N
N

N

HAL

open science

Synchronizing processors through memory requests in a
tightly coupled multiprocessor

André Seznec, Yvon Jégou

» To cite this version:

André Seznec, Yvon Jégou. Synchronizing processors through memory requests in a tightly coupled
multiprocessor. [Research Report] RR-0762, INRIA. 1987. inria-00075790

HAL Id: inria-00075790
https://inria.hal.science/inria-00075790
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075790
https://hal.archives-ouvertes.fr

NN

UNITE DE RECHERCHE =

INRIA RENNES

* Institut National -
de Recherche

- enInformatique

et en Automatique

" Domaine de Voluceau
Rocquencourt

Rapports de Recherche

SYNCHRONIZING PROCESSORS

THROUGH MEMORY REQUESTS IN

A TIGHTLY COUPLED
MULTIPROCESSOR

André SEZNEC
Yvon JEGOU

NOVEMBRE 1987

IR1S a' ~ INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042-RENNES CEDEX
FRANCE

Synchronisation des processeurs par les requétes & la mémoire
dans un multiprocesseur fortement couplé

Synchronlizing processors through memory requests
in a tightly coupled multiprocessor
André Seznec
Yvon Jégou
IRISA/INRIA, Campus de Beaulleu
35042 Rennes Cedex
FRANCE

Publication Interne n° 380 - Novembre 87 - 24 pages

Résumé

Aujourd’hui, les supercalculateurs (ct les minisupercalculateurs) sont des multiprocesseurs dont les
processeurs sont des processeurs pipelines. Les performances effectives de ces calculateurs dépendent
essentiellement du spectre d'algorithmes qui sont effectivement exécutés en paralltle,

Nous avons présenté précédemment le processeur DSPA [Je86] et le réseau GLOUTON
(GREEDY) [Se86)[Sc87c] qui permet d'introduire le processeur DSPA comme processeur élémentaire
d’un multiprocesseur.

Dans ce rapport, nous introduisons des mécanismes de synchronisation plus simples (et plus faciles
& mettre en oeuvre) que ceux présentés dans [Se86](Se87c). Quand des processeurs DSPA sont
connectés & unc mémoirc partagée k travers des réseaux GLOUTON et synchronisés par nos
mécanismes, un haut degré de parallélisme peut 2tre obtenu & I'exécution sur une trds large famille

d'algorithmes, y compris des boucles ob les dépendances entre les itérations ne peuvent &tre détectés i
la compilation. ’

Abstract

To satisfy the growing need for computing power, a high degree of parallelism will be necessary in
future supercomputers, Up to the late 70s, supercomputers were either multiprocessors (SIMD-MIMD)
or pipelined monoprocessors. Current commercial products combine these two levels of parallelism,

Effective performance will depend on the spectrum of algorithms which is actually run in parallel,
In a previous paper [Je86), we have presented the DSPA processor, a pipeline processor which is
actually performant on a very large family of loops.

In this paper, we present the GREEDY network, a new interconnection network (IN) for tightly
coupled multiprocessors (TCMs). Then we propose an original and cost effective hardware
synchronization mechanism. When DSPA processors are connected with a shared memory through a
GREEDY network and synchronized by our synchronization mechanism, & very high parallelism may
be achieved at execution time on a very large spectrum of loops including loops where independency of
the successive iterations cannot be checked at compile time as e.g. loop 1 : '

DO 1I=1N
1 APM)=AQD)
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE .
(L. A 227) EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 I.N. S. A, DE RENNES " (LABORATOIRE DE RENNES)

Introduction
Needs for performance in various scientific applications have lead manufacturers to the design of
parallel structures. The first industrial parallel supercom;;uters were pipeline processors (Crayl,
CDC Cyber 205, .). Now, supercomputers (Cray 2, ETA™", ..) combine at least two levels of
parallelism; they are multiprocessors where each processor is a powerful pipeline processor.

In many applications, effective performance on supercomputers does not depend on the peak
performance but on the spectrum of algorithms which are actually efficiently run in parallel. In [Je86],
we have presented a pipeline model, the Data Synchronized Pipeline Architecture (DSPA). This
pipeline processor has been shown to be actually efficient on the whole set of imperative loops i.e. the
loops which cannot be forgiven before the loop index has reached its upper bound —classical vector
loops and also many loops where independency of the successive iterations cannot be checked at
compile time (e.g. loop 1 and loop 2).

Loop 1 Loop 2
DO 1 I=1N DO 21=IN
1 APM=AQM) 2 ARM)=ACPI)+XLM*YD

Loop 1 is generally considered as a completely scalar loop; in this paper, we propose an architec-
ture of a TCM where loop 1 will be run in parallel : performance is only limited by the effective

dependencies and the theoretical memory throughput.

I Address Synchronized Multiprocessor
1 Passing the WRITEs by the READs

The DSPA processor [Je86] is based on asynchronous independent functional units communicating
through FIFO queues. We have shown that passing the WRITEs by the READs on memory with
hardware detection of RAW hazards allows this pipeline processor to achieve good performance on a
large family of loops where independency between successive iterations cannot be detected at compile
Lime.—e.g loop 1 and 2. In this paper, we consider the introduction of a DSPA-like processor as basic
processor in a TCM. The only characteristic of the DSPA processor which has to be kept in mind is :
The production of addresses and the completing of the associated requests are dissociated.

