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Résumé :

Nous présentons dans ce rapport une nouvelle sémantique formelle opérationnelle adaptée 2
la description des dialectes PROLOG "déterministes” (de type PROLOG Marseille ou Edinbourgh).
En particulier, cette sémantique peut étre utilisée pour décrire completement le futur PROLOG
standard.

Cette sémantique consiste en un interpréteur abstrait écrit en PROLOG "pur" (avec
négation) dont la sémantique est purement déclarative. On peut donc comprendre l'interpréteur sans
se référer a aucun dialecte particulier. Bien que fondée sur PROLOG, cette sémantique ne se mord
pas la queue. La spécification obtenue n'est pas directement exécutable.

Son avantage principal réside dans le fait qu'elle est compréhensible par toute personne qui
connait au moins un dialecte et qu'elle satisfait les critéres d'une bonne spécification formelle
(abstraction, simplicité, vérifiable, utilisable pour construire des outils de validation, en particulier
obtenir une spécification exécutable).

Mots clés :

Programmation en Logique, Spécification Formelle, Sémantique Opérationnelle,
Sémantique de PROLOG, Standardisation de PROLOG.
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Abstract :

We present in that report a new formal (operational) semantics well adapted to describe
PROLOG's deterministic dialects (Marseille-Edinburgh-like dialects). In particular it could be used
in the standardization work of PROLOG.

This semantics is based on an abstract interpreter written in a "pure” PROLOG style (with
negation) whose semantics is itself essentially declarative. Thus it can be understood without any
reference to any particular dialect, since the negation is treated declaratively (This point will not be
developped completely inside this paper). Such a semantics although written in PROLOG, does not
depend on itself. It is not an executable specification.

One of its advantages is to be readable without backgrounds by users of a PROLOG dialect. It
satisfies also the criteria of a good formal specification of a programming language:

To be of a very high level, but as simple and understandable as possible.

To be able to describe a large variety of dialects.

To describe with the same formalism the whole language.

To be able to be certified, using validation methods.

- To make easy the production of validation tools, in particular of a runnable

specification.

Keywords :

Logic programming, Formal Specifications, Operational Semantics, PROLOG Semantics,
PROLOG Standardization.
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1) Intr ion:

We present in this paper a new formal (operational) semantics well adapted to describe
PROLOG's deterministic dialects (Marseille-Edinburgh-like dialects [Col 82, PWB 84)). In
particular it is used in the standardization work of PROLOG [DF 86b].
This semantics is based on an abstract interpreter written in a "pure” PROLOG style (with
negation) whose semantics is itself essentially declarative. Thus it can be understood without any
reference to any particular dialect, since the negation is treated declaratively . Such a semantics
although written in a PROLOG syntax, does not depend on itself. Although it is known from the
folklore that logic programming can be used as a specification language, it is rarely realized in
most of the attempts to use logic programming to specify languages, systems or known PROLOG
dialects. Most of the realizations use some unspecified feature (built-in predicate, cut or
negation by failure, implicit interpretation strategy), because they are more devoted to simulate
an interpreter rather than to specify it. Thus this "PROLOG" semantics is new because of the
following points :

- It is completely declarative  and formal. o

- It has a simple syntax contained in all prolog dialects. However it does not depend oh
itself. To overcome this difficulty, one uses the notions of relative denotation and d_e_QLa_amLe
semantics of the negation. For these reasons it is not an executable specification.

- It is of higher level than all the others expressed in logic programming style: It uses the
search-tree as semantical data.

One of its advantages is that it is readable without major difficulties by users of a PROLOG
dialect. It satisfies also the criteria of a good formal specification of a programming language:

- To be of a very high level, but as simple and understandable as possible.

- To be able to describe a large variety of dialects, with the same level of abstraction.
- To describe with the same formalism the whole language.

- To be able to be certified, using validation methods.

- To make easy the production of validation tools of the language implementations.

These points will be discussed in the last section.

This semantics is also interesting because it illustrates the power of logic programming to mal(é
specifications. It seems to us that logic programming is generally considered as “impure"
executable specification. Our purpose is to show that logic programming may also be used as a
perhaps low level but full specification language. Work is actually in progress to apply this idea
to the whole project of PROLOG standard [DR 87].

The report is organized as follows: section 2 defines the semantics of PROLOG dialects using the
notion of search-tree. Section 3 introduces the formal specification language and its semantics.
This section has been expanded in order to give some hints on the declarative negation used in the
formal definition language. A new section 4 has been added showing the methodology used to make
the specification as clear as possible. The basic aspects of the methodology are related to S|mple
pfOOI schemes of correciness and complelness of the specmcauon and introduce ihe notion Ol
partially formalized comments. In section 5 the data structure representation used in the formal
specification is detailed. Section 6 gives a sample of the formal definition for a piece of PROLOG
with cut and geler (freeze). A discussion will be presented in section 7.



2) Semantics of PROLOG dialects :the visited-search-tree

Most of the basic concepts are known. They are:

- denotation of a logic program [Fer 85].

- proof tree [Cla 79, DM 85].

- unification [Rob 65].

- search tree [Cla 79, AVE 82, Llo 84].
Their presentation however has been modified in order to make them independent of their
historical origin, as proofs by refutation, and to fit exactly with concepts that users of an
interactive prolog interpreter may observe (proof tree, answer substitution). Moreover, they
permit to simplify the presentation of the logic programming formalism used in the formal
definition.

a)Ableacl_sxmax:‘

This syntax is sufficient to describe the (abstract) syntax of most common PROLOG dialects. It is
as follows:
- Terms (untyped). Variable symbols are concretely distinguished from other symbols by
beginning with a capital letter. Note that terms may be built with predicate symbols.
- Atoms (atomic formulae) built with predicate symbols and terms. A literal is a positive or
negative atom (denoted “not a”).
- Clauses a, < ay,..., @, where a, is the head : an atom, and a,, ..., a, the body : a list of

literals (the order of the litterals in the body is significant). true is the empty body.

- Program : list of clauses (significant order) regrouped into packets.
- Goals are restricted to one literal without loss of generality.

b) Constructive semantics (proof-tree):

The constructive semantics formalizes the notion of proof using the so called proof-trees (also in
[Cla 79]). A proof-tree is a finite tree whose nodes are labeled by atoms (or literals in the case
of the negation), the root is an instance of a goal, all leaves are labeled by true and all the
elementary subtrees are instances of a clause.

Such a tree is the representation of a proof of its root (atomic theorem), using the clause as
implications.

Example : Py={ plus (0, X, X) <
plus (sX, Y, sZ) < plus (X, Y, 2Z) }

Proof tree :  plus (so, X, sX) (proof of ¥V x plus (so, x, sx))
I
plus (0,X, X)
I
frue

The constructive semantics of a program P is the set of all the proof-tree roots. It is declarative
and denoted DEN(P), i.e. the denotation of P.

