; moreover we have

the second estimate :

3 .3 ~3 ~3 3,3/~ ~3~3 1..2

3 3 3 3 ~3
= V;'/%lo,w,x‘l“’hlo,x o0,k *+ loplo x 165-81l0  +
(3.2.1)
3 3 ~3 3 ~3 3 =3
+ 1oy g lop-erlo ¢ + lop-oplo & 165-03lo & +

3 3 w3 3 3 ~3 3 ~3 3 ~3
+ 'E'o,w,x{l“’hlo,x l65-000 x * 162l & loh-etlo ¢ * log-wplo « 195-01lo &)

Therefore, the estimate of the first consistency term in (3.1.2) amounts to

evaluate the terms :

x>~ a3 >~ a 3 ~3
hﬂ(vh)-‘yhﬁ(vh)lo,l( ’ IPﬂ(Vh)'Phﬁ(Vh)lo,K ’ wh-thO,K ’

since it was already shown in Part I that |/;-/g;|o ok = 0(h) (see (I,
(5.2.29))).

Firstly, we obtain the following theorem :
Theorem 3.2.1 : There exists a constant C , independent of h , such that for

: ~3 i 4 3 - . . . .
any (Vh’wh) € Yh and (vh,wh) € Yh in correspondence through the bijection Fh

defined in Theorem 2.2.1, we have
2
v,

@ . ~a 2 2 2 172
7)1 lg = Cnillvylly g + Ty lly g + viglly g2 - (3.2.2)

Proof : This proof is identical with the one of (I, Theorem 5.2.1).

Secondly, we prer an extension of (I, Theorem 5.2.2)
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Theorem 3.2.2 : There exists constants cl £ independent

€n
. , € y C )
jag ' %jap ' “jap ' ®jap
2 ~3 = - 3 3 .
of h , such that for any (vh,wh) € Y, and (v. ,wh) € Yh associated through the

h
bijection Fh defined in Theorem 2.2.1, we have
phaﬁ( )I
X
Pap hﬂK a7 (@b, (€, () + e, Ja(® Map(€) - 3 €T (Ovy, 1) X
h| (3.2.3)
€ 7y .1 ] n,,.1
X Z AP EDIE] 6D ®Y 1 141) ap * 11760 P 1,1:1) ap) *
3
2 2 €n 3
+ 0(h) kzl €5as"ne i) * 5ap"h2, A% * Cjap'h3, enEi) ¥ CjaphFid)
yhere Ek € [§,2k] , where we have denoted :
ep 1 3 29 S ' :
aF@©) =35 T —3 ¢5-€9¢]-¢N (3.2.4)
i=1 3¢ \
and where p} i, i+1(A) , p},i,i-l(x) denote the basis functions for Fhe
subtriangle K of the reduced H.C.T. finite element.

A

Proof : (in five steps)

By definition of space §h2 , we get on each subtriangle Kj , 1=j=<3 , of the
triangle K (see (I, (5.2.20)))

3
~ 0 ~
Vhs,aﬂ‘f“xj - 1§1 (Py 1)) g Vh3(Fp) + )
3 . (3.2.5)
v 14
+ i§1 [(€i+1-ei)(p3,i,i+1(x)),0}9 + (ei 1 6 )(pj i,i- l(A)),aﬂ] h3, V .)'

Step 1 : Expression of v (2 ) as function of degrees of freedom of space Yh

By virtue of compatibility relation (2.2.6), we derive :
-~ - j

where we have set :

3 - 23 2

& (&) =3 5, - | (3.2.7)

Step 2 : Expression of vh3 (21) as function of degrees of f.feedom_ of
space ?h

From the compatibility relation (2.2.7), we have :
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-~ -+ -
: vh3’u(zi) -1/;{313 eAUeK“[Vh3,“(Ei) + b;(zi)vhe(zi)](an(Ei).ah) +

3 - -\
+ o, ey 9 () (33(F)-8)

(3.2.8)

Step 3 : Finite expansion of vh3(zi)

By noticing that (3.2.6) is identical to (I, (5.2.21)), we record the finite
expansion (I, (5.2.37)) :

Vi a(Z)) = () + (1L - 257 (O (©)11-AT (b ()87 (€) + GEPLACIR

Ap,€n ¥é B enp [ av
v e, @A OAT O (Db (6 - BT (b (O34T, (00, (1270 +

(eap

s (£ AT b (T 4O (0) + AT OTOP ) +

"

+3 ElEN Ol (© - T OO, @) ¢ (3.2.9)

1 af Ap €n ¥6
+ gagry e Pag, (OATOAT (O (D, 5(€) +

+ (E5-EWIOAT (OB () -

1 € € n .0 3.5
- L g1 EMe, (01vy(E) + 0hT)eyvy (B

where we have set ':

B (g) - 1 % o S B N
a 7% L T i i '

and where the constant ci are independent of h.

