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Abstract

One of the most challenging problems in the field of computing science today concerns the
development of software for more and more powerful parallel machines. In order to tackle this issue
we present a new paradigm for parallel processing; this model, called T, is based on the chemical
reaction metaphor: the only data structure is the multiset and the computation can be seen as a
succession of chemical reactions consuming elements of the multiset and producing new elements
a;:cordin g to specific rules. We detail some programming examples showing the power of the model.
Furthermore, due to its lack of imperative features, this language can be \}ery naturally implemented in
adistributed way. We describe two parallel machines supporting the execution of I-programs. These
machines differ essentially in their communication schemes: the first one is synchronous and the
second one asynchronous. So we advocate the separation of the design of programs for massively
parallel machines into two steps which can be verified in a formal way: the construction of a program

with implicit parallelism (I"-program) and its translation into a network of processes.

Keywords and phrases : para]lelism. descriptive programming, parallel evaluation, parallel

machines.
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DEUX MACHINES PARALLELES
POUR LA TRANSFORMATION DE MULTIENSEMBLES
ET LEUR STYLE DE PROGRAMMATION

L'une des gageures actuelles dans le domaine de l'informatique concerne le développement
de logiciels destinés 2 des machines parallles de plus en plus efficaces. Dans le but d'aborder ce
probéme, nous présentons un paradigme de calcul paralléle; ce modele appelé€ I' est basé sur la
métaphore de la réaction chimique : le multiensemble est la seule structure de données, et
I'évaluation peut étre vue comme une succession de réactions chimiques consommant des éléments
du multiensemble et produisant de nouveaux éléments selon des régles bien spécifiques. Nous
détaillons quelques exemples de programmation mettant en avant la puissance du modéle. Par
ailleurs, ce langage peut, de par l'absence de caractéristiques impératives, conduire a une mise en
oeuvre distribuée. Nous décrivons deux machines paralléles permettant I'exécution de programmes |
I". Ces deux machines se distinguent dans leurs schémas de communication, 1'une étant synchrone
et l'autre asynchrone. Finalement, nous préconisons la séparation de la tiche de conception de
programmes pour machines massivement paralléles en deux étapes - chacune pouvant €tre prouvée
formellement : la construction d'un programme avec parallélisme implicite (programme I') puis la

transformation en un réseau de processus.

Mots-clés.

parallélisme, programmation descriptive, évaluation paralléle, machines paralléles.
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1. Introduction.

Non conventional models of computing such as cellular automata [CODD 68], neuronic models
and systolic models [KUNG 82] are now investigated as means of describing highly parallel
computations for a wide spectrum of applications such as image processing, numerical computations,
speech understanding ...

At the same time, machines with a significant number of processing elements begin to appear
[HILLIS 85] and people may think that computing is at the dawn of the era of massively parallel
machines for the masses. In fact, we are still far from this situation because we do not know how to
master these new "monsters”. Let us quote P.J. Denning [DENNING 86]:

"We do not know how to program these new (massively parallel) machines....
The software barrier - the set of limitations that impedes our effective use of parallel
hardware technology - is not a brick wall that can be broken down with a heavy ram.
It is a deep, thick jungle through which slow progress will be achieved by constant
chopping and hacking."

So it is clear that changes in programming languages are needed...in particular it should be
possible to dynamically create computations, to synchronize them and to allow information exchange
between them. Several languages have been proposed with this aim: in particular C.A.R. Hoare
proposed a model called CSP (Communicating Sequential Processes) [HOARE 78] allowing the
definition, activation and synchronization of communicating processes. However, due to the lack of
an appropriate programming methodology, it appears that it is far more difficult to build concurrent
programs than usual sequential programs (although there are still important advances to be made in

this area as well). This is mainly due to the fact that the programmer has to mentally manage several

Our view is that this traditional approach to parallel programming is too imperative to become a
general model for concurrent programming. We believe that only very high level languages which
make parallelism implicit will allow the description of massively parallel applications.The model which
is proposed in this paper is based on the chemical reaction metaphor: the computation is a succession
of applications of rules which consume elements of a multiset while producing new ones and inserting
them in the initial multiset. The computation terminates when no rule can be applied. The application

of rules is made in a non-deterministic way and a parallel interpretation of the model is
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straightforward. So this model (called the I'-model) acts as a multiset transformer. The relevance of
this model to program construction is shown in [BANATRE 86] and [COUTANT 86] which present a
systematic method for I'-program derivation. This point is not detailed here as we are mainly interested
in machine architecture. We describe two parallel machines which support the execution of
[-programs. They differ essentially in the communication schemes between processors : the first one
is synchronous and the second one is asynchronous. So we split the construction of programs for
parallel machines into two steps: the design of a program with implicit parallelism (I"-program) and its
translation into a program with explicit parallelism (with processes). The important point is that these
two steps can be verified in a formal way. ,

The I'-model is quickly presented in section 2. Section 3 is dedicated to the construction of
I"-programs for a path-finding problem, the Minimax algorithm and the cycle detection problem.
Section 4 describes the structure of the I'-machines and gives some experimental results. The

conclusion discusses related work and suggests issues for further research.