Example :
DEN(Py) = {plus(so,t,s")|n=0, tterm}
c) Logi ics of ic progr

The logical semantics of a logic program P (without negation) is the set of all jts atomic logical



consequences. This approach is different from the usual one's [AvE 82, Gal 86, Llo 84] which
use the Herbrand model. It has been justified in [Fer 85, DF 86a], but some properties of this
semantics have been studied in [Cla 79, Fer 85]. They are :
- It is exactly the set of the proof tree roots, i.e. DEN(P) (completness results) [Fer 85, DF
86a]
- DEN(P) is also a model of P (also the least in the termal interpretations).
- DEN(P) is closed under substitutions.
- Given a goal b, a PROLOG interpreter builds answer substitutions o such that ob ¢
DEN(P).
Example:

Answer substitutions for P4 and goals :

plus (so, X, Y) ? o ={Y «sX}
plus (X, Y, s0) ? o0y ={X&0,Y « so}

0p ={X¢&50,Y¢0}

d) Non deterministic operafional semantics (search tree) : (procedural semantics in [Cla79))

The answer substitutions are constructed by deriving from a given goal a proof-tree in a top
down manner. The construction uses some unification algorithm [Rob 65] and takes advantages of
the properties of the unifiers (unique most general unifier- MGU).

We recall here the non deterministic algorithm deriving the proof-trees.

b : goal

P : program

T : proof-tree

T:=b;

while there exists a leaf not labeled by frue in the tree T
do choose | some leaf different from trye ;

choose c:ao « al,..., an some clause with variables renamed differently from those
appearing in T ;

c:=MGU(I,aO) ;
T:=cTlo!l Gao ]
o'a1 O'an

The non deterministic operational semantics is complete. it means that for each o such that ob e
DEN(P), ob is an instance of the root of some proof-tree obtained by this construction.

Search-tree (also as SLD-tree in [AVE 82, Llo 84])

The non determinism of ihis aigorithm comes from two points :

- non determinism of type | : choice of a leaf ("computation rule" in [Llo 84]). We refer to
the L-strateqy or |-choice function.

- hon determinism of type ¢ : choice of a clause. We refer to the c-strateqy or ¢-choice
function.



The "standard |-strategy" consists in fixing the first choice by building the proof-tree choosing
the first left-most leaf different from true.

Given a program P, a goal b, and a deterministic I-strategy (choice of the leaves in the proof
trees), we can associate to P a unique search-tree in the following way :

- each node is labeled by a list of literals (empty list = frue),one of them being distinguished
(chosen) by the I-choice function.

- from each node as many arrows are issued as there are heads of clauses in P which can be
unified with its chosen atom.

- if N=by,...b;, ..., b, is the node, b; being the distinguished literal, and there are q clauses
in P whose head is unifiable with b;, presented in the order [1..q], noted a < C, 1<j<q,
then the node N has q sons Ny, ..., Nj, Nq such that :

N; =success if N =b, b and g unifiable, ¢ = true
Nj =o(by, ..., C, .., by), 0 = MGU (b, aj) otherwise.

Now to represent the search-tree we introduce an arbitrary order between the sons which
corresponds to the order in which the clauses are organized in P. This representation is called

the standard-search-tree (SST).
Example :

Given the program P,

4

1T piX,Y) & qX),r(y)
2 p(X,Y) s(X)

3 q(qy)
4 q(q,)
5 r(rqy)
6 r(rp)
7 s(sq)
8 s(s,) «=

with the standard I-strategy and the goal p(X, Y), the SST is the following (the chosen atoms are
underlined and the substitutions are associated to the arrows) :

LU N N |



N

r(Y)

{y\g} {X(—y Yesz}
{YV Yj} {Y:/ Yf}

ir1

It describes in particular the set of answer substitutions but not the order in which they are
obtained. For example the set is the following :

{ X 6.,9.% % S, 52}

K

Y r1,r2,l’1,l'2. ’

(The order on the sons is introduced here only for representation purposes).

The search-tree describes all the ways to build all the proof-trees, after giving a I-strategy. A
search-tree can be infinite. To any partial finite path issued from the root in the search-tree
there corresponds a partial proof-tree. The proof-tree corresponding to a path whose leaf is

labeled by success is a complete one.

e) Deterministic_operational semantics:

Given a search-tree, fixing the c-strategy consists in giving an (possibly partial) order of
tree-walk. The tree-walk defines the order in which the answer substitutions are obtained. The
search-tree with ns order is called the W (VST)

mmmmmumum Th|s semantncs is sufflment to take into account

definite Horn clause programs.

The standard c-strategy consists in a depth-first left to right visit of the standard search-tree
(Thus the VST is the SST with the depth-first left to right order on its nodes).

This semantics is particularly well suited to explain the effects of control features like "cut"
(dynamic modification of the tree) and delaying primitives (non standard |-choice) [DF 86a,b].
Because the search-tree can have infinite paths, the operational semantics of most of the dialects
cannot be described by a single VST, but rather by a (possibly infinite) set of partial VST
corresponding to some significant steps of walk. Thus the semantics of a logic program will be
the set of partial VST obtained following the "constructive" visit order. Now it should be clear

that various semantics could be defined depending on the selected set of partial search-trees
representing the semantics.



Remark that this semantics is especially interesting in the following limit cases: if the
search-trees are always finite, then the semantics may contain the unique finite VST and it is
sufficient to describe the whole semantics of the program (with its goal). On the other hand, if
the search-tree is infinite without finite success branches then all partial finite search-trees
must be in the semantics.

In the sequel a specific semantics will be chosen.

With the standard strategy the semantics of the program P, can be represented by the unique

finite VST of figure 1 in which the visit order corresponds to a depth first left to right visit. Now
we consider the following modified program : '

Pagi1:p (X, Y) & q(X),Lr(Y) (ntroduction of cut)
then the new VST is the same but some branches are not visited and can be omitted as in figure 2.

1-p(XY)
2-g XLl r(Y)
{Xe q)
not visited or ’
3 -1, rY) “cut” subtrees :
o
4 - r(Y)
{Yey er}
5 -success 6 -success

Thus the expected substitutions are :

X ,
< %9
Y q . r2
in that order.

The semantics of the cut is clearly defined on the VST by the following : all its branches which
are not yet visited and are on the path from the chosen cut to the parent of the node where it
appears first remain undeveloped. We illustrate this point by recalling the non-developed
branches in the VST by '

N (Figure 2).



f) Ihe visited-search-tree as semantical objet :

It should be clear that the visited-search-tree is well-suited to describe the semantics of a
prolog dialect. First of all it is a mathematical objet, representing all the computations, which is
associated to a program of a dialect and a goal. In that sense it can be viewed as the denotation of a
program and a goal.