Step 4 : Finite expansion of vh3,v(zi)

We will derive the finite expansion of ;h3 y
(5.2.38)). Indeed, let us rewrite the second compatibility relations (2.2.3) as

(Ei) from the expression (I,

a linear system, i.e.

w3 1

A
w3, Z1)%, ) - Ty

Ap € o ~3
e e [Vh3,“(21) + bp(zi)vhe(zi)] th(Ei)wh(zi) ,

1
T
a3 (B )G (E) = 6B - 7%? e#V;h3,u(zi)d§p(zi) ’
h
in such a manner that we get by substitution :
d;S(zi)dip(zi)] -
4y () A (3.2.10)

43(Z) 3
wh(Ei)) )

ah Ap €
-"a(zi)l(e [vh3’p(21) + b“(Zi)vhe(Zi)] - Ja(Ei) di =)
IVi

pv= A
eV, (F) 4, (B -
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Then, by noticing that we have from (I, (5.2.28) (5.2.32) and (5.2.33)) :

A 3 A
=)L (3,) )
%h3Z dhp i’ _ 0(h2) and fhi__l_ - d;3(zi) + O(hz) ,

3 3
43 (Z5) 43 (Ey)

we obtain in (3.2.10) :

™ Vi (& )dh =) =

= *n Ap € A\
“Yazy) ¢ Pha,u®0 * PR ED] - Gy WaEu(5)) +

+ O(hz)(c” L) + cw (z ) .

Consequently, the terms vh3 (2 ) are solutions of a linear system similar to
the one obtained in (I, Step 2 of the proof of Theorem 5.2.2) in the O(h )-
approximation sense, so that, with the help of the expressions (I, (5.2.22),

(5.2.23)), we derive the approximate expression :

)

Vh3 &) = a(z ) 4 ) h3 g

dhu(zi)dh3(zi) 3 -
" s 3, ,) JZ; wp (5,) + (3.2.11)

€

+ 0(h2 ){c (B + c3*v

h3, A(Ei) + c w (Z ))

Thus, we deduce the following finite expansion (in a similar manner as in (I,

Step 5 of the proof of Theorem 5.2.2)) :

-~ - B
Vi3, E) = V3, () F B GV Ep) +

+ [A§"(€)Ftn(€) - (£§-5‘>rﬁ€<€)1[vh3,x(zi) + bﬁ(zi)vhp(zi>1 +

(3.2.12)
LAEb, (a7 () - <e§-e‘)b1(e>1 G wp(3p) +
2 3 3 :
o) T tehv @)+ v, ) FeaE
k-l !
2 2 :
where the constants c, ¢, ,c, are independent of h.
O

=

Step 5 : Finite expansion of ph ﬂ( h)

By substituting (3.2.9) and (3.2. 12) into (3.2.5), we get a similar
expression as (I, (5.2.39)) : as it can be noticed in the precedlng step, we

on1§'havé to reblace'the former term [- % (v Vi1 2" Vh2 1)] [2 Vha r] , by
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, ' 3 .
the latter one : [./a(Ei wz(zi)]-, or simply by Ja(¢ wh(é) . Then, by using
the arguments that lead to (I, (5.2.51)), we obtain

-~ = 1 by A

Phap il = Vho,a(®) * 7 [P p(6) + g o(ODia(©) ¢

+BMEV H(6) + BR(Ovy () - Tog(©) vy ((€) + BIEv (O] +
3 € L€ 3 v Ap, 1 N .0 A v

I (eI R OO0 - 5 (e O (O, @) +

(E5-6 [R) (OBAE) - 5 (€1-6MbrEIb, (O)]v4(6) -

+

+

€ .€,,An Vi (&)
(65-698 70w, (©)a (€, (O)py 1) 5+

3
v v 1 v v 1
i§1 (€160 Py 1 1417 ap + Ci-1780 Py 5,5-1) ap) *

+

x (e LAST(O)b, (©)a™(€) - (65-£9D]()) JaE wp () +

(€565 [ 5 () (6D (), (6) - By(E)vy, (O] +

.3
2 2 en 3
0(h) 1§1 [¢5ap"neEi) * Sjap¥he 2 G * ®5ap"h3, en Gl * Cjapn Gl

+

where we have denoted Ril(f) - A}B(f)bvs(f) , and where the points
Ek € [e,zk] can change from one expression to the next. Thus, the technical
developments of (I, Steps 6 and 7 of Theorem 5.2.2) give without any difficulty
the estimate (3.2.3).

Remark 3.2.1 : This last result raises some remarks :

(i) the counterexample of a right circular cylindrical shell (I, lemma

5.2.1) proves that the residual term of the expression (3.2.3), i.e.