2. The I'-model.

The I'-model can be described as a multiset transformer: the computation is a succession of
applications of rules which consume elements of the multiset while producing new elements. The
computation ends when no rule can be applied. The application of rules is performed in a

non-deterministic way and a parallel interpretation of this computational model is straightforward.

Data structures.

The basic information structuring facility is the multiset which is the same as a set except that it may
contain multiple occurrences of the same element. Atomic components of multisets may be of type

real, character, integer, tuple of type ..., multiset of type ...

-operator.
The main feature of the model is the I'-operator which can be defined in the following way:

I'R,A) (M) =
if 3 xq, ..., x; € M such that R (xg, .., X,) then
F'(RA) ( M - {X], «y Xp}) U A (X1, oy Xp) )
else M.
Operator R is called the "reaction condition"; it is a boolean function indicating in which case some
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elements of the multiset can react. The A function ("action") describes the result of this reaction. Let
us point out that if the reaction condition holds for several subsets at the same time, the choice which
is made among them is not deterministic; if these subsets are disjoint the reactions can even take place
at the same time. However appropriate restrictions on the definition of condition R and action A may
ensure determinacy; this point is not developed here.

This is not the most general definition of I'; actually the I" operator can take any number of
couples (Reaction condition, Action), each reaction condition invdicating in which case the associated
action can be applied; however most common programs can be expressed with only one couple

(Reaction condition, Action), so we will restrict our discussion to this particular case.

Examples of I"-programs.
Let us now take two examples to illustrate the programming style entailed by the I" model.

Examplel.

The sieve of Eratosthenes can be written in a concise and elegant way using I':

sieve (n) = '(R,A) ({2, ..., n}) where
R (X1, X2)
A (X1, X2)

multiple (X1, X2)
{X2}

where multiple (X1, X2) is true if and only if X1 is a multiple of X2.
The following figure describes the computation of sieve (8). Of course this is one among the possible

paths leading to the stable state.

3\6

Example 2

Let us consider a sorting program. The data structure is a multiset M of couples (index, value) where

the index X.i of an element X gives the position of the value X.v in a virtual sequence of values to be

sorted. All indexes are different and in a range [1, ..., n] where n = Card(M). The I'-program is the
4



following :

sort (M) = T (R,A) (M) where
R(X,Y) = (Xi>Yi and X.v < Y.v)
AKX, Y = {(Yi Xv), X, Y.v) }

The following figure describes the computation of?:

sort ({ (4,8),(2,5),(3,9,(1,13),5:9 D :

The stable state is reached as no couple of elements verifies the reaction condition. Of course this is

only one of the possible sequences of conﬁguratibns leading to the result.

This program can be seen as a generalized form of the exchange sort algorithm as any couple of

ill-ordered elements can exchange their positions at any time.

3. Three Programming examples.

We consider three classical applications : a minimum-path-finding program, the well-known

minimax algorithm and the problem of cycle detection in graphs.

3.1 Path-finding example.

Let us consider a directed graph in which a nonnegative cost is associated with each edge. The

purpose of the algorithm we describe here is to find the shortest path from a particular vertex r of the

graph (called the root) to each vertex v. The shortest path is defined to be the path with lowest cost,

and the cost of a path is the sum of the costs of its edges.
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The graph may be represented by a multiset of tuples (i, j, ¢, 1) where
- i and j are vertex identifiers such that (i, j) is an edge of the graph,
- ¢ is the cost of the edge (i, j),
- lis the length of the shortest known path from the root r to vertex j via vertex i.
In the following diagrams, we represent these tuples as (i, j) |

c
Considering the directed graph :

\7 l/z\‘n

3/

the initial multiset My representing this graph is :

The following program computes the shortest path raij, where o denotes a sequence of vertices, for
each edge (i,j) of the graph :

I'(RLAL) (MO0 v {(r,r,0,0)} )
R1(X,Y) =

where

X.j = Yi) and (X1 + Yoc < Y.