From a practical point of view it is a relatively wellknown object since most of the non standard
strategies, and especially c-strategies, are well illustrated on the search-tree (“vertical” or
“horizontal” strategies for example, infinite branches eliminations, negation as failure ...).

However one can object that it is not a very abstract object since it uses the same syntax as the
analysed program and it cannot be practically obtained without “running” the program.
Consequently few properties can be formally proven with such an object.

Our feeling is different. The properties we want to establish are relatively simple : in general by
considering non-standard dialects we want to take into account operational properties and thus in
most cases if two search-trees are different, then the semantics of the corresponding programs
with goals are effectively different. In other terms two programs (with goals) are equivalent if
and only if they have the same visited search-tree. Thus we can expect that a clear description of
the effect of every primitive of a dialect on the visited-search-tree will be sufficient to
understand the semantics of a program with its goal.

It is also clear that this kind of program equivalence is too strong. In some cases we are
interested only in considering that two logic programs are equivalent if and only if they produce
the same set of answer substitutions in the same order.

At the moment no formal proof methods have been developed using the visited search-tree.
However the known properties of the search-tree come as a positive and hopeful argument since
the set of the computed answer substitutions does not depend on the I-strategy (switching lemma
in [Llo 84], [DF 87] ) and thus on the search-tree representation. Thus it appears that a lot of
useful properties concerning the computed answer substitutions will be relatively easy to
establish by considering the search-trees.

We illustrate and achieve this presentation by giving two examples :
Examples :
Consider now the program P, with a non-standard control primitive : a “geler” (freeze)
primitive
Ps 11 :pX. Y) = geler(X, q(X)), r(Y)

The expected semantics of “geler” is the following : this atom is selected if the variable in its
first argument is instantiated, the standard I-strategy is used otherwise.

Thus the semantics of “geler” can be well described by fixing the I-choice function. This gives
the VST of figure 3.



/\

2 - geler(X, g, X)), LLY)
Yer) Vgl Xes) X s}

3 - geler(X g (X)) 4 - geler(X, q (X)) 6 -success 7 -sucgess

Eigure 3
Nodes 3 and 4 correspond to failure node as no literal can be chosen, since “geler” has not been
unfrozen. It is easy to see also that with the clause :
1': p(X, Y) « geler(X, q(X)), r(Y), !
no answer substitution will be obtained.

Another application is to consider the semantics of the disjunction as ( ; is treated as a
predicate)

(A;B)e A
(A;B)< B

Thus the program P53 can be written as :

Ps: 1. p(X,Y) < ((a(X), 1, r(Y)) ; s(X))
1. pXY) <
2. q(X) = (X=qq;X=qp)
3. rX) e X=ry:X=1rp)
4. s(X) e (X=8;:X=8p)
5, X=X &

which is equivalent to P5 in the sense of the list of the answer-substitution. in fact it is easy to
depict its VST (figure 4).




L, ny)

L(Y)
{Yey er }
Success SUCCESS

in this semantics the cut “goes through” the disjunction, i.e. it “cuts” the choices of the parent
of the body in which it appears. The program produces the same answer substitutions because the
“predicate variables” A; and B; do not mixt with “term variables” X and Y.

3) Semanti f the formal ification lan

The formal specification language is a very simple logic programming dialect which we describe
now together with its semantics.

a) Abstract syntax :

As in section 2-a, but the order of the clauses in the packets as well as the order of the literals
in the body of the clauses is irrelevant. Function and predicate symbols are disjoint sets.

b) Belative denotation :

The notion of denotation is sufficient to describe the semantics, but to deal with the PROLOG
dialects which contain built-in predicates, an extended notion of denotation is needed: the relative
denotation [Fer 85].

Given a set E of atoms, we denote E the set of clauses {A < |A e E}. The denotation of the logic
program P relative to E, denoted DEN(PIE) is the denotation DEN(P u E) of the logic program
PUE.

For example consider a predicate N-plus(X, Y, Z) which satisfies Z = X+Y (on natural integers

10.



N). E contains all the clauses like :
N-plus(X, Y, Z)
for all X, Y, Z integers such that Z = X+Y.
The logical semantics of a logic program P using this predicate (not defined in P) is exactly
DEN(P|E) = DEN(P u E).
The relative denotation is reserved to very simple and known domains like integers, reals, lists
for which a formal definition in Horn clause style would be unnecessarily complicated.

c) Proof-tr ith negati

In the formal definition we want to avoid the use of control features -like the cut- which can be
only understood by reference to some interpretation strategy. But in order to preserve a good
expressiveness of the formal specification language we will make use of the negation which may
be nicely understood declaratively (consider for example what should be a specification of "not
integer"). Various logical semantics can be given to logic programs with negation [Llo 84, Del
86]. No one is satisfactory from the declarative point of view, especially for logic programs with
negation.

We have chosen a notion of negation which has a clear declarative semantics. This semantics is
based on a generalization of the notion of proof tree (the proof-tree is a declarative notion,
unlike the construction of a proof tree). In [DF 87a], [Fer 86] declarative and operational
semantics of Logic Programming with such a negation are studied, and the links between this kind
of negation and the usual implementation of the negation in Prolog are completely developed.
(This negation is also compared with the theory based on the completion of a program [Llo 84]).
In particular this negation is compatible with what is considered as a “safe use” of the negation
in Prolog [Llo 84]). This shows that the negation used inside the specification will permit to
transform it into a runnable specification without major difficulties.

Now we describe the main lines of the foundations of this negation.
The idea is the following :

(In a proof tree we can see clauses as inference rules. So remark the similarity of this idea with
the ideas of Closed World Assumption and Negation as failure).

In general this first idea is inconsistent (take the clause p < not p, so p is a proof tree root iff p
is not a proof tree root ! But we consider only a class of programs, for which such a notion of
proof tree with negation is founded. It is a generalization of the stratified programs of [ABW 86].

This class, the “finitely founded programs”, seems large enough for Logic Programming practice
(discussion of this point in [DF 87a]).

Intuitively, in a finitely founded program, a predicate cannot be defined by its own negation. The
idea is to rule out “vicious circle” by dividing the atoms into levels. The precise definition is in
[DF 87a). For example, let us consider

a<b, note
which is an instance of a clause of the program.
Then we have

level(b) < level(a)

level(c) < level(a)
We denote by NEG(P) the set of all the negative literal “not a" such that no instance of “a” is the
root of a proof-tree. So in a proof-tree, the negative leaves which are allowed are the elements
of NEG(P).