@NOb, (O 1y, G + e, D (426 - 5 @v, 1) X

3 1 1
€p n L} L i _p7 +
< I AFEOIEL D] 1 14) ap ¥ GL1ED®) 150 o]
does not, in general, reduce to an O(h)-estimate. Indeed, from this study, it
is shown that some extraneous bending effects are to be expected, especially in

regions where the membrane state of stresses predominates ;

(ii) it appears here that a modification of the compatibility conditions
(with respect to the previous method studied in Part I) does not seem able to

improve comnvergence results.
0
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The case of "quasi-shallow" shells

In order to pursue the analysis, we introduce some restrictions on the
geometry of the middle surface which are consistent with KOITER's formulation
of shallow shell theory. In this way, we refer to definitions 5.2.1 and 5.2.2

of part I which describe a class of middle surface éz satisfying uniformly on
a:

b7, Ibﬁkl <e , aBfy=12, (3.2.13)

where €>0 is a "small" parameter. The previous inequality expresses that the

normal curvatures and their variation are small.
Now, let us state the following theorem :

Theorem 3.2.3 : There exists positive constants € ho » €1 4 C9 independent
of h , such that for any € , OSeSeo , and for any h , 0<h<h0 , we have for any
shell éai satisfying (3.2.13) uniformly on @1 :

- -~ 3
(3.2.14)

2 2 2 32 .1/2 .
< (cpere ) (lvplly ¢ + lvplly ¢ * lvpally g + lelly ) 2

2 ~3 2 - 3 3 . .. .
for any (vh,w ) € Yh and (vh,wh) € Yh associated through the bijection Fh
defined in Theorem 2.2.1.

Proof (similar to (I, Theorem 5.2.3))

From the estimate (3.2.3), the results of interpolation theory in Sobolev
spaces (see CIARLET (1978, Theorem 3.1.2)) lead to the estimate :

~ a2 — 2 av - 3
(3.2.15)

) 2 2 2 3,2 .1/2
s Canlllvl} g + Moy g * vl g+ logll /

where we have denoted :

3 .
> 3 €p n Ny (ol , n 7y (nl
Aaﬂ(vh.wh) - i§1 Ay (21)[(€1+1'§i)(pj,i,i+1),aﬁ + (€i_1-€i)(pj'i,i;1)’aﬂ] X

x a8 ED (O 1, Gy + e, 2D [4©) - 3 O, 1)

Moreover, the constant Cqy is independent of h, and may be taken independent of

¢ , as the parameter € is chosen in the compact set [0,60]
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From the expression (3.2.4), it is seen that : A;#(Ei) = 0(h) , and thus we
derive from the inequalities (3.2.13)

23, (0 (7, () + e, 2@ [ep(©) - 5 ¢ ©vy, Do ¢ S

. "ws 2 172

2 2
s epelllv 1“1 g * Ionally i+ lopallg ¢ + llallo 27

where <, is a positive constant independent of h. In such a manner, we get the

estimate :

18,5¢ i h)lo,Kj =

3
2 1 1
s °s‘h1<.‘i§1 [l(pj,i,i+1),aﬁl0,w,l(j * |(Pj,i,i-1),aﬂ|o,m,xj]’ x ) (3.2.16)

1 2
X {“ 1“1 KJ + “ 2“1 KJ + “Vh3"0 Kj + "“’h“o Kj / »

where Cg is a positive constant, independent of h and € .
Then, by introducing a reference triangle R (for example with the vertices
£ = (0,00 , £ = (1,00 , §; = (0,1)), and by denoting %K. the affine mapping
J
that associates the triangle K to the triangle Kj , such that

3 ég;K (A) € Rj (and, in particular, such that to each basis function p(A)

defined on K we can define the basis function p (&) = (p 0<§E )Y(§) defined on
K;), ve obtain (for k = i1 or i-1) : “

1 -1142 R
I(pj,i,k('\)),aﬂlo,w,l(j < 06“(%1(:}"1,@’1‘( 13; O o o &

2,1
°7h1<j Ip; 1M, & .

-2

< cC ,
shxj

where constants e to g are independent of h and e¢. Therefore, the last

estimate gives in (3.2.16) :

IA

1 2
1as Gy g 5 cqellvglls o + oy g + ogally ¢ + llallg 0™/ (3.2.17)

where Cq is a positive constant independent of h and e.

Finally, by combining estimates (3.2.15) and (3.2.17) with a triangular
inequality, we deduce (3.2.14).
o



Thus, we find :

Theorem 3.2.4 : There exists constants eo>0 ,'ho>0 , and C > 0 , independent of
h and ¢ , such that for any ¢ , OSeSeo , for any h , O<h<ho , and for any pair

* ~3 2 -3 = - 3. = 3 _ 2 g
of functions (vh,wh) , (w .0h) € Yh and (vh,wh),(wh,0h) € Yh respectzvely in

correspondence through the bijection Fh defined in Theorem 2.2.1, we have :

- - ~ = =2
%;la(vh,whnx -‘aKh(vh'whﬂ <
Kel (3.2.18)
h ) X
=+ 2 32 1/2 4= 12 .u.312 1/2
< c(em AR ety o0 /215N 0™ -

Proof : The proof is identical to the one of (I, Theorem 5.2.4) and relies'ﬁﬁon
the estimates (3.2.2) and (3.2.14).
O

Next, we get (without any restrictions on the geometry of the shelli'the

following rgsulﬁ :

‘Theorem 3.2.5 : There exists a constant C , independent of h , such that for
2 - 2 ' ‘ :
any (vh,w3) € Yh and (3h,wi) € ?h in correspondence through the bijection Fh

defined in Theorem 2.2.1, we have :
3 ~3 2 2 2 32 172 o
lwh- }JO'K < Ch{“VhIHO,K + "thno,x + "vh3“1,x + "wh"O,K) /2 | (3.2.19)
Proof : From the definition of fhe space ﬁhl , we get for any £ € K :
: 3
a6 - L A (E)
P .