ALX,Y) { X,

(Y., Y.j. Y.e. XiI + Y.©) }
A tuple (r;r) is added to M, to represent the root and to ensure the start of computation.
0 .

. Two tuples (a,b)}; and (b,c);, may interact if the path raabe of length 11 + ¢2 is shorter than the path
cl c2



Bbc of length 12. The action updates the length 12 of the shortest known _path from the root to vertex C.
Let us describe a possible evolution of the multiset M = Mg U {(1,1,0,0)} during the evaluation of

[(R1,A1) ( M).

(1.2)2
2

(1.3)15
15

(2,3)e
2

(3.4)10
1

(2,4)7———(4,3)12
2 2

(44,1 )8

The final multiset M1 may contain tuples (i,a);; , (i,a)lj where i # j. In order to define the
ci cj

shortest path,it is necessary to keep only the tuple (k,a); withlk=Min]j s.t. (i,a)lj e MI1.
ck cj

The following I'-program performs the appropriate computation :

I'(Ry,A,) (M) where



R, (X,Y)
A,y (X,Y)

X.j = Y.j) and (XiI 2 Y.])
{Y}

The figure below gives a possible evolution of M1 during the evaluation of I'(Ry,A2)(M1).

We have defined a program which computes the tree of the shortest paths (if any) from a given rootr

to the vertices in a graph. This program is a composition of two I"-programs :

shortest_paths (r, Mg) = I'(Rj,A5) (I'(R1,A1) (Mg U { (r,r,0,0)} ) )

Ry(X,Y) = (Xj=VY.) and X1+ Yec < YD)
ApXY) = {X, (Y, Y.j, Ye, XA + Y.0) }
Ry (X,Y) = (X.j = Y.j) and (X1 2 Y.D)

Ay (X,Y) {Y}

3.2 Minimax example.

Minimacx is a technique for searching game-trees, in order to determine the best move in a given

position of a game with two adversaries | WINSTON 84]. The nodes in a game-tree represent poard

conﬁgurafions, and they are linked by branches representing the possible moves between them. The

algorithm starts with a partially developed lookahead game-tree in which the leaves are associated with
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advantage-specifying values. Suppose that positive numbers indicate favour to one player, called the
maximizing player (the player wanting to maximize the score), and negative numbers indicate favour
to the other, the minimizing player. The maximizing player is looking for a path leading to the largest
positive score aséuming that his opponent will always make the best choice (thus minimizing the
score). So the value of a node is evaluated by taking the minimum or the maximum of the values of its
éons, according to the level of node. Working up from the Iea\-/cs, the values of the possible moves in

the initial state are computed, and the best move is finally determined. Let us take an example of a

game-tree :

Maximizing level

a

b/ \c Minimizing level
d/\e f g[\h

1 7 9 3 2

In this case, b should get the value 1 = min (1,7) and ¢ the value 2 = min (9,3,2). Finally a gets the

value 2 and c represents the best move for the player.

e

Let us now express the MINIMAX algorithm in the I'-formalism. The data structure must
represent the nodes of the tree, the relationships between them, their level and their value. These
requirements lead us to define a multiset of tuples (ident, father, level, nsons, cval) where

- ident is the identifier of the node,
- father is the identifier of the father of the node; so (father, ident) is a branch of the tree,
- level is the function max or min corresponding to the level of the node,
- nsons is the number of sons of the node,
- cval is the current value of the node.
We represent such a tuple in a graphic way by : (father, ident) level
nsons  cval

Let M be the multiset corresponding to the previous game-tree, its representation is the following:



(0,) max
2 - oo

(a,c)min

03

MINIMAX can be defined in I" by :

Minimax (M) = T’ (R,A) (M), where
R(X,Y) = (X.ident = Y.father) and (Y.nsons = 0)

A(X,Y)={(X.ident,X.father,X.level,X.nsons -1,X.level(X.cval,Y.cval))}

Two tuples X and Y may interact if the node represented by X is the father of the node
represented by Y, and the node represented by Y is a leaf of the current tree. The action removes the
tuple Y and updates the tuple X : X has one child less as Y is removed from the tree, and the value of
X is replaced by the maximum or the minimum of the values of the nodes. The following figure

describes one possible evolution of the multiset during the evaluation of Minimax (M).