11



Example : the following program P is finitely founded.
X=X &
goal(X) «notX=a,X=b
not(b = a) is in NEG(P)
and here is a proof-tree :
goal(b)

/\

notb=a b=b

true

Remark : if we quit our declarative framework, it is well known that, with the goal “goal(X)"
and a standard interpreter, we have a failure. However this does not prevent the proof-tree from
existing | It is only an illustration of an “unsafe use” of the negation of Prolog ([Llo 84}).

d)

The constructive semantics of a program P is the set of all the proof-tree roots with negation :
we call it the denotation of P : DEN(P). It is a declarative semantics, which is a generalization of
the case where P is without negation. Note that a negative literal “not a” is in NEG(P) iff no
instance of “a” is in DEN(P).

From a logical point of view, when P is without negation, we have seen in 2)b) that DEN(P)
plays two roles at once : it is a set of logical consequences and it is an interpretation. Many
important properties of this logical semantics can be extended to the general case (P finitely
founded). However the set of axioms which defines this logical semantics is not P itself anymore.
In fact, there are axioms which depend on NEG, but this logical semantics cannot always be
defined by a recursively enumerable set of axioms. These problems are studied in [DF 87a].

So there is a logical semantics which is equivalent to the constructive semantics, but the more

important aspect is the constructive one. It gives to the negation a declarative meaning which is
clear and easy to use. Let us illustrate this with examples.

Examples : we describe the graph

parent(a, b) =
parent(a, c¢) =
andwe add :
has-a-child(X) <« parent(X, Y)
leaf(X) = not has-a-child(X)

Let Py be this new program. not(has-a-child(b)) is in NEG(P,), and here is a proof-tree :

12



leaf(b)

not has-a-child(b)

So leaf(b) is in DEN(P,).
Now, let P, be the program. ‘

parent(a, b) =
parent(a, c) =
leaf(X) & not parent(X, Y)

not(parent(a, a)) is in NEG(P,),and here is a proof-tree :

leaf(a)

not parent(a, a)

So leaf(a) is in DEN(P,) !

Hence this last program P, is not correct (in an obvious sense, w.r.t. the graph).

These two examples show how the proof-tree with negation is a useful tool to understand the
declarative meaning of the negation.

Bemark : if we quit our declarative framework, a standard interpreter does not compute this last
tree. It is because the interpreter makes here an “unsafe use” of the negation of Prolog
(variable Y). Our notion of negation permits the distinction between declarative and operational

points of views, and in particular it clarifies correctness questions.

13



4 E I ificati Jesian :
a) Principles:

The design of a good formal specification seems in general to be a kind of art. It seems that
nothing can be formalized to describe what can be denoted as the clarity of the specification.
Nevertheless we can point out the following qualities:

o) The specification should not describe what should not be specified, For example if we do not

want to specify the representation of the substitutions, we try to design the specification without
giving any representation of it. In fact it would be difficult, if doing so, to ensure that no specific
property of the substitutions would be implicitly included in the specification and thus could be
used later on by some implementer as part of the specification. One way to avoid such drawbacks
is to avoid as much as possible to represent what is not needed to understand the semantics. One
advantage is the reduction of the size of the specification by decreasing the number of used
concepts and data structures.

In our specification this reduction is obtained also by using the notion of relative denotation,
which avoids to give an explicit representation of some operations like unification, variable
renaming, arithmetic operations ...

On the other hand this increases the gap between the formal specification and the runnable
specification. But it should be clear that a runnable specification, even if completely formal,
will contain a number of unnecessary details as mentionned above since some choices of
representation have to be included.

B) Ihe specification should be easy fo read. It comes as an evidence that giving the specification

by clauses (even limited to Horn clauses with "simple negation") is not sufficient to guarantee
the simplicity of the specification. Something more has to be clearly understandable by the
reader. We can qualify it by the properties the written axioms have to satisfy. The questions are:
on one hand, are the axioms correct in the sense that what they specify are desired

transformations of the search-tree. This can be denoted as the correctness of the specification.

On the other hand, do we write enough axioms to specify the semantics of all the desired

programs ? This can be denoted as the completeness of the specification.

It seems to us that if the reader is in the best conditions to understand that the specification is
correct (this means that he understands which are the transformations) and that it is complete
(he understands that the transformations are completely defined), he will get a good
understanding of the transformations and thus of the whole specification.

Our conclusion is the following: the design of the specification is basically guided by the

mﬂaﬂm:;ammﬂtmad_mmmﬂm of the specification. It comes as an

evidence that easier to imagine is the proof, simpler to understand is the specification.

Now the design of the specification will be organized such that the proofs are easy to perform: we
will see that the order of the literals in the body of the clauses follows the order in which the
correctness proof is performed, and the order of presentation of the clauses follows the order in
which the completeness proof is easier to perform.

Moreover, to help the reader, we give him the assertions (or in order not to overload the
specification an abstract of them) used to perform the proofs. Thus the specification is no more

limited to the clauses but to the clauses plus the assertions.

It has to be clear that the assertions are not part of the formal specification, since they are not
completely formalized. They are used only as comments to help the reader to understand the
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axioms. But these assertions are written following a rigorous methodology which consists in
using these assertions to perform the correctness and completeness proofs.

One aspect of the design of the specification is to restrict the kind of assertion to relatively
simple ones and the kind of proof using a very simple proof scheme. We can say that sometimes
the simplicity of the proof will be viewed as more important than the simplicity of the axioms,
if this seems to improve the readability of the specification. Sometimes the axioms will be
written with redundancies using negation to point out clearly the considered cases. This way
appears as a heavy style from the "executable specification" point of view. But it helps indeed to
improve the readability of the specification by facilitating the completeness proof.

It must be noted that this attitude is permitted by the language of formal specification in which
such a methodology can be developed. We present here briefly this methodology.

b) Methodology:
o) The axioms:
The axioms have to be easily understandable. With axioms without negative literals there is no
difficulty: they are universally quantified definite Horn clauses and they have a logical and

equivalently constructive meaning as recalled in section 2.b.

We need to consider more carefully the intended meaning of the axioms with negation. As noticed
in section 3.c, the axiom ,

not parent(X,Y) = leaf(X) (1)
should be considered with universal quantification:

vX,Y(not parent(X,Y) = leaf(X))
o vX((3Y not parent(X,Y)) = leaf(X)) (1)

This is clearly not the desired meaning. We wanted to axiomatize

VX((VY not parent(X,Y)) = leaf(X)) (2)
(or VX((not 3Y parent(X,Y)) = leaf(X))
or X is a leaf if X has no son).