and by virtue of the compatibility relation (2.2.8), we get :

3
~3 1 pv € - -3
&) = 1t 7 ol B ¢ bE(E)v (BP1GE () 5 +

(3.2.20)
3 - -3
+ wh(zi)(as(zi).ah))

Moreéver, from (I, (5.2.32), (5.2.33)), we have : Zy(zi);zg - OCh) , and
23(21).23 -1+ 0(h2) . Consequently, we find : ’

, 3
~3 3 € v 33
wh(g) - wh(E) + 0(h) kgltc vhe(zk) +c vh3'y(zk) +c wh(zk)) ,

from which the estimate (3.2.19) is derived.
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From this result, it follows :

Theorem 3.2.6 : There exists a constant C , independént: of h , such that for
T3 3 2 ~3 = - 3 - 3 - . .
any (vh,wh),(wh,ﬂh) € Yh and (vh,wh),(wh,eh) € Yh respectively assoc;ated

through the bijection Fh defined in Theorem 2.2.1, we have :

3 .3 ~3 ~3 > 20 32 172,42 2302 (1/2
TNt - 6 )20 < ARG 2 Aol o /2 (3.2.21)
“h
Proof : It is an immediate consequence of the inequality (3.2.1) and of the

estimate (3.2.19).
0

Finally, from theorems 3.2.4 and 3.2.6, we establish the first consistency

error estimate :

Theorem 3.2.7 : There exists constants e°>0 , h°>0 , and C>0.independen§ of h
and ¢ , such that for any ¢ , OSeSeo , for any h , 0<h<ho , and for any pair of
functions (ir’h,w3),(3h,ot31) € ¥, we have for any shell &, satistying (3.2:13)
uniformly on {i. '

(3.2.22)
a2 32 1/2,.4= 240342 +1/2
< o) ARIEAls oY 2 AR IEA0
where Ah["'] is defined by relation (2.3.7).
Proof : It suffices to combine estimates (3.2.18) and (3.2.21) as it was

previously shown. Let us remark that the constant c in (3.2.22) is linearly
dependent of k.
0O

3.3. Existence and uniqueness of a solution for the discrete problem

The abstract error estimate (3.1.2) relies upon the uniform ﬁh-ellipticity
of the bilinear form Ah[(.,.),(.,.)], i.e. the inequality (3.1.1) if we equip

ﬁh with the norm ("zh"%+“wg"g'ﬂ)l/2 for any (Gh,wz) € ﬁh‘ Hereunder, we

establish this property (3.1.1), and we derive the existence and uniqueness

result :

Theorem 3.3.1 : There exists constants el>0 , h1>0 , k°>0 and p>0 , independent

of h and ¢ , such that for any ¢ , Osese, , for any h , O<h<h, , for any

kzko , we have for any shell éiz satisfying (3.2.13) uniformly on @ :
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Bl II-»HI e = AL @), G L VG e e T (3.3.1)

*
Then, there exists a unique solution (-\;h,ni) € ﬁh for the discrete problem
2.3.2 , and consequenlty, the discrete problem 2.3.1 admits a unique solution

2 . ,
(uh,ni) defined through the bijection Fh of Theorem 2.2.1 , 1i.e.
2 -3 -1,% 3
(w. ) = Fp (G amy)

Proof : For any (:r ,wi) ey , we use the decomposition
3
+ (A-h[v ’ h) ( wh)] - a( k" “o Q ’

and by virtue of the uniform V- -ellipticity of the bilinear form a(.,.), i.e.
there exists a constant a>0 , independent of h , such that a(v,v) > a";“_. ,
weV , we get from the estimate (3.2.22) : '

3
AL Gy, G ] = a1 + Klaglly o - catmre) ARG o

By using similar arguments as in (I, Theorem 5.4.1), we can choose a constant
a, . 0<a°sa , independent of ¢ (by working on compact sets). Therefore, we

have :
Ah[<$h,w§>.<3h,w§>1 [min(a k) - C(h+e))(|[v Ilaﬂlwhllo o (3.3.2)

The inequality (3.3.1) arises from (3.3.2) by choosing h and e sufficiently

small, i.e. 0<h<h15h and 0<e<elSe , and by taking for k a value sufficiently

“large", i.e. kzko . For example, let us fix the values of a and ko, then we
min(ao,ko)

would choose : h1+el -—%¢c and the property (3.3.1) is established for

1
ﬂ - 2 min(aopko)

Thus, we derive the existence and uniqueness of the solution (G.:,:;g) for the
discrete problem 2.3.2 (as the bilinear form Ah[(., ),(.,.)] 1is positive

definite over the space ), and, by v1rtue of Theorem 3 3.1, the unique

solution of the discrete problem 2.3.1 is (v.xh r;h) - F (uh "h)

Remark 3.3.1 : To ensure the numerical stability of the method, it is clear
from the previous proof that k should not be taken too small ; at least the

choice k ~ C(hte) should ensure the existence and uniqueness of the solution
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(3;,03) (when min(ao,k) = k), but it would result in a ill-conditionned global
stiffness matrix (k~0) . Nevertheless, as far as the abstract error estimate
depends on the value of k (see theorem 3.1.1), it appears convenient to retgin‘
the smallest admissible values for k, in order to produce only small

perturbations of the strain energy of the shell.