(o'a) max
2 - o0

/(az,b)+moin /(aa'c-i-):in b/\c
(b, d)max o f)max (c, hymax d/\ /I\h

S 7 (c,f) o e f g
0 1 7 9 3 2

(c,_g)_max
0 7 0 3
a
N

; b/ \(i\K

NN

7 3 2
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(0,a) max
2 - oo

(a,©)min

(0,a)max
o 2

So the value we are looking for, in this case the value 2, is the cval field of the unique element of the

result.

3.3 Cycle detection in a non-directed graph.

The purpose of this algorithm is to detect cycles in a non-directed graph. The graph is
represented by a multiset E of couples (e,V) where e is a vertex and V the set of neighbours of this
vertex.

Consider the following graph :

Its representation is the following :

(a, {b})

(b,{a,c,d})

(e,{f})

(c,{b,d}) (f.{e})
(d.{c,b})

In order to find the cycles, we use the following property : if a graph is such that every vertex

11



has at least two neighbours, then it contains only cycles. The program will proceed by detecting
vertices isolated or with only one neighbour and eliminating them. Vertices which are not eliminated at

the end of the computation belong to a cycle.

The program can be expressed as :

cycles (E) = T'((Ry,Aq), (Ry,A3)) (Eg) where
Ri((e1,Vq)s(e3,Va)) = (Va = {e1})
Aq((e1,Vy)s(e3,Va)) = {(e1,V1-{ea})}

R, ((e,V)) = (Card(V) = 0)

Ajy((e,V)) = {}
R detects a vertex e with only one neighbour (V5 = {e1}) and A1 eliminates it from the multiset;
R, detects vertices without any neighbour and eliminates them.

Let us describe a possible execution of I'((R1,A1), (R2,A2)) when applied to the multiset M

represented above :

€
; /
f
c d
(b,{c,d)) (e.(}) b &

Lm b

(c.(b,d}) (d.{c,b})

12



4. Two parallel machines implementing the I'-model.

The evaluation of [-programs involves two different kinds of tasks :

(1) the search of the elements of the multiset verifying the reaction condition,

(2) the application of the action to these elements.

The action application is clearly a local operation : it can be carried out independently of other actions
on the test of the multiset. So the main problem to tackle while designing a parallel implementation is
the distribution of the search process. For the sake of simplicity, we assume that we have a network of
vproccsses and that they are as many processors as there are values in the multiset. The general case can
be handled in the very same way by considering sets of values instead of values.

The first choice concerning the implementation of the search process concerns the move of
values; as all couples of values have to be realized, we have two solutions : either we consider an
interconnection network (and the values do not have to move through the network), or we assume that
values move through the network. In the first case, the examination of all pairs will be achieved by a
communication protocol insuring that any processor will communicate with any other processor in a
finite amount of time. In the second case, the realization of all couples will depend on the movement
protocol indicating the direction in which values have to move. A second implementation choice
concerns the control of the system; this control can be centralized : one processor has an overall view
of the network and is responsible for the communication protocol and termination. When the control is
ditributed, no processor has a general view of the system and each particular processing element must
take decisions concerning communication and termination. This second solution may present a higher
level of parallelism, as the synchronization is less constraining. However, problems such as absence
of deadlock, or termination detection are more difficult to tackle and may entail a loss of efficiency.
We explain now in detail two solutions for the parallel implementation of I' : the first one is centralized
and based on an interconnection network, and the second one is distributed and relies on a chain

architecture.

4.1. A synchronous I'-machine.
We describe the general organization of a synchronous I-machine built on an interconnection
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network with centralized control, and then give an example of execution.

4.1.1 General organisation.

:i.*'The overall organization of this machine can be figured out as follows :

ctrl I

where :  Pi, Mi represent processors with their local memory,
ctrl is the controller which issues commands to Pi's via a communication medium cm
(an interconnection network). At each step, processor ctrl spreads a signal over the
network to trigger the communications.

From this figure, it is clear that there is a logical connection between every couple of

processors.

In order to form all possible pairs and thus try all possible reactions, it is possible to design a
n-step iterative algorithm as follows : to each processor k from O to n-1 is attached a variable iy
representing the identity of the processor with which processor k has td communicate in order to
evaluate the reaction condition. The values iy are initialized to (n-k) mod n. At the end of each step, the
value of each variable iy is modified in the following way : iy := (i} + 1) mod n, thus producing a
new configuration, and a new set of pairs. The figure below presents the set of configurations

obtained for a network of 8 processors. Uncoupled values are represented by a X-symbol.

value

state O 1 2 3 4 5 6 7
0 X [ L : X 2 . I

1 , L e ;

2 L x ; L ' X I I

3 | I ' L | — |

4 L L pat J \ , X .

5 L L I J ] L

6 |, L L X ] ' . x

7 L | SR e S | ]
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In the first state, the processor ctrl triggers (by sending a signal) the communications between
§rocessors 1 and 7, 2 and 6, 3 and 5; processors O and 4 remain inactive. When a processor has
finished its computation, it sends a signal to the controller. So when the controller has received n
signals, the current step is over and a new signal is spread over the network (if the termination state is
not yet achieved).