Thus, as shown in section 3.d, in order to formalize this idea with universally quantified clauses,
we need to write:

vX(not has_a_child(X) = leaf(X)) (3)

vX,Y(parent(X,Y) = has_a_child(X))
Hence there is no ambiguity now.
As it comes also as an evidence that it could be easy to write down axiom (1) when thinking to
axiom (2), we need a simple rule to enforce to write (3) if the meaning is (2) and (1) if the
meaning is (1').
On one side we can observe inat if we consider instances of the axicms in which the negative

literals are ground there is no ambiguity since the lack of variables renders quantification
meaningless ( not 3..parent(...) or not V..parent(...)).
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On the other side we observe also that we are. not interested in every proof-tree (of the
specification), since the root of every meaningful proof-tree will have the form:

semantics(P,G,T)

where P and G are ground terms (the abstract terms for a program and a goal are ground terms
from the specification point of view).

Hence if we are able to prove that every proof-tree whose root satisfies P,G ground can be built
with instances of clauses in which the negative literals are ground, we are in condition to read
the axioms easily, since no confusion about quantification of negative literal may arise.

From the reader point of view all things are simplified if the proof of negative literals closure is
easy to perform and if this fact comes as an evidence consequently. The correctness proof method
will include such a proof.

B) Comments:

The comments are assertions written in natural language style attached to every predicate. For
example to 'semantics’ it could be attached the following "assertion™:

semantics(P,G,T) then jf P is a program and G a goal then T is a tree representing the partial
search-tree obtained after a finite number of constructive steps starting with P,G.

The following points should be noted:

- The first part (before the first 'then’) have to be read: 'if semantics(P,G,T) is a proof-tree
root'. This justifies the 'then' and shows that the assertion is a correctness assertion, i.e.
satisfied by every proof-tree root (in the formal specification language).

- The assertion has the form:

A(P,G) = B(P,G,T)
where A(P,G) describes the type of the arguments and contains implicitly a closure condition of
P and G (since P,G are interpreted as abstract terms of the described dialect).

- The completeness of the semantics is guaranteed if it is possible to show that for every P
program, G goal and every partial search-tree T which corresponds to a finite number of
constructive steps starting with P,G, there exists at least a proof-tree (built with clauses of the
specification) whose root is semantics(P,G,T). Thus in the assertion there is also a
completeness assertion: it is A(P,G) and B(P,G,T) meaning that if this condition is satisfied we
can ensure the existence of a proof-tree whose root is semantics(P,G,T).

Now we give the general form of the comments.
Let p be a predicate.

We say that p is correct w.r.t. the assertion S if, in all the atoms p(...) of DEN (i.e. p(...) is a
proof-tree root), the arguments verify S.

We say that p is complete w.r.t. the assertion C if all the atoms p(...) whose arguments verify C
are in DEN.,

Here we are only concerned about assertions with a particular form:
(x,y denote a partition of the arguments of p)
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P correct w.r.t.

(S) if ground(x) and A(x) then ground(y) and B(x.y)
p QQIJJDJ_Q_IQ w.r.t.

(C) ground(x) and ground(y) and A(x) and B(x.y)

This is expressed by the designer by the following information specified in the comments which
by the way privileges the correction aspect, but permits to distinguish which variables are
supposed to be ground, which of them are not

P(x.y) then if A(x) then B(x,y).
(if there is no A it is thus possible to write the comments : p(x.y) iff B(x,y) ).

These assertions are proven using a method which is simple enough to be intuitively followed. It
is out of the scope of this presentation to justify the method. We will only show in an example
how a proof can be performed and thus how a reader can get some confidence about the
correctness and completeness of axioms.

However, because of the negation it is useful to mention another point: we say that

not p is correct w.r.t. §'if, in all the literals not p(...) of NEG, the arguments verify S'.

not p is _complete w.r.t. C* if all the literals not p(...) whose arguments verify C' are in NEG.
Now, we have the following properties: (read (S) and (C) as above)

If p is correct w.r.t. (S) then not p is complete w.r.t.:
ground(x) and ground(y) and A(x) and not B(x,y)

If p is complete w.r.t. (C) then not p is correct w.r.t.:
if (ground(x) and ground(y) and A(x)) then not B(x,y)

Correctness (completeness) proofs use correctness (completeness) of some not p, and so use
completenes (correctness) results. There is no contradiction because of the stratification of the
program (section 3.c). In order to use correctness of not p, the proof needs to verify the
condition ground(x) and ground(y) and A(x). In this verification, ground(x) and ground(y)
correspond to the fact that in proof-trees negative leaves are ground.

Sometimes in clauses with a negative literal the valid assertion not B is not the most convenient
one to follow up the proof of correctness. It is possible to help the reader by giving an assertion
not B' such that B' is stronger than B and which is not necessarily easy to find. Thus it could be
formulated as the comment : not p(x, y) then not B'.

y) The proof method:

The proof method consists in three steps:

- correctness, proven in every clause

- completeness, proven in every packet and clause
- stratification, proven on the whole specification.
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One element of the simplicity of the method is its modularity. Main properties are proven inside
the clauses, or considering the heads of a packet without looking at other parts of the program.
This is possible because of the given comments which contain all the needed assertions to
perform the proofs locally. This is exactly what we want: to be able to get the results by looking
only at the clauses or at most the packets. The stratification can be automatically verified and is
guaranteed by the designer.

Correctness proof:

In every clause Pol) = aq(h@r() (ag = Pk Or gyx= not py)
let if P then Q, be the correctness assertion attached to Po (denoted by S above) and let if Pk
then Qy be the correctness assertions attached to the gy
(if i is positive, Py = ground(x) and A(x), Q¢ = ground(y,) and B(xk,Yk).

if qi is negative, P, = ground(x) and ground(yy) and A(x). Qi = not B(xy.yk) )

The proof follows the scheme given in figure 5, which can be interpreted: the head of the clause
is supposed to satisfy the hypothesis Po » then the proof is performed in every literal following

the left to right order (denoted by k ,1<k<n). Every hypothesis of the correctness assertion
attached to the literal qy() is proven using all results obtained before (for q;, j<k). Then Q, is

proven using all properties assumed in the body and Po-

This strict order makes the proof simple to follow and consistent. It guarantees that every proof
tree root will satisfy the correctness assertion (and the "simplicity of the negation”, both are
proven in the same step).

Py (X0.Y )

%

We give only the most intuitive elements of the proofs. It consists in proving that for every atom
p(x,y) which satisfies C= ground(x) and ground(y) and A(x) and B(x,y) there exists at least

one proof-tree. The idea of the proof is to show that all possible (generally exclusive) cases are
considered in the packet of 'p', hence at least one clause may be used to develop a proof-tree from
the considered goal. It remains to show that the completeness properties are preserved inside
each clause of the packet and that the construction will terminate (necessarily successfully) by

exhibiting some decreasing criterium. Thus the proof is performed in three steps:
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1- The completeness conditions C are split into m conditions Cj (1<j<m) if there are m clauses

in the packet of 'p'. Thus one have to show that C implies the disjunction
Cy0Csor ... of Cryy, where the Cj assertions are such that if Cj is saiisfied by terms x, then x

is an instance of the head of the jth clause.