. - 5 3
3.4. Estimate of |£(w) - G [(%,.0,)]]

We give an estimate of the second term of consistency error which appears in

the relation (3.1.2)

1

Theorem 3.4.1 : For any B € (L2(0))3 , there exists a constant C , independent

of h , such that we have for any (;h,0§) € ?h :

leGy - FIEL 1] s andRZAleNE 2 IRl o - (3.6.1)

Proof : By using the correspondence (2.3.6), we obtain for any ( z) € ih and
(w R h) € Yh associated through the bijection F of Theorem 2.2. 1 :

- - - ~ =2
l£@) - ch[(wh,oﬁ)]l s Il - B0l

Ke,h

where
l£w )|1( i Kh( )| = U P(W - h)fd€1d§ | + II P¥y (/a- ‘/Ta;)dsldezl.*
- o+ =
+ 1 B@-0) (fa-ayagtae?]
| 3 (3.4.2)
- 1

= (Maly ¢ (kz1“whk'whk"<2).x) 7%
3

WSl ol + gl 010 -

s N k-l 18 WV, *

From (I, (5.2.15)) and (2.2.6), we get :
- 3 3 .
Vp(6) = ‘21 Ajvg(Z) = ‘):1 Aidﬂﬁwhj(zi) = wg(6) + 0(h) Z 3 w5 (%),

and thus,

Il - hp"o g S Oh( Z Jw klo K) (3.4.3)

From (I, (5.2.32), (5.2.33)), (2.2.6), (2.2.7), we obtain :



3
-~ o -~
“hs(fﬂxj - 1§1 Py § (Vw3(%p) +

3 ~
+ 1€, €] 4 1) + € -ED®) ;5 VTR, L))

3

3 3
- th(f)IKJ + 0(h) ) (cl.‘w k(z.) + c."wh (z ) + ¢} oh(zi))

3
j=1 J bkT1 ] J
an_d thus :

~ 2

N3 Sially g = Chllyglly ell Ml eoll I3 (Aloplly (3.4.4)

Now, by combining the estimates (3.4.3), (3.4.4) with |./_-fa—.h-|o oK ™ o¢h) ,
in (3.4.2) , we deduce :

2 2 2 3,2 1/2
£ Een ol = nlla 5 o M2 b l? Aloddls ARl o

by summation over the triangles K of% , we derive the estimate (3.4.1).
a

3.5. Pseudo-convergence and error estimates

Henceforth, we are able to complete the analysis in the case of quasi-

shallow shells (with small parameter e)

Theorem 3.5. 1 : Let @E be a regular family of triangulations of the domain Q .
Let Wh and Wh be the finite element spaces respectively defined in (2.2.10) and
(2.2.9). If the solution U € V of the continuous problem (I, 2.2.5) belongs to
the space (HZ(Q))2 X H3(0) , if the load ; belongs to the space (L2(0))3 , then
there exists constants el>0 , h1>0 , 0<k°<k1 , and C>0 , independent of ¢ and
h , such that for any ¢ , 0<e<el , for any h , O<h<h1 , for any k , koskskl ,

we have for any shell ge satisfying (3.2.13) uniformly on §i .

-+ =%,

3 2 2 2 1/2
"u “h“-' + “"h"o'n = C(h[("“1"2,04|u2“2_0+"u3"3,0) / + ";"0,0] + ellﬁuv) . (3.5.1)

* :
where (-\;.h.qg) denotes the unique solution of the discrete problem 2.3.2.

~

Proof : Let us denote by nha the interpolation operator in xha , a=1,2 ; we
have for the triangles of type (1) : "uﬂ'nhluﬂul,ﬂ < Chluﬂlz,Q , and for the

reduced H.C.T. triangle (see CIARLET (1978)) : ||u3-11h2u3||“7 < ‘Ch||u3||3'n

Moreover by noticing that q3 = 0 on 1 , and thus nh1"3 =0on @, ve directly

obtain :
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w20 32 (1720 e
L - llslall @™ 71 = la-mly
&, o)ed, , , N (3.5.2)
= Chlluly giuly gusly 777 ‘

where nhﬁ - (H.hlul ,v I'I.hlu2 , l'[h2u3) (indeed, we have (H.hﬁ,O) € ﬁh)

Next, we apply the Theorem 3.1.1, under the assumptions of Theorem 3.3.1 (by
choosing k in the compact set [ko,klj , see remark 3.3.1) ; on the one hand, we

derive from Theorem 3.2.7 :

lam 3,3 + kg n°,00) - A& (@I 0%, G LoD
sup -+ 02 na3u2 1/2
G 0l dhapflzlterlly o)

< C(h L5 (3.5.3)
s cawe)llm

on the other hand, from Theorem 3.4.1 :

- - 3

- SL31p-’ (""; “2_‘_"03"2 )1/2 ‘sch";"o’n ’ (3.5.4)
by combining estimates (3.5.2) to (3.5.4) with (3.1.2), and by noticing that
“ﬂh:;"v < C":"V , We obtain (3.5.1).