One can notice that any sequence of n steps generates all possible configurations starting from any
step. This property is exploited to detect termination : the system can stop whenever n-1 successive
configurations have been tried without any reaction. In order to check this property, a variable t is
attached to the controller. This variable is initialized to O and is incremented by one at each step
without reaction. If a reaction occurs, t is reset to 0; this means that the controller is aware of any
reaction, so when a reaction occurs on a processor Pi, the processor Pi sends a signal to the controller.
Let us now describe the behaviour of the processes in a formal way. To this aim we use the language

CSP ([HOARE 78]). We just recall the most important constructs of the language :

P?V where P is a process name and V a variable name, is the input of
a value from P. After execution, V denotes the imported value. '

P!E where P is a process name and E an expression, is the output of
the value of E to the process P.

[GCy Il ... 11 GCp.1]1 where GCy, ..., GC,.; are Guarded Commands, is an

alternative command : it executes one arbitrarily selected

executable guarded command.

*[GCq I! ... |1 GCy_1] where GCy, ..., GC,,.1are Guarded Commands, is a repetitive
command : it executes one executable guarded command
(arbitrarily selected) until all guards fail.
(1lii=0,n-1) GCi] where GCy, ..., GC_1 are Guarded Commands, is a
shorthand notation for [ GCO |} ... || GCn-1]
Pii=0n-1)'E is a broadcast of expression E to processes PO, ..., Pn-1.

ctrl denotes the controller process and Pi (i=0,n-1) the calculus processes.
The following signals are sent or received by the controller :
'S1 signal sent to processors Pi to trigger the communications.
S2 signal sent by a processor Pi to ctrl after occurence of a reaction.
s3 " " " " " at the end of a computation without reaction.

15



begin
ctrl ::  begin
signal S1,S2,S3;
var signal §;
var int t init 0;
*Pi(i=0,n-1)1'S1 — (bool m init false;
*[|]i(i=0n-1) Pi?S = [S=52 > m:=tme

$ =53 — skip]
I :
[(m—>t:=0 || Im—> t:=t+1]
)

[t=n-1- exit || t<n-1- skip ]
end
Pi :: begin
ygggpeVVi,Vik;
var int iy init (n-i) mod n;

signal S1,52,83;
¥crl?S1 - [ik <i - [P(ik) Vi - PGy) ? Vi,
ctrl 1 S3 ]
I
i >i =[P ? Vig —
[R(Vi, Vi) = (V i,Vip) = A(Vi,Vig);
P ! Vig;
ctrl ! S2
H
R(Vik,Vi) - (Vi,Vik) =AV ik,Vi);
P(ik) ! Vik;
cal ! S§2
I
-iR(' Vi, Vi) AR ('v'ik,'v’i) — P(ik % ik;
ctrf 1 83
]
]
I
k=1 — ctul!S3
L
ik :=(ik+ IDmodn
]
end

16



4.1.2. Example of execution.
The following figure describes a possible evaluation of sieve : 8. The initial multiset is

{2, ..., 8} The values are represented by relief numbers; the empty value is .
processor

variable t
state 0. 1 2 3 4 5 6
0 2 3 4 5 6 7 8 » 0
X | L L 1
1 2 3 4 5 6* 7 8 reacﬁon 4 _ 8 0
—— 1 [} J 1
2 % i 4 S 6 7 @ reaction 2-4 0
" | __L-—_=_—| ,|
2 3 o 5 6 7 @ 1
3 1 | S—— | 1 L X
2 3 @ 5 6 7 o .
4 | | X Y reaction 2-6 0
5 2 3 @ 85 © 7 @ 1
1 L — — 1 x
2 3 @ 5 @ 7 2]
6 . t X 4 r | 2
0 2 3 2] 5 -] 7 @ 3
X L L L ] i
1 2 3 @ 5 2] 7 o ' 4
X
I 1 L - ]
2 2 3 @ 5 @ 7 @ 5
L x 1 L | E—| |
3 2 3 o 5 o 7 @ 6
L | S 1 L X 1

On this particular example, a good improvement would be to reset t to zero only if a new value is
created (which may interact with others). As the value ¢ can be considered as neutral, it will
never react with other values. So, the evaluation of sieve : 8 could be done in only 7 steps.