2- In every clause the proof follows the scheme given in figure 6, which can be interpreted
often as: if the head is ground and satisfies its attached condition Co,j then there exists a ground

instance of the body in which all literals qy() satisfy their condition Cy.
(if qy is positive, Cy = ground(xy) and ground(yy) and A(xy) and B(xy.yk).
if g is negative, Cy = ground(xy) and ground(yy) and A(x,) and not B(xy,yk) )- ',

Figure 6

3- The fact that something decreases and thus the construction always terminates successfully
will be guaranteed by the designer.

As a conclusion it should be clear that we do not claim that the reader should be able to perform
such proofs to understand the specification. The designer is expected to guarantee that such
proofs have been performed following the given scheme. This comes only as an element of
reliability of the specification and also, as argued at the beginning, of its clarity.

5) Example:

In order to illustrate briefly the methodology, we give all the correctness and completeness
proofs of a very short program with negations.

includ(L4,Lo) then if L4 and L, are ground lists then Lyc Lo
includ(L4,Ls) < not ninclitlxd(L1 Lo)

ninclud(L4,Lo) then f Ly ‘and L, are ground lists then Ly @ Lp
ninclud(L4,Lo) < elem(A,Lq), not elem(A,L,)

elem(A,L) then jf L is a ground listthen Aisgroundand Ae L
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elem(A,[A|L]) <
elem(A,[B|L]) « elem(A,L)

Correctness proofs:

elem (1St clause): [AlL] is supposed to be a ground list then A is ground and A e [A|L]
elem (2" clause): '

[B|L] is supposed to be a ground list.

We can use (body of the clause): if L is a ground list then A is ground and A e L.

Now L is a ground list (because of [BJL]) so A is ground, and A e [B|L] (because A € L).

ninclud:
Ly and L, are supposed to be ground lists.

We can use (15! literal in the body): if Ly is a ground list then A is ground and A e L.

Now L is a ground list, so A is ground and A e Ly. ‘

We can use (2“d literal in the body): if A and L, are ground and Lo is a list then not (A € Lo)
Now A and L, are ground and Ly is a list so A ¢ Lo.

It follows that Ly « Lo.

includ:
L4 and L, are supposed to be ground lists.

We can use (body):
if Ly and Ly are ground lists then not (Ly @ Lo).

Now L4 and L are ground lists, so Ly < Lo.

Completeness proofs:
The completeness conditions C are:

for elem : L is a ground list and A is ground and A e L.
for ninclud : Ly and L, are ground lists and Ly @ Lo.

for includ : Ly and L, are ground lists and Ly cLo.

elem : C can be splitted in C4 or Co, where
C4 is: L is a ground list and A is ground and A is the head of L
Co is: L is a ground list and A is ground and A is in the tail of L.

In both cases if C4 (C») is satistied by element and list terms, these are instances of the

corresponding heads..
In each case the body satisfies the completeness condition.
The decreasing criterium is the length of the second argument (which is a ground list).

ninclud : As the head of the clause has two different variables only the first condition is
trivially satisfied. In the body the completeness conditions for the two literals are respectiveley:

Ly is a ground listand Ais ground and A € Lq.
L, is a ground list and A is ground and not (A € Ly).
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Now by hypothesis 'L1 @ Lo, so there is an A in Ly such that A ¢ L,,, so there is an instance of
the body where each literal satisfies the completeness condition.

includ : as the head of the clause has two different variables only the first condition is trivially
satisfied. In the body the completeness condition for the literal is:

Ly and L, are ground lists and not (L4 @ Ly).
Now by hypothesis Ly < Lo, so it is obvious that in the body the literal satisfies the
completeness condition.
Stratification: The levels of elem, ninclud, includ are respectively 0,1,2.
It is easy to see , in this very short program, why the proof method works:
correctness (completeness) of includ comes form
correctness (completeness) of not ninclud, which comes from

completeness (correctness) of ninclud, which comes from
completeness (correctness) of elem and not elem.

 completeness (correctness) of not elem comes from

correctness (completeness) of elem, which comes from inductive reasonning without problem
of negation.
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5) Basic elements of the formal definition :

The formal definition will be given by a logic progrem'(defihit'e Horn clauses program with
negatron) descnblng the search tree associated to some given program P together with a goal

More precisely it corresponds to the relative denotation of the relation :

semantics (P, G, T)
whose assertion is:
semantics(P,G,T) then if P is a program and G is a goal then T is a partial search-tree |ssued
from G which is complete (if Tis finite) or limited to some last constructed finite success
branch following the tree-walk order of T

(Thus only programs and goal with at least one answer substitution obtained following the
program strategy or with finitely failed search-tree will be considered in this sample of formal
definition).

The denotation of semantics contains all partial search-trees corresponding to a success
branch obtained by the specific strategy of P and the complete one if there exists a finite
search-tree. For simplicity we have restricted the semantics considered only to steps
corresponding to success paths or complete finite search-trees. This kind of limitation could be
easily suppressed to take into account infinite computations without any success path.

It is worth noticing that the intended semantics is very simple : the (non)standard strategies of
P can be described using only a logic program without references to any strategy.

To understand the formal semantics one must know the used data structures : relative denotation,
programs and search-tree.

L-language

it is supposed that predicates and functions of the described language are written in a defined
language denoted L. It contains all possible symbols, including variables names which are
considered as constants in the formal semantics. In the following it will be necessary to rename
variables.

We will use, as in [JM 84] integers to rename denumerable sets of variables. The used integers
will be represented in lists denoting in a Dewey like notation the nodes of the search-tree also.

Relative denotation

As it has been shown, the relative denotation is a way to give a meaning to the foiiowingj
predicates which will be used in the formal definition without logic description. 5
L-var(X) ifft X is avariableinL.

L-term(X) ift X isafreeterminlL. i
L-ground(X) iff Xisaground termin L.

L-instance(T,, S, T,)  ff T,is an instance of T, by the
substitution S.
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L-unify (T4, T, S) iff S exists and S is the MGU of T, and T,.

L-rename(i, T,, To) ift T, is T, with renamed variables
using the integer (or indice) 1.

Notice that we could define :

L-unifiable(T,, T,) < L-unify(T{, T,, S).

We denote by = the L-syntactic equality
(Ty= T, iff T, and T, are the same L-terms).

Structure of a program P

P is a list of clauses. The clauses defining a predicate are grouped in a list called packet. This
later predicate will not be described here. Its meaning is the following :

packet(P, |, A, Q) then if P is a program, | an integer used to rename the variables of L, A an
atom then Q is an instance of the packet associated with A in P, or nil if there is no packet.