Remark 3.5.1 : Let us recall (see (I, remark 6.1.1)) that error estimate
(3.5.1) are composed with two terms : the first one approaches asymptotically
zero, while the second one does not ; at best, in shallow shell theories, the

geometrical parameter ¢ is closed to O.

Otherwise, from the estimate “"31"0 Q- O(h) , it is infered in (3.2.3) that

we obtain :

~ 2 - % v
phaﬁ(uh)IKj - paﬂ(uh)ll(j ta bep[vhu,n ; bvnvh3] x

+ (67 €Dy ¢ () 4pl + OB
o

1,141 ap

3
x ¥ AE )", e ok

4 A TRIANGULAR PLANE FACET ELEMENT METHOD FOR GENERAL SHELLS

Similarly to (I, paragraph 6.3), we derive a new met‘néd which 1is
unconditionnally convergent for arbitrary thin shells. For engineering
computations, the method described hereunder presents the advantage that it
relies only upon the euclidean coordinates of the vertices of the triangular

facets, regardless of an explicit knowledge of the geometry of the shell.
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Indeed, from the estimates (3.2.2), (3.2.3), (3.2.19), and

10 l ro~
e v - v,

ho,r 2 € ho,r + o(h)'f' ’

() L

it follows that we have = O(h)... , where we have

I e N
: |”hap("h""h) - ”a,a("h)lo,x

introduced :

”hap("h""h)lxj = Vh3 a,BlKj

€p Ny 1 N Myl
- i)_le (z; )[(6l+1 61)(pj,i’i+1),aﬂ + (ei-l'ei)(pj,i,i-l),aﬁ] X

v -~ ~3
X &y bhep(vhu,n + eanZ; wh} ’
where bhép is an O(h)-apﬁroximation of beﬁ(ﬁ) (we give an example in section
4.1). Therefore, we are able to find a new discrete method, convergent for
arbitrary thin shells, as soon as we can state an approximation of the type :
‘l Hep T '0 o K- = 0(h) .

: 4.1. Approximation of the curvatures

In tﬁis section, we consider the approximation of the functions beﬂ(f) based
on the isoparametric interpolation of type (2) ; (in this way, we obtain the

estimate [b, ) 0(h)

. bthO,w,K
Remark 4.1.1 : Initially, we have considered an approximation of the curvatures
based on a (generalized) six nodes finite differences scheme, consisting in the
formula :

1 n(2) | j
ﬂ(z) n(z) 2 ahﬂK )( z C ﬁ(2)¢(2 ))

where n(2) is the number of triangles K

3

1 that admit the point X as a common

vertex, and where the coefficients ¢ (X) are the solutions of the linear

hap
system
J
Z “haB ~ o .
. 3. j
on (£ ej)chaﬁ 0 ’ € = 1,2 ’
% ORI GENE RO - 1,2
fo'fj) €o-€j chaﬁ a ﬁ a ﬂ ’ €,n ’ '

4=0
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where we have set Z = (€ 6 ) . If the rank of the linear system is 6, we can

" show an estimate like :

[bygs(E) - bog(® = chlidll; . q -

But, as far as computation work is concerned, this method appears to be
fastidious ; from this point of view, one would prefer the following approach.

o

The "isoparametric interpolation" approach

This more convenient approach give an O(h)-approximation of the curvatures
ba,B on each triangle of %ph Let us consider a second grid, constituted from
the triangulation @Eh by patching four triangles Ki , l<i<4 : a central
triangle Kl with vertices BJ. , 1<j=3 , and the three adjacent triangles l(2 ,

1(3 , l(a , which share with K, a common edge (see figure below). Let us denote

1
by Aj , 1sjs3 , the three remaining vertices of the patch (respectively
attached to the triangle Kj+1) . Thus, it is possible to define an
isoparametric finite element (5{' 8’) of type (2) (see CIARLET (1978,

Theorem 4.3.1)) : given a Lagrange finite element (&,@?,8) in]R , there

exists a one-to-one mapping ‘% such that :

F:xedl + G® =€) , K .
F €2y k=12, S = FE)

P-tp KB o= F b,

&~ w(GFh) . p(FB)) , 1sis3 , p e

: The mapping is uniquely determined by the
Az data : (A = A, . FB) =B, 1sis3 .
—— =
By :

Fig. 4.1.
The reference Lagrange finite element (&' P (5{) 8’) and

its isoparametrically equivalent finite element (9{ 9 9’)

(.1
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For instance, in the case of an isoparametric triangle of type (2), tke

mapping is given by :

GF:xedl & -
3 3 ' (4.1.2)

- 1§1 Ai(g)(ZAi(x)-l)Ai + i§1 4xy 1 (A L (X)By 5
this mapping being invertible as soon as the points Bi are " "close" to
12 (Ai+1+Ai+2) (see . CIARLET (1978, Theorem 4.3.3)), provided that h is small

enough.