4.2. An asynchronous I'-machine.

The proposed solution consists in spreading the values of the multiset over a vector of
processors. There is no shared memory in the system and a processor only knows its two neighbours. -
Each value V is associated with two integer indicators N1 and N2 and a boolean direction D (True

means forwards and False means backwards). A value V can only move in the direction D and this
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direction is inverted only when the value reaches one end of the network. This ensures that two values
must meet after a finite amount of time (actually after at most N-1 exchanges if N is the total number of
processors). Indicators N1 and N2 are used to detect that no more reactions can occur in the system.
N1 is the number of exchanges undergone by a value and N2 is the number of consecutive exchanges
with values V' such that N1'> N-1. It can be proved that if a value possesses an indicator N2 such
that N2 = N-1, then no more reactions can occur in the system. Let us now describe in a more formal
way the behaviour of a processor i.

We assume that we have N processes P(1), ..., P(N) (one per processor); the algorithm

executed by an intermediate process is the following :

local variables :

typeV'V: value.

bool D : direction of the value.

intNy,Ny: indicators.

intN: total number of processors.

typeV V': working value.

int N{', Ny': working variables.

* [ Np=N-1 —  exit
Il Np#N-1andD —  P@+1)! (V,Ny,Np);

P@i+1) ? (V,Ny, Ny);
D =F

I Np#N-land—D  — P(-1)?(V,N{,Np);
[R(V,V) = {V,V}:=A(V,V);
. (Nl’ N2, Nl" N2') :=(0,0,0,0)
H
R(V,Y) = {V,V}:=ANV);
(N, Np, Ny', Np) = (0,0,0,0)
H
1RV, V) AIRVV) -
(N, Np) = Ny + 1Ny + 1);
[ N\2N-1A Ny'2N-1 -
(N, Np) i= (Np+1, Np'+1)
Il T(N;j2N-1A N{'2N-1) >
(No, N3 := (0,0)

]
Pi-1)! (V,Nj,Np);
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(V,N{,Np) = (V',N{, N»");
D:=T

Processors P and P execute the same piece of code except that D is always True for Py and
always False for P.

The basic task executed by a processor consists in communicating with one of its nci_ghbvours
(according to the direction of its value) and to apply R on their values; if R turns out to be false, the
processors exchange their values and update the indicators; otherwise A is applied and the new values
(with indicators set to zero) are shared by the two processors. Furthermore we can prove that if any
processor with N2 = N-1 stops, there will be no further attempt in the system to communicate with it.
So we have a completely distributed termination condition.

The correctness of this distributed implementation has been proved : no deadlock can occur in
the system and the system stops if and only if no more reactions can occur. The proof takes advantage
of the regularity of the network and the communication scheme. The central property is the fact that in

N-1 consecutive exchanges a value is exchanged with N-1 different values.
Example of execution on the I"-machine.

In order to illustrate this algorithm, we describe one possible execution of the sieve example
described in section 2. Directions are figured by arrows over the values and indicators Ny and N are
represented in index position. Communicating processors are underlined. The symbol Q denotes the
dummy value (or absence of value): the only particularity of this value is that it cannot react with any
other value. In this example a dummy value is generated when a reaction takes place since a reaction
produces only one element.

This figure represents snapshots of one among many possible computations of this program.
We can however notice a few interesting points about this example :

- the system has a self-balancing property : although we have chosen arbitrary initial directions,

the system organized itself so that, after some steps, all inner processors are always involved in

a communication. This property is true whenever the tasks executed by each processor take the

same time.

19



- there is no deadlock in the system : this property can be formally proved.

- the termination test works correctly : when a processor stops, no neighbour will attempt

communicate with it.
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4.3 Experimental results and discussion.

The second proposal has been implemented on an iPSC hypercube with 16 processors. The
machine is configured as a chain of processors and processes described above are associated with
node processors. An appropriate interface allowing the observation of the computation has also been
developed.

The results obtained are encouraging since the execution time can be divided by a factor ranging
from 5 to 12 on examples such as those presented in section 2. The following figures describe the
results obtained for the sieve of Eratosthenes : they give the evolution of the execution time with a

number of processors ranging from 1 to 16.

-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1:sieve:30 2:sieve:40 