T I h rch tr

A search-tree is :
anode : node (I, G)
I list of integers built with o and succ (successor).
G goal = list of literals.
(lists are dotted. Empty list is pil.)
or mk-tree (N, F)
N node
F list of search-trees.

Note that all the nodes in a search-tree are different.

A goal is represented by a list of literals denoted differently:
true (empty goal)
A+L literal A, L goal. s

Search-trees are constructed by extensnons or modified (the cut modifies and extend a
search-tree). .

In the whole program a tree argument is denoted by a term T-N where T is a tree (or a list of
trees) and N a node in T, which is in general the "current node in T", i.e. the last visited node in
the tree-walk order of the SST. Note that T-N is a partial SST such that all the nodes following N
are hanging nodes as illustrated in figure 7. This notation avoids the use of two arguments where
it is unneccessary. Anonymous variables, when they are not necessary to understand the
definition, are written _ as in [PWB 84].
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/

not already treated nodes (hanging nodes)

Figure 7

The program uses tree-walk functions defined as follows :

first-son(T-Ny, N,) thenif Nyisa node of the search-tree T then N, is the first son of N,.
son(T - Ny, Np) then if Ny is a node of the search-tree T then N, is one of the sons of Ny.
brother(T-N,,N,) then it N¢ is a node of the search-tree T then N, is the first brother of N, ...

father(T - Ny, Ny) then jf Ny is a node of the search-tree T then N, is the father of Ny.

N in Tiff Nis anodeof T.
if G is a goal and A an atom then:

tail(G4, Go) iff G, is the list rest of Gy.
head(G, A) iff A is the head atom of G.

Definitions are obvious and will not be recalled here [DF 86b]
has-a-son(T-N) then if N is a node of the search-tree T then NhasasoninT

has-a-brother(T-N) then if N is a node of the search-tree T then N has a brother in T
has-a-father(T-N) then jf N is a node of the search-tree T then N has a fatherin T

6) A sample of formal specification:

semantics(P, G, T

buildtree(P,mkiree(node(o.nil,root), node(o.nil,G).nil) -node(0.nil,G), T) .

buildtree(P,T{-N{,To-No) then it P is a logic program and T1 is a partial search-tree
whose current node is N1, then Tp is the partial search-tree obtained by a constructive
tree-walk of T1 from N1 until a success node has been reached (N2 = node (I, frue)), or a
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complete finite search-tree has been obtained (N2 = node (o.nil, root)).

buildtree(P, T-N, T-N) &
buildtree(P, T-N, T-N) &

buildtree(P,T{-N{,To) «

N = node(l, true)
N = node(o.nil, root)

not Ny=node(o.nil,root),
treatment(P,T{-N4,T3-N3),
c-cholce(T3-N3,N4),
buidtree(P,T3-Ny4,To)

Three not exclusive cases are considered here: T is the desired semantics (success branch or

completed tree) or T4 and To are different and at least one treatment is necessary to obtain To.

Only a very restricted part of a possible specification is given herein. The treatments are thus
very simple ones. Morever, we will suppose that the intended c-strategy of a program
corresponds to a top-down left to right standard search-tree-walk.

c-choice(T-N4,N,) then jf Ny is the current node of the search treeT then N, is the next leaf
node following the standard search tree walk order, if any, or the root, if no one exists.

c-choice(T, N) &=
c-choice(T, N) &=
c-choice(T, N) &
re-c-choice(T, N) &=
re-c-choice(T-N, N) =
re-c-choice(T-N;, No) &
has-a-son(T) =
has-a-brother(T) &=
has-a-father(T) &=

first-son(T, N)
not has-a-son(T), brother(T, N)

not has-a-son(T),
not has-a-brother(T),
re-c-choice(T, N)

brother(T, N)

not has-a-brother(T-N),
not has-a-father(T-N )

not has-a-brother(T-N1),
father(T-N;, Nj),
re-c-choice(T-Ng, No)

son(T, )
brother(T,_)
father(T,_)
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treatment(P,T{-N,T2-No) then it Pis a program, T4 a search tree, N4 the current node of

T, then To is T4 where N4 has been expanded if the chosen goal (if any) has clauses whose heads
can be unified, or T 1 modified if the chosen goal is a cut. In all cases the current node is
unchanged, i.e. No=Nj.

treatment(P, T-N, T-N) & N =node(_, true)
treatment(P, T-N, T -N) < N = node(o.nil, root)
treatment(P, T-N, T-N) . < N = node(l, G),

not G = root,

not I-choice-succeeds(G)

treatment(P, T4 -N, T5) < N=node(l, G),

I-choice (G, !(J)) ,
treat-cut(T,-N, Tp, J)

treatment(P, T-N, T,) < N =node(l, G),
I-choice(G, A),
not is-a-cut (A);-~
expand(P, Ty-N, A, Tp)

Note that the predicate cut (I') is flagged in order to be able to detect the nodes in which the
choices have to be cut. The cuts are flagged by expand. -

l-choice-succeeds(G) < |-choice(G, A)
is-a-cut(A) & A = 1(J).
I-choice(G, A) < head(G, A)

This is the standard choice function of type | (first literal in the goal list). To take into account a
"geler" (freeze) predicate could give the following description :

I-choice(A+L, B) < not is-geler-atom(A), first-unfrozen-geler(L, B).
I-choice(A+L, A) « not is-geler-atom(A), all-geler-frozen(L)

I-choice(geler(X,B)+L, A) « L-var(X) , I-choice(L, A)
I-choice(geler(X, A)+L, A) < not L-var(X)

first-unfrozen-geler(L,A) < conc(L,, geler(X, A)+L,, L),
ali-geler-frozen(L,) ,

26



all-geler-frozen(irue) = .
all-geler-frozen(A+L) < not is-geler-atom(A), all-geler-frozen(L)
all-geler-frozen(geler(X, A)+L)<= L-var(X), all-geler-frozen(L)

is-geler-atom(A) < A=geler(_, )

All frozen goals are unfrozen following the order of freezing. conc is the list concatenation on
goal lists.

expand(P,T4-N{,A,To-No) then jf P is a program, N4 the current node of T4, A the choosen
literal in the goal of Ny then To is T4 where N4 has as many sons as there are unifiable heads
with A in P (in all cases N =N;). '

expand(P, N-N, A, N-N) < N =node(l, _),
' packet(P, I, A, nil)

expand(P, N-N, A, mk-tree(N, F)-N) < N=node(l, _),
packet(P, |, A, Q), not Q = nil,
buildlist(Q, N, A, F,0)

expand(P, mk-tree(N, F;)-N;, A, mk-tree(N, F5)-N,)<= expand(P, F,-N;, A, F»-N,)
expand (P, A,.L-N,, A, A, .L-N,) < expand(P, A;-N,, A, Ay-N,)

expand(P, A.L;-N,, B, A.L,-N,) < expand(P, L,-N,, B, L,-N,)

buildlist(Q,N,AF,I) then if Q is a packet, N a node, A a chosen literal in the goal of N, | a list of
integers then F is the list of new sons of N.