Next, we have :

Lemma 4.1.1 : Let 66}1 be a regular triangulation of the domain @ . Then, for
any triangle K of %jh , with vertices Z‘j 1<j<3 , there exists a patch of four
triangles K, of %jh , l<i<4 , containing K , and a set of six vertices

1<j<3 , such that, with. definitions (4.1.1) and

i
(Aj,BJ,lsjs3) , containing Ej )
(4.1.2) , we get :

3
-> - -
Bk = naj- 2 R E) - 1] B +
i=1
3 (4.1.3)
ERRCIRIOUII) gt B
and, for h sufficiently small, we obtain :
IbQﬂ-bhaﬂlo’Q,K < Chll;"B,m,ﬂ (4.1.4)
where C is a positive constant, independent of h .
Proof : On the one hand, we get from (I, (5.2.30), (5.2.31)) :
- - '
By® -2 lg o x = CHAl, o g - (4.1.5)

On the other hand, for any regular triangulation %jh' such that we have :

1 2 .

(therefore, we restrict ourselves to the case of a regular isoparametric family

of crianglesgfof type (2), with respect to CIARLET's definition (1978,
(4.3.27)), it can be shown that (see CIARLET (1978, Theorem 4.3.4)), for h
sufficiently small :

IZ'H&WZ.Q.& < 02(2h)||$||3'9.n , (6.1.7)
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where H& denotes the g-interpolation operator, i.e.

3
néggz op z [ (A () - DI apb B + T 163 G0N L] BBy
! i=1 i=1
which is constant over 55’{ and thus for any triangle Ki , l<i<4 |, that belongs
to & Thus, from the estimates (4.1.5) and (4.1.7), we derive (4.1.4), by

noticing that we have :

Ibaﬂ-bhaﬂlo,w,l( =

= |a;. (¢,aﬂ-n&'$,aﬁ)|](l + |(a3’ah3)lx'3,aﬂikl + I(33'*‘t13)|1<' (z,aﬁ'nggz,aﬂ)l

O

Remark 4.1.2 : The estimate (4.1.7) can be established under the weaker

1+e¢

assumption : IBi-l Oth" ") , for any € , 0<e<l , instead of

PAGTERLIITY
(4.1.6). Indeed, following CIARLET's proof (1978, Theorem 4.3.3), this is
sufficient to state that the mapping % is locally invertible, and estimates
remain unchanged. Otheéwise, from the regularity assumption of the
triangulation @6 , it is conjectured that there exists such an ¢ , 0<e<l , for
any patch of four triangles of @6 , so that the lemma 4.1.1 is available for

any patch in @Eh .
m]

4.2. A new discrete method with numerical integration

Similarly to the presentations of sections 4.3 and 6.3 of part I, and 2.3 of
this part, and taking into the effect of numerical integration, 1let wus

introduce the new discrete problem :

Bk ~%3 2
Problem 4.2.1 : Find (w0 ") € Wh such that

o~ :3*...

o3y] = EEL,5d v@, .50 e W
where we have defined a new approximate bilinear form :

-~ 2 o~ ~ -~ 2

G, G i) = T (g Gy + Ko (60,501 4.2.1)
Ke h

with :
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S
A
L
. Ee ~ = ~ﬂ== "'a*"'ﬂ* - :
Jay (L 0y o= (AWM 00) + vm SV 7 @)1 (b, )+ (4.2.2)
21-1 1" 1-» 1
L
3 2 3 )
Ee ~kg R ~%f = ~%q 2 ~%f 2
+)Y Y oo (— [(Q-v)p, (v, )p, " (w ) + vp,_ (v, )p (W, )]} (b )
= 22_1 22,Ki 12(1-u2) hg' 'h’"ha*"h ha 'h’"hg*"h 122,1(1
with the following expression of the modified change of curvature tensor :
3
~% < ~ €y n n 1 .
phaﬂ<vh)ll(j Vh3,aﬁ|Kj ) izl Ay GO 8Py 1 341) ap * (4.2.3)
e _eMyral v~
€37y 1 5-17 08 Phep®h Vi,
. The expression of bhep is given by (4.1.3) ; Moreover :
sk ~3 =3 ~3~=3
by (@, 6,) = /a_h CH P CCUNILTR (4.2.4)
23=1 3 3 4
and the new approximate linear form is defined by :
L
~k B ~3 - g, ~
G Lol = I Ja L op x(@a) Tgd oy ) +
kely 1 (4.2.5)
L
3 2 D a3 - .
+ .Z Z wz 'K.{(pta-h)-vh3)( 2 ,K.))
i=1 £2-1 2’71 2’71 0

In the expressions (4.2.2), (4.2.4), (4.2.5), we have used three numerical

: L
quadrature schemes, namely fK¢(x)dx ~£§1 wJZ,KqS(b.E,K) , with wl,K - det(BK)wz
and b 4K " FK(B 2) , 1l=<f<L , where FK is an invertible affine mapping which
associates a reference triangle K to the triangle K i.e.
2

- - - - 2 2
FK : X €K~ EK(x) = BKx + bK €K , BK G%GR JRTY , bK € R™ . Subsequently, we
will denote by Ei(')’ 1<i<3 , the error functional associated with each

numerical quadrature scheme.