For more details on the DSPA processor, see [Je86].

In a TCM, there are two alternative locations where the hardware detection of RAW hazards may
be performed :
0O A) A hardware mechanism to detect RAW dependencies is implemented in each processor. A read
request from processor I is sent to the memory if and only if there is no waiting write request on the
same location from processor I. Write requests are sent to the memory when their associated data is
available.
O B) The RAW hazard detection is performed in the memory banks —the memory banks are assumed
to have only one request port. Requests are sent to the memory; read addresses are checked against

the addresses of all the WRITEs waiting for their associated data in the memory bank.

0

m [:] PAPIER RECUPERE ET RECYCLE

134

-3.

The first solution allows to send synchronously the write requests and their associated data on the
memory; only two INs are needed : a (request+ write) IN and a read IN. Requests and data to be writ-
len onto memory are routed through the request IN from the processors to the memory banks. Read
data are routed from the memory to the processors through the read IN. Unfortunately, spreading loops
among the processors would be difficult :
0O Loop 2 cannot be spread among the processors without using complex synchronization primi-
tives to ensure consistency of the execution : when processor I reads an element of array A, a
mechanism must guarantee that the associated WRITE of the same element is completed before
an other processor reads the element.
DO Chaining two successive vector loops may require the completeness of the WRITEs on the
memory as in the following example when P and/or K are ignored at compile time :
DO 20 I=1N
20 A(I+K)= ..
DO 21 I=1M
21.. =A(+P) ..

From now, in this paper, we consider that an hardware detection of the RAW hazards is performed
in the global memory. The signification of a sequence of requests on a memory bank is completely
determined by the order the requests enter the memory bank; we shall see in section III that this allow
to synchronize the processors. For convenience, we will refer to a multiprocessor where a hardware
detection of RAW hazards is performed in the global memory as an Address Synchronized Multiproces-
sor (ASM).

On an ASM, when a Read-Modify-Write instruction is implemented in the instruction set of the
processor, loop 2 may be spread among the processors; each processor executes a vector loop and no
synchronization of the processors is needed during this execution.

On an ASM, the sending of a write request and the sending of the associated datum are dissoci-
ated. Then three INs are needed :

0O a request IN

O aread IN

0O a write IN

2 Avoiding deadlocks on the memory in an ASM

In a TCM, at every cycle any processor may desire to send a request to any memory bank.
Requests of several processors may have the same destination bank at the same cycle. A memory bank
can process only one request at each cycle. Destination conflicts must be -treated; only one request is

accepted on each destination bank, the other requests must be rejected or delayed.

Ralha
.

Let us consider the following example :

Processor 1 Processor 2
READ A READ B
WRITE B WRITE A

Let us now suppose that A is located in bank O and B is located in bank 1. We also suppose that the
computation of the new value of B by processor 1 requires the value of A and that the computation of
the new value of A by processor 2 requires the value of B.

Because in an ASM, the sending of the data to be written is dissociated with the sending of write
requests, the following distribution of the requests on the memory banks may be logically possible but
must be avoided : _

WRITE A enters bank 0 before READ A and WRITE B enters bank 1 before READ B.
If this situation occurs, there would be a deadlock on the memory : WRITE requests are waiting for
their associated data which cannot be computed. '

Multistage networks with internal memorization of the rejected requests such as proposed for the
RP3 project [Pf85] or the NYU [Go83] cannot be used in an ASM because the previous situation may
occur.

Synchronous networks allow to overpass this difficulty under the condition that if a request from
processor I is rejected, it is submitted again before another request from the same processor is submit-
ted.

We give here some external characteristics of the arbiter for a synchronous IN in a TCM where a
global hardware detection of RAW hazards is performed :
0O N*(log N +1) input bits (the destinations of the requests)
O (N-1)*N/2 comparators of (log N +1) bits width (one for each pair of destinations)
O N output bits for validation. (one bit by request)
O An arbitration decision must be taken in one single memory cycle.

These characteristics limit the size of the IN about twenty or thirty inputs and outputs.

3 A hardware difficulty

Yoo nee AQRA oba
an aii Avivl, uic

ammmamma Al o o o Lol £
SPUIRC WllIC VI d Mmsuory Ui 1

whether the request has been delayed by a RAW hazard or not. A word of data read on bank i by pro-

cessor k may flow out from the read IN before a word of data read on bank j even when the second

e — TRITY AWM . . P Y P . P S
i a KCAL IS N0t consiamt ; 1l acpenas on

-t

request is older than the first request. When using a synchronous IN, there are no means to avoid this
difficulty. When flowing from 'the read IN, data must be stored in an intermediate buffer and reordered.

-5-

In this buffer, a FIFO queue associated with each memory bank has to be implemented. This complex
reordering mechanism has to be implemented in each processor. A similar mechanism must also be
implemented in each memory bank to re-associate the data to be written with the corresponding write
requests. '

The cost of the implementation of an ASM would be prohibitive if synchronous INs are used
—INs + arbiters + mechanisms for reordering data in memory banks and in processors. In the next sec-
tion, we propose a new IN, the GREEDY network. The GREEDY network is virtually conflict free and

allows a realistic implementation of an ASM.

II The GREEDY network

1.Definition

Definition (fig.1):

A N*M GREEDY network (or G-network for short) is a N*M array of FIFO queues where FIFO @)

is written from inlet i and read into outlet j, independently from other FIFO queues.

First we notice that a G-network can accept a word of data from each input during each cycle and
a word of data may flow out from each output of the network during each cycle. When a FIFO queue is
full, the G-network must delay the acceptance of a new word of data, but it is noteworthy that this
congestion is local : it is the state of one FIFO queue, the other FIFO queues may continue to work
independently.

If the definition of the G-network is quite simple, it does not solve the problem of controlling of

the network.

2 Controlling the)memory request G-network
Let K be the number of processors. In each memory bank i, there is a memory sequencer unit,
MSU(). At each cycle, MSU(i) receives from each processor j a 1-bit information b(i,j). The informa-
tion "a request from processor j concerns memory bank i" is coded in bit b(ij). The whole vector of
informations is stored in a FIFO queue (width K bits, one bit by processor) in the MSU; an immediate
optimization consists in storing this vector only if there is some request concerning the memory bank.
Processing requests in a memory bank B is then straightforward (fig.2) :
Step 1. Extract a K-bit vector V from the FIFO queue if it is not empty. Otherwise
GOTO step 1.
Step 2. If vector V is null then GOTO step 1. Otherwise

X <-- number of the first nonnull bit

V(X)=0

-6-

Step 3. Extract a request from the FIFO queue (X,B) in the G-network and begin pro-
cessing it. GOTO step 2.

The hardware required in the MSU to perform this treatment is limited to a FIFO queue and a priority
encoder. '

3 P-issuing : definition
Notice that a non-null validation bit b(j,i) must correspond to each request originated from

processor j to bank i and vice-versa.

Definition :
A memory request destinated to memory bank i will be said P-issued when the MSU of the

requested memory bank has received the associated validation bit.

Notice that the P-issuing of a request may be dissociated with the deposit of the request in the
request G-network.

4 A condition for avoiding deadlock on the memory
As the order of the READs automatically corresponds to the order of the WRITEs on a FIFO
queue, requests from processor j to a single memory bank i are automatically P-issued in the logical

order of the programs.

Theorem 1 :

Let us suppose that :

(A) If a request R1 originated from processor j is younger than a request R2 originated from the same
processor, then R1 cannot be P-issued before R2.

(B) In a program, a WRITE is not requested before all the READs of the operands needed for the
computation of the word of data to be written have been requested.

Then no deadlocks can occur on the memory.

Proof :

First we give a label to each request. Let K be the number of processors.

If a request from processor j to bank i is P-issued at cycle 4 and has been computed at cycle oy the
equest gets the label (K:1+j. to}.

We define a complete order on the set of labels by : (x,y) << (x’,y") iff x<x’ or (x=x" and y < y’).

It is obvious that memory bank i processes its requests in the increasing order of their labels.

-7-

We consider the whole set S of requests which have already been P-issued and have not been com-
pleted at an instant T. S contains requests which are always present in the request G-network and the
write requests which have already entered the RAW detection mechanism in the memory banks and are
waiting for their associated data.
If S is not empty then it exists a request R in S which label is minimum.
If the request R is a READ, it may be performed at soon as the desired bank becomes free.
If the request R is a WRITE then, condition (B) and condition (A) guarantee that the READs of the
operands needed for the computation of the word of data to be written have labels smaller than the
label of R : they have been completed. Then the word of data associated with the request R will be
available in a finite delay.
Then no deadlocks are possible on the memory.

Q.E.D.

Notice that several memory requests from processor j destinated to distinct memory banks may be
P-issued at the same time.
Definition :
A memory request will be called a dummy request if it is not destinated to any memory bank — syn-

chronization requests for example.

Condition (A) allows to define the P-issuing of a dummy request as follows :
A dummy request from processor j will be said to have been P-issued as soon as a younger request

from processor j may be P-issued.

In section III, we shall show that processors may be efficiently synchronized through the P-issuing

of the memory requests and we present an efficient P-issuing hardware mechanism.

5 Controlling the read G-network and the write G-network
Controlling the read network and the write network is straightforward. Here we describe in detail

the control of the read G-network. A similar mechanism can be used to control the write G-network.
In the processor, data are obtained from the read network by the Data Acquisition Unit (DAU)
(fig.3). When a read request is deposited into the request network, the‘label of the addressed
memory bank is stored in a FIFO queue located in the DAU. To obtain the words of data coming
back from the memory in the same order as their addresses have been computed, the DAU reads
its FIFO queue and uses this value as an address to select the FIFO queue in the read G-network
from which the word of data will be available. The DAU waits until this FIFO queue is not

empty.

-8-

It is noteworthy that the DAU is a simple device. Let us notice that the delay to obtain a data from a
memory bank is not constant. The DAU complexity favorably compares with the complexity of
hardware mechanism which would be necessary to reorder the data flowing from a crossbar network. In
the latter case, data would ha\;e to be stored in an intermediate buffer and reordered. In this buffer, K
FIFO queues would have to be simulated. Moreover when using crossbar networks as request, read and
write networks, many bits of information must be transmitted through the networks with the data to re-
associate data and requests : label of the origin processor for the request and the write networks, label

of the origin memory bank for the read network.

6 Feasibility of the GREEDY network

FIFO queue components with cycle around 50 ns are proposed by several societies. These FIFO
queues are generally 9 bits wide and very deep (256 words or even more). The design of a 16*16 G-
network would require the use of 256 FIFO queues. On a supercomputer, the width of the word of data
must be 64 bits. Then the read network must be 64 bit wide. The widths of the request network and the
write network may be limited to 32 bits. So 4,096 FIFO queue cells are needed for the design of the
INs of an ASM with 16 memory banks and 16 processors; the size of this network may be considered
as a major difficulty.

The characteristics of the available FIFO queue components do not match with our application.
They are very deep but not very wide. Our idea was to implement many FIFO queues on the same

chip. A 4*4 G-network of 12 bits width FIFO queues and about 24 words by FIFO queue can be

‘ implemented on a single 144-pin chip with 65,000 transistors [Co86]. This chip will accept'a WRITE
from each input and a READ onto each output every 50 ns. This basic chip can be used to built wider
and larger G-networks. For our application, only 192 basic chips will be needed in the design of the
three INs.

7 The GREEDY network and a shared interleaved and pipelined memory

Large static memory components with cycles around 50 ns are now available and may be used in
the design of an interleaved memory. But the cost of a very iarge memory buiit with such componenis
will be prohibitive —these fast chips are expensive. It seems more attractive to use memory chips with
a longer memory cycle. These chips are cheaper and have a very high density of integration, This
approach has been adopted by Cray Research for the design of the Cray-2. Memory chips with 120 ns
cycle have been used in the design of the Cray-2 memory; the size of this memory is 256 Megawords
of 64 bits against only 8 Megawords in the Cray-XMP where memory chips with 40 ns cycle are used.

Let us consider a TCM with 16 pipeline processors which are able to initiate a memory request
every 50 ns and chips of dynamic RAM with cycles around 300 ns. The memory of this multiprocessor

would be divided in 96 or 128 memory banks (for easier address computation) in order to obtain a

-9.

theoretical throughput equal or higher than one word per 50 ns and processor. The cost of a 128*16
G-network would be huge. During one cycle of 50 ns, at most 16 banks receive a data. As it takes
"more than one cycle on a memory bank to treat a request, several memory banks may share the same
output (or input) of the IN. If the read data flow out from this logical bank in the same order their
READs have been requested, this group of physical memory banks may be considered as only one logi-
cal unit. We call this logical unit a logical memory bank.

In this section we. present an optimized organization of a logical memory bank [Je86][Se87a)
(fig4).

Each physical memory bank i has a FIFO queue of requests R(i) and a FIFO queue DI(i) as inputs
and a FIFO queue DO(i) as output. Memory requests (resp. data to be written) flow from the memory
sequencing unit (MSU) of the logical memory bank in the order of their arrivals on the logical memory
bank and are written in the required R(i) (resp. DI(i)). If the reqﬁcst is a READ then the label of the
requested physical bank is stored in the FIFO queue F. Bank i loads a réquest from R(), if the request
is a WRITE, the address is stored in some associative memory until the associated data is valid —the
clock of the associative memory may be in the range of 300 ns. If the request is a READ, the address
is checked against this associative memory; if there is some WRITE on the same memory location
waiting for its data, then the physical bank is blocked until .this WRITE has been completed, otherwise
the READ is performed and the read data is deposited in DO(). Thén the reordering unit (RU) uses
the FIFO queue F as address to read the data on the FIFO queues DO(i). The data flow out from the
logical memory bank in the desired order.

We have simulated by software the behavior of a memory consisting in 16 logical banks accessed
through G-networks. The following hypothesis have been assumed :

0O 16 processors

O 8 physical banks by logical bank

0O a physical memory bank is busy during Tbusy=6 cycles by a request

0O Maximum depth of the FIFO queues of requests and data : 16

0O Maximum depth of the FIFO queues in the G-network : 16

O All the requests are read requests

0 The requests are randomly distributed on the 128 physical banks

O A new request is presented by each processor at each cycle if the previous request has been

accepted by the request G-network.

The effective throughput is 97% of the theoretical throughput of the memory. When using the

blocking structure of logical memory bank and crossbar networks, only 31% of the theoretical

-10 -

throughput is obtained.

These results prove that the association of GREEDY networks with the proposed structure of a log-
ical memory bank may be used to built a very large memory with relatively slow (and cheap) dynamic
RAM components. Its effective throughput allows to consider this solution as a very promising alterna-

tive to the use of memory caches; many difficulties are then avoided : cache coherence, need of data

locality..

Remark : The lack of conflicts in the distribution of consecutive elements of a vect;)r among the
memory banks does not remain the golden rule for the mapping of data in memory [La75}{Bu71]. In
[Se87b], we propose a new mapping of data in a 2" _way interleaved memory. This mapping allows to
use the whole theoretical memory throughput during accesses to constant-strided vectors with strides of
the form 2"t where t is odd and where 2" is smaller or equal to the dcbth of the FIFO queues in the G-

network.

In the next section, we answer to the following question :

— How can we synchronize the processors in an ASM without paying a large time penalty ?

IIT A proposition for synchronizing the processors in an ASM

The performance of algorithms on a TCM depends on the microtasking facilities of the architec-
ture. Here we propose a synchronization of the processors limited to a synchronization on the P-
issuing of the memory requests.

First in section IIL.1, we define four kinds of memory requests and we show that these families of
requests allows the parallel execution of a very large family of algorithms. Then in section III.2, we
propose hardware mechanisms which allows a very efficient P-issuing for the previous four types of

memory requests.

1 Four types of memory requests
1.1 Standard requests
We first define standard memory requests :
Definition :
There are no synchronization on the P-issuing of standard requests, the P-issuing of standard requests

has only to respect the condition (A) in theorem 1.

Let us consider the whole family of loops whose iterations are independent from each other i.e loops
which can be transformed in :
DO 30 I=1,N

-11 -

30 CALL TASK() v
where only local variables are modified by TASK(I) i.e. if a variable 1s writien by TASK(I), it is not =
read by TASK(J) for J#1.)

The iterations of these loops can be distributed among the processors and only standard memory
requests are used for coding the loop body. _ _ _

. For example, iterations of vectorized sequemiai loops can be coded using only standard requests.
But in many cases, because of data dependenciés, some global synchronization is required for chaining
successive loops (e.g. loops 20 and 21). On many' classical multiprocessors, such synchronizations are
quite CPU time consuming and often drop the cfﬁciericy of the computation on short vector loops.

1.2 Global synchronization requests

We define global synchronization requests as follows :

Definition :

A global synchronization request (GSR) from processor j is P-issued when and only when all the pro-

cessors have to P-issue a global synchronization request.

GSRs allow to implement global joins without interrupting the sequencing of the processors. We
shall see in section III.2 that GSRs even do not interrupt the computations of memory requests.
— GSRs may be used in order to enforce the respect of dependencies when chaining two successive
loops (eg. loops 20 and 21). A dummy GSR is executed by each processor after the last memory
request of its last iteration of the first loop.
— GSRs may also be useful to parallelize loops including indirect WRITEs accesses.
— GSRs may be used for the read of the same data by all the processors (for example the number of
iterations or a constant operand for a vector loop). All the processing elements synchronize on the P-
issuing of this read request. The read request of processor O is really P-issued, the other processors P-
issue a dummy request, but the read data is broadcast to all the processors. This avoids K-1 read

requests conflicting on the same memory location.

1.3 Master requests and slave requests
1.3.1 A family of imperative loops

Notice that standard requests and GSRs allow to process in parallel on an ASM a large family of
algorithms. All the loops which are considered as "vector” loops for a DSPA processor may be pro-
cessed in parallel : loop 2 is a vector loop [Je86]{Se87a].

Nevertheless a large family of imperative loops cannot be processed in parallel using only standard
requests or GSRs the whole family of DO-loops where independency between successive iterations can-

not guaranteed at compile time. For example, loop 1 belongs to this family.

-12-

In [Je86], we pointed out that the performance of a DSPA processor on this family of loops only
depends on the effective dependencies on data. For example, when very rare actual dependencies occur
between not very distent iterations during the execution of loop 1, performance of a DSPA processor is
only limited by the theoretical memory throughput. It is desirable to also execute these loops in paral-
lel on an ASM. Notice that this potential parallelism cannot be managed at compile time; it must be

managed at execution time.

1.3.2 DO_ACROSS construction
Cytron [Cy86] proposed the DO_ACROSS mechanism for processing loops of the previous family

in parallel on a TCM. Its proposition consists in inserting delays between the beginning of the succes-
sive iterations to ensure that the dependencies are respected; the execution of an iteration is deferred
until some event has occured in a previous iteration. This technic can be applied with success to many
loops.

DO 100 I=1N

delay (d*(I-1))

Sy

S

100 CONTINUE

E.g. let us consider an imperative loop which body can be divided into two successive sequences R
and S . Let us suppose that there are no dependencies between the iteration i and the sequence R(i+1),
but that there may be dependencies between S(i) and S(i+1). The execution of the iteration i+1 may
begin independently from the completing of the iteration i. S(i+1) cannot be executed before the com-
pleting of S(i). The maximum speed-up which can be reached may be modelized by
SP:TR/I‘S where TR (resp. Ts) is the execution time of the sequence R (resp. S). If the execution
time of the sequence S is short besides the execution time of the sequence R, then a very high degree
of parallelism can be obtained during the execution of the loop. When the number of processors is not
greater than SP, all the processors can be saturated during the execution of the loop.

Unfortunately, in many cases this technic is not sufficient —when Tg is not large besides Tg (as
in loop 1). Moreover, as no specific hardware has been proposed for the implementation of the

DO_ACROSS construction, synchronization sections may be quite time consuming.

1.3.3 Slave requests and master requests

We now introduce the concepts of slave requests and master requests.

-13 -

Definition :
O A X-slave request from processor I cannot be P-issued until processorI has got a mark from
processor I-X mod K —K is the number of processors.

0O When a X-master request is P-issued by processor I, a mark is sent to processor I+X mod K.

Notice that a X-slave request cannot be P-issued if there is no corresponding X-master request. On
the other hand, a X-slave request must be associated to every X-master reql;est. Processor I cannot P-
issued a X-slave request before processor I-1 mod K has P-issued the corresponding X-master request.

The use of X-slave requests and X-master requests implies a static distribution of the loop itera-
tions. It is straightforward that the use of X-slave requests and X-master requests covers approximately
the same application domain of the DO_ACROSS construct.

Let us notice that the use of 1-slave requests and 1-master requests covers the most useful applica-
tion domain of the DO_ACROSS constructs :
O dependencies between successive iterations of the same loop
O pipelined tasks on the distincts processors — data are successively updated by successive tasks for
example.]

Only 1-slave requests and 1-master requests will be considered for implementation in section III.2.

From now, they are referred to respectively as slave requests and as master requests.

1.3.4 An example of use of master requests and slave requests
Let us consider the previously cited loop 1.
DO 1 I=1N
1 APD) = AQM)
The iterations are spread among the processors :
iterations 1, K+1, 2K+1, .. to processor 0

iterations 2, K+2, 2K+2, .. to processor 1

iterations K, 2K, 3K, .. to processor K-1
This loop may be divided in two parts :
— The vectors P and Q are read in the shared memory and stored in a local memory of the processors.
(This part can be coded with standard requests).
— The indirect accesses through vectors Q and P are then performed :
READ of A(Q(I)) (1<I<N) is a slave request
WRITE of A(P(I)) (1<I<N) is a master request.
READ of A(Q(1)) and WRITE of A(P(N)) are standard requests.

The sequential signification of the loop is guaranteed :

-14 -
for 1<I<N, READ of A(Q(I)) cannot be P-issued before WRITE of A(P(I-1)) has been P-issued.

We shall see that when using the hardware mechanism proposed in the next section, a more efficient
distribution of the iterations of the loop 1 among the processors is given by :
iterations 1 to L on processor 0,

iterations L+1 to 2L on processor 1

iterations (K-1)*L+1 to K*L on processor K-1
iterations K*L+1 to (K+1)L. on processor O

In the second part of the loop, the sequence of memory requests executed by processor I is has fol-
lowed (Y=(a*K+I-1)*L):

Dummy slave request

READ A(Q(Y+1)) (standard)

WRITE AP(Y+1)) "

READ A(Q(Y+2)) "

WRITE AP(Y+2)) "

READ A(Q(Y+L)) "
WRITE A(P(Y+L)) "

Dummy master request

2 An efficient P-Issuing hardware mechanism
Very simple synchronization concepts have been proposed in the previous section. In this section,

we propose very efficient hardware mechanisms to implement these synchronization primitives.

2.1 About the need for a multiple P-issuing on a single processor

Let us consider loop 1, if iteration I and iteration I+1 are executed by two distinct processors, the
WRITE of A(P(I)) must always be P-issued strictly before the READ of A(Q(I+1)). If a single
memory request can be P-issued by a processor in one cycle then a processor can at most execute an
iteration every 2K cycles. So at most one iteration every two cycles can be executed by the machine
—even with an infinity of processors.

To enabie beiier performance, muitipie P-issuing by a singie processor is necessary.,

-15 -

2.2 P-issuing in parallel on a single processor
The respect of the condition (A) in theorem 1 enforces the avoiding of deadlocks on the memory.
Here we propose a hardware mechanism which forces the respect of this condition. An issuing unit

(IU) is added to the address computation unit in each processor (fig.5).

At cycle t, the address unit of processor j deposits (or not) a request in the request G-network and sends
the label of the requested memory bank B(j,t) and some added information to IU(j)' (for a clearer
presentation, we assume here that this information is not coded) :

O Effective sending of a request ? (yes/no) : 1 bit R(,t)

O Is it a GSR ? (yes/no) : 1 bit G(.,t)

0O Is it a slave request ? (yes/no) : 1 bit S(j,t)

O Is it a master request ? (yes/no) : 1 bit M(,t)

IU (j) in processor j is built with four cascaded elements :
A) A decoder .
B) An input buffer INBUF(j) (K+3 bit width)
C) A FIFO queue FIU() (K+3 bit width)
D) An output buffer OUTBUF(j) (K+3 bit width) and a counter C(j)

A) At cycle t, the decoder converts the number of the requested memory bank B(j,t) in a vector
b, (.Jt+1) of K bits where b, (i,jt+1)=0 if i#B(,0) and b, (B(.0).j:t+1)= R(.0).

Bits G(,t), SG,t), and M(,) flow through this stage of the IU without being changed :
Gin(i,t+1)=G(i,t), S;n(:t+1)=8G.t) and M, (.t+1)=M(.1)

B) At cycle t, the input buffer receives the vector bin(.J,t) and the bits Gin(j,t),Sin(j,t) and Min(j,t)
from the decoder (INPUT(j,t)). bcom(..j,t), Gcom(i,t), Scom(j,t) and Mcom(j,t) represents the content of
the input buffer (CONT(j,t)).
CONT(,1) is written in the FIFO queue FIU(j) at the condition W(j,t)=1 where
W=nonnull(Empty(.t) +bin(0,j,t)).bconl(0J,t)+ . bin(K-l,j,t).bcom(K-l,j,t)
+8;,G:0.8 o GO+ Min(i,t).Mcom(j,t)+Gin(i,t)+Gcom(j,t))

+ is the binary or

nonnull =1 if one bit in the input buffer is non-zero

Empty(j,t)=1 when the FIFO FIU(j)is empty
At the end of the cycle, the new content of the input buffer is given by

CONT(j,t+1) <-- not(W(j,t)).CONT(,t) + INPUT(,t)

-16 -

—The input buffer is used to built vectors of bits b. Each non-null bit in b is associated with a memory
request. Memory requests associated with a vector b are destinated to distinct memory banks.

—At most, one master request andfor one slave request are represented in a vector b.

—GSRs must be P-issued alone because of the very thin synchronization of the processors on the GSRs.
—Notice that a request to memory has to be P-issued as soon as possible. When the FIFO FIU is
empty, the input buffer is written in the FIU.

C) FIU is a classical FIFO queue. This FIFO queue is assumed to accept a READ and a WRITE on

every cycle.

D) At cycle t, OUTBUF(j) contains a vector of bits bom(.,j,t) and three bits Gom(j,t), Sout(j’t) and
Mout(j,t).
A bit V(j,t) indicates if OUTBUEF(j) is valid at cycle t.
Counter(j,t) is the value of C(j) at cycle t.
M*Counter(j,t) represents the difference between the number of master requests that have
been P-issued by processor j-1 mod K and the number of slave requests that have been P-
issued by processor j*/
Inc(j,t) is a bit sent by IU(j-1 mod K) on cycle t-1
MInc(j,H)= 1 iff a master request has been P-issued on cycle t-1 by processor j-1 mod K*/

A new value of OUTBUEF(j) is read on FIU(j) on condition not(V(,t)) + QG.,t)
where Q(j,t)=(Gom(j,t)=0).(S out(i,t)=0) +(G om(i,t)=l, for all the processors) + S
*when Q(,t)=1 and V(j,t)=1, the requests represented in bout
The bit boul(i,j,t).V(j,t).Q(j,t) is sent to MSU(i) —see section II.2.
New values of V(j,t+1), Counter(j,t+1) and Inc(j,t+1) are given by :
Counter(j,t+1)= Counter(j,t) + Inc(j,t) - V(j,t).Q(i,t).Soul(j,t) (+ is the integer addition)
Inc(j+1 mod K, t+1) = V(j,t).Qo',t).Mout(j,t)
V(§.t+1) = V(,1).Q3,0).n0t(FIU empty at cycle t) + not(Q(,1)).V(,t)

outU+)-(Counter(j,t)>0)
(-Jjst) may be P-issued*/

General comments

O One can easily verify that the P-issuing respects condition (A) in theorem 1 and also respects the
definition of standard requests, slave requests, master requests and GSRs.

O Several memory requests may be P-issued at the same time by a single processor, these requests are
destinated to distinct memory banks.

O The four stages of the IU are very simple devices. It clearly appears that the delay to cross stages A)
and B) is very limited. We may assume that this delay will be shorter than the FIFO queue clock. The

-17 -

delay to cross the stage D) is approximately equal to the FIFO queue clock : decision to read the next
word in the FIFO queue depends on the previous read word, but this decision is available after the
crossing of a very few gates. ‘

We hope that a specific device for the IU will be implemented in current Cmos technology with a clock
around 50 ns. A

O The whole control of request network (i.e the MSUs of the logical memory banks and the IUs of the
processors) may be centralized on a single board. For a 16¥16 GREEDY network, this control board
will have to receive around 8 bits of information from each processor énd to send 5 bits to each output
of the request GREEDY network.

The time lost for synchronizing the processors in the ASM is very short :
O the address computation goes on until the address computation unit is waiting for some data.
O due to its parallel P-issuing potential, the IU is not a bottleneck.
0O If DSPA processors are used, the sequencing of the instructions goes on until the sequencer is wait-

ing for some data (or the instruction FIFO queue of some FU is full).

We believe that the proposed mechanism is sufficient to efficiently execute in parallel the major part of
the algorithms used in scientific computing. Nevertheless other synchronization mechanisms may be

implemented by software using the ReadModifyWrite instruction.

3 When loop 1 becomes a parallel loop

We have simulated by software an ASM designed around DSPA processors where the INs are G-
networks, and the processors are synchronized through the mechanism proposed in the previous section.
Our goal is not to present extensive results but only to point oui that some important parallelism may

be managed at execution time.

The following characteristics have been assumed :
O Same number of processors and logical memory banks
O 8 physical banks by logical bank
O A physical memory bank is busy during Tbu s y=6 cycles by a request
0 Maximum depth of the FIFO queues of requests and data : 16
0O A hardware mechanism for RAW hazards detection is associated to every physical memory
bank. No more than 16 WRITEs waiting for data in this mechanism
O Maximum depth of the FIFO queues in the G-networks : 24
O Delay for writing a FIFO queue : 1 cycle
0O Delay for reading a FIFO queue : 1 cycle

-18 -

0O Delay for the computation of an integer addition by the address unit : 1 cycle

We have simulated the loop 1 coded as suggested in the second part of section IIL.1.4 with L=16.

Table 1 represents the average number of cycles needed for executing one iteration of loop 1 when
P[I} and Q[I] are randomly selected in [1,M].

nb proc 1 2 4 8 16

M=100 4.40 2.70 2.05 1.81 1.61

M=1,000 4.25 213 1.17 0.81 0.65

M=30,000 4.25 2.13 1.09 on 0.51

Table 1

Table 1 shows the efficiency of our P-issuing mechanism. The performance of the ASM increases
when the probability of dependencies between not very distent iterations decreases. If parallel P-issuing
had not been possible then the average time to execute one iteration of loop 1 would always have
exceeded 2 cycles, it is only equal to 0,51 cycles with 16 processors for M=30,000! These 0,51 cycles
have to be compare with the minimum delay to complete the sequence (READ of A(Q(I)), WRITE of
A(P())) which is 23 cycles in our simulator —the average delay may be two or three times longer.

The execution of more than 100 iterations of loop 1 are concurrently executed in the machine!

Conclusion
Need for performance on both vector and non-vector algorithms exists in many scientific applica-
tions. In many cases, the performance achieved by a single processor is not sufficient. The GREEDY

network ig introduced to allow a realistic implementation of

»

n Address Synchronized Multiprocessor
—5 global hardware detection of RAW hazards is performed. The control of this network is very origi-
nal for use in TCM : a producer can always send its data into a FIFO queue, but a consumer must
explicitly read the data onto FIFO queues. When using GREEDY networks to access the memory from
the processors, the actual throughput of an interleaved and pipelined memory is very close to its
theoretical throughput.

Synchronization of the processors may be done through the consuming of the memory requests by
the logical memory banks. Four types of memory requests have been introduced. Standard requests are

used to perform the accesses on which no synchronization is needed. Global Synchronization Requests

-19 -

are used to implement global join. The introduction of the master requests and slave requests allows to
process in parallel the DOACROSS loops [Cy86]. These four types of memory requests allow to imple-
ment the synchronization sections which are the most frequently needed in scientific computing.

We have proposed a very efficient and cost-effective hardware mechanism to implement the syn-
chronization of the processors through these four types of requests, the P-issuing mechanism. Time lost
during the synchronization of the processors via memory requests is very short because the sequencing
of the instructions in the processors may continue —even address computation goes on.

Efficiency of our proposition has been proven by simulations : loop 1 is a sequential loop for all
the existing supercomputers, but at execution a very high degree of parallelism may be managed on this
loop by our mechanisms.

The hardware needed for implementing the GREEDY network and the P-issuing unit with a basic
clock around 50 ns are relevant from current Cmos technology. Nevertheless simulations have proven
that an ASM with a basic clock in the 50 ns range would achieve better performance on many non-

vector codes (e.g. loop 1 and 2) than the current state-of-the-art supercomputers.

Bibliography

[Bu71] P.Budnick, D.J.Kuck "The organization and use of parallel memories”" IEEE Transactions on
Computers, Vol.C-20, pp1566-1569, Dec.1971

[Co86] K.Courtel, DESS microelectronique report June 1986 University of Rennes.

[Cy86] R.G.Cytron "Doacross: beyond vectorization for multiprocessors (Extended abstract)” Interna-
tional Conference on Parallel Processing 1986, pp836-844

[Ga83] D.Gajski, D.Kuck, D.Lawrie, A.Sameh, "Cedar : a large scale multiprocessor”, International
Conference on Parallel Processing 1983, pp521-529

{Go83] A.Gottlieb & al., "The NYU Ultracomputer - Designing an MIMD shared memory parallel com-
puter” IEEE Transactions on Computers, Vol. C-32, pp175-189, feb.1983

[Hw84] K.Hwang, F.A.Briggs, Computer architecture and parallel processing, Mac Graw Hill 1984
[Je86] Y.Jégou, A.Seznec, "Data Synchronized Pipeline Architecture : Pipelining in Multiprocessor
Environment” Proceedings of the 1986 International Conference on Parallel Processing pp487-494; also
Journal of parallel and distributed computing, pp508-526 dec.1986

[La75] D.H.Lawrie,"Access and alignment of data in an array computer”, IEEE Transactions on Com-
puters, vol C-24, pp.1145-1155, dec.1975.

[Pf85] Pfister & al "The IBM Research Parallel Processor Prototype (RP3): introduction and architec-
ture” International Conference on Parallel Processing 1985.

[Se86] A.Seznec, YJégou "Address Synchronized Multiprocessor Architecture” rapport INRIA 527 Juil-
let 1987.

[Se87a] A.Seznec, YJégou "Optimizing memory throughput in a tightly coupled multiprocessor"
Proceedings of the 1987 International Conference on Parallel Processing, pp344-346

[Se87b] A.Seznec, Y.Jégou, J.Lenfant "A new storage scheme for optimizing both vector and non-
regular accesses to memory in a tightly coupled multiprocessor” submitted.

[Se87c] A.Seznec, "Contribution 2 I’étude des multiprocesseurs fortement pipelinés” these d’état, Juin
1987, Université de Rennes 1

figure 1 : a 4*4 GREEDY network

t=0; request from P1 t=1; request from P3
11110]0 1]11{0j0
0[1{0]1 0[0{0]1

t=2; request from P1 t=3; request from P3

figure 2: load of the requests by the MSU

request network read network

A

AU - DAU

figure 3 : Data Acquisition Unit

BO

B1

B2

B3

READ IN REQUEST IN WRITE IN

fig.4 : an optimized structure of a logical memory bank

decoder

INBUF

FIU

l

0N\

to the different MSU’s

figure 5: the issuing unit

Imprimé en France
ar
PInstitut National de Recherche en Informatique et en Automatique