buildlist(nil, N, A, nil, 1) =

buildlist(clause(H, C).Q, N, A, F, ) < not L-unifiable(H, A) ,
buildlist(Q, N, A, F, 1)

buildlist(clause(H,, C4). Q, N, A, node(l.J, G,).F, 1)
< N =node(J, G),
L-rename(l.J,clause(H4,C4), clause(H,,;C,)),
L-unify(H,, A, S),
flagcut(C,, 1J, Cy),
replace(G, A, C3, Gy)
L-instance(G;, S, G,),
buildlist(Q, N, A, F, succ (1))
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replace(G,A,C,Gy)thenjfGisa goal A the chosen literal in G, C a goal then G4 is G in WhICh A

has been replaced by C.
(Note that replace depends on the I-strategy). _
replace(A.L,, A, L,, Lj) < conc(L,, Ly, Ly) j

flagcut(G4.1,Gp) then if G4 is a goal and | a list of integers then Go is G4 in which au
predicates cut have been flagged by |.

flagcut(true, I, true) <=

flageut(l + Ly, I, I()+Ly) < flageut(L,, |, L)

flagcut(A+Ly, I, A+l,) «< not A = |, flagcut(L,, |, L)
treat-cut(T-N4,To-Ny,J) then N4 is the current node of T4, J a list of integers and the

chosen literal in the goal of N is a cut then Ty is T4 in which all brothers of father node of Ny
whose goal contains the same cut have been suppressed and a new son added to N{ (Ng=No).

(depends on the |-strategy : here it is the standard one)

treat-cut(N-N, mk-tree(N,node(0.1,G,).nil)-N, 1) « N =node(l, G,),
tail(G,4, Go)
treat-cut(mk-tree(N,F)-N4, mk-tree(N,F,)-N,,l) < treat-cut(F-N4, Fo-No, 1)

treat-cut(T.L-N{,T5.nil-N,,l) < Ny In T4, cut-inside(l, T),
- treat-cut(T{-N;, To-No, 1)

treat-cut(T,.L-Ny, To.L-No, 1) . < Ny in T4, not cut-inside(l, T,),
treat-cut(T,-N, T5-No, 1)

treat-cut(T.L{-N4, T.Lx-No, I) < Ny in Ly, treat-cut(L{-N,, Ly-N,, )
cut-inside(l,T) then if | is a list of integers and T a search tree then there exists in the goal of
the roct of T a cut flagged by |

cut-inside(l, node(J, G)) < cut-member(l, G)

cut-inside(l, mk-tree(node(J, G), F)) <« cut-member(l, G)

cut-member(l, I(I)+L) =
cut-member(l, A+L) < cut-member(, L)
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7)Riscussion and conclusion:

We have presented a formal semantics for PROLOG dialects which seems to satisfy the criteria of
a good formal specification method as given in the introduction:

- It is of high level because it contains no reference to any abstract machine. Also it does not use
any too low level programming language. The logical notions it uses are simple and known by
most PROLOG programmers.

- It can be used to describe with the same formalism most of the existing PROLOG dialects.
Without major difficulties it is possible to take into account the following features :

. cut

. geler(or freeze), wait (any non standard deterministic strategy)

. assert, retract ’

. constraints, dif, delayed negation

. infinite terms : Rational infinite terms can be added to the language L whose treatment can
be described in a logical specification using finite terms only. Thus even if the described
dialect containing rational infinite terms does not have any logical semantics (in the sense
of section 2), the specification still has one.

. assignment, global variables

. escape or block mechanisms

. arithmetics and other built-in predicates. These are in fact not described by clauses in
a program, however they belong to the described language L and we want to include their
description in the same formalism. It is partially possible. As an example we give here a
description of a reversible built-in predicate plus using a semantical predicate L-eval
with two arguments : some goal (chosen atom) and the "computed” answer substitution S.

L-eval(plus(X, Y, Z), S) < N-number(X),
N-number(Y),
L-var(Z),
N-plus(X,Y,Z1),
L-unify(Z, Z1, S)

L-eval(plus(X, Y, Z), S ) &« N-number(X),
N-number(2),
L - v a r (Y),
N-plus(X,Y1,2), ‘
L-unify(Y, Y1, S) o ’

L-eval(plus(X, Y, Z), S) < N-number(Y),
N-number(2),
L-var(X),
N-plus(X1,Y,Z),
L-unify(X, X1, S).

L-eval(plus(X, Y, 2), @) < N-number(X), '
N-number(Y),

N-number(Z),
N-plus(X,Y,Z).

This description uses an undescribed predicate N-number. Such predicate will be supposed to
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have a clear denotation which can be easily defined under the assumption that the domain N of the
natural integer is well known enough. Thus the denotation of N-number contains all atoms
N-number(i) where i is an integer of N, N-plus is as in section 3.

- As the formal definition is a pure logic program the valida{ion methods (correctness,
completeness, ... [DF 86c]) can be applied to validate the formal definition itself.

- As the formal definition is a logic program included in every dialect, it should be rather
simple to derive from the specification various validation tools like a runnable specification.
It should be noted that a runnable specification should use built-in predicates with a standard
I-strategy and implement the negation as failure. It is thus necessary to show specific
properties preserving correctness, completeness and termination in some cases of the formal
specification. However it will be possible to improve the specification by debugging also.

This kind of formal definition can be compared with other logical semantics of logic programming
such as in [Mos 81] and [MR 86]. Moss's approach describes proof-trees construction in place
of search-trees construction. It consists in giving a validating program (i.e. a PROLOG program
simulating an interpreter) and thus it does not take into account for example the order in which
the answers are computed. Martelli and Rossi approach can be considered as a runnable logic
specification of a denotational one and it uses a kind of abstract machine. Considering other kind
of semantics like the denotational semantics of [JM 84, Fra 85, Nor 86] , we could say that our
semantics is less concise but easier to read, especially for people knowing some PROLOG dialects.
Moreover it introduces the original notion of “comments” which are formalized as a part of the
specification.

We have shown how a logic program of about sixty clauses could model the formal semantics of
logic programs with cut and a non standard strategy. The size of a complete description of a
dialect or a standard would increase in proportion with the number of considered primitives, but
preserving the modularity and the clarity of the formal definition. It can be improved also by
choosing simpler data structures as ramifications [Fer 85]. A draft proposal for PROLOG
standard has been now presented with about 500 clauses describing 60 built-in predicates [DR
87]. Some questions, as input/output or error handling, have not been investigated here. Some
adaptation of the presented semantic model would be necessary, but are still possible by using
the same level of abstraction. This have been done in [DR 87).
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