Now, using the bijection Fh defined in Theorem 2.2.1, it is possible to

associate to problem 4.2.1, an equivalent discrete problem formulated on the

continuous middle surface, i.e.
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Problem 4.2.2 : Find (u.h ’"h ) € Wh such that

%%k k3

AT ), @] = Gl @], VE e e B

with the following correspondences :

ALy, (0] = B G5, G BT

(4.2.6)
* 3 ~k 2 ~3
Gh[ (Vh’wh)] - Gh[(vh’wh)] ’
- 3 2 ~3 - .3 2 =3
for any (vh,wh) - Fh(vh,wh) , and any (wh,oh) - Fh(wh,ah)
]

4.3. Convergence and error estimates

From the study developped in paragraph 3, we establish the convergence of
the discrete method described in section 4.2, for general shells :

lTheorem 4.3. 1 : Let 66 be a regular family of triangulations of the domain 11 .
Let Wh and Wh be the fmite element spaces respectively defined in (2.2.10) and
(2.2.9). Assume that the numerical integration schemes in (4.2.2), (4.2.4),
(4.2.5), satisfy :

V$ € PO(R) , f:l(&) = 0 (for membrane terms) |,
vé € p2(1‘<) , Ez(a) = 0 (for bending terms) |, (4.3.1)
V$ € Po(f() . ﬁ:3($) = 0 (for drilling rotations)

Then, if the solution u € V of the continuous problem 2.1.1 belongs to the
space (1-12(0))2 X H3(0) , if the loads ; belongs to the space (wl'q(n))3 .
qe€R, @2 , there exists constants 0<ko<k , h,>0 , such that for any k ,

1 1
koslekl , for any h<hl ,

(1) the discrete problem (4.2.2) (respectively 4.2.1) has one and only one
Tuti %% %3 % Lk ~%3 r‘-; .
solution (v, ,n ") € h (¥esp. (u ,n ") € W

(11) there exists a positive constant C , independent of h , such that :

it VA 2 1/2 2 2 2 1/2
Q-5 1 92 5 cntdioglly 2 il Y2 4 IRl o) - 632

Proof : This proof follows exactly the lines of the proof of theorem 3.5.1. The
interpolation error estimate (3.5.3) is still available here. Next, by noticing
that we have :
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' 3
~x 2 = 2 €u n n
phmgwh)IKj - paﬁ(vh)'l(j +i§1 NI (PR S ><pJ 1,141 a8 *
" e pt b ae [z w 4.3.3
+ (61-1 €i.)(Pj,:I.,:'L-l),azﬁ] epa eur] a “y + (4.3.3)

3
2 3
v o) X ‘°j a0 G0 * apne 2 E * Sag¥hs, en i * Sjagh &)

(by virtue of the theorem 3.2.2, the lemma 4.1.1 and the definition (4.2.3)),

we derive the estimate (in a similar manner as in theorem 3.2.3)

2, C, (hte)flw

nallo g (4-3.4)

'pﬂ( )- phﬁ( )Io K = Clhl(" 1"1 K+" 2"1 K+" 3“2 K

where C1 and C2 are two constants, independent of h, and € = sup Ib (§)|
éek
Otherwise, as far as the effect of numerical integration is considered, we

obtain similar results as in theorems 5 2.5 to 5.2.7 of part I, i.e.
*
" "h C" " " "0 K= C" "0 K’ IEKM( h’ h)l" 0(h) , IE h’ h)l- 0(h) and

KR(w ) h)| 0(h) , with obvious notations. Henceforth, as soon as

€

q = Sup |bep(e)l < 4o , it can be proved that :

getl
- - 3 3 * - 3 - 3
1 2 o
< SRR 02 dR A2 V2 + ¢ el oo 193060

where C3 and C4 denotes two positive constants, independent of h. Then, by
using the uniform V-ellipticity of the bilinear form a(.,.) (see the proof of

theorem 3.3.1) we have on the one hand :

* o 3
ALl G ap), By o] 2 [minge, %)-c 0] II_.HI ll0 @+ 5 cegllla II0 Q-
k
and thus, by taking kn = ZCA‘n and h.| - min(a,-,)g)/zc,{ , we obtain for any kzkc
and for any h<h1 :
- 3 - -
B AR5 0 s alGad, Gadl L vE e e B (4.3.6)

k_ _
. .9 ’\* —_— - - - - - . . - - . - -
with §° = 3 min(a,— > 2y . Firstly, t:ne inequality (4.3.6) involves the existence

and uniqueness of the solution (uh N h) € Wh of the discrete problem 4.2.2,

and, through the bijection Fh defined in theorem 2.2.1, the existence and

2k~ =2
uniqueness of the solution (u:,n;3) € Wh of the discrete problem 4.2.1.

Secondly, it allows us to obtain an abstract error estimate of the type

(3.1.2). On the other hand, the estimate (4.3.5) leads to the first consistency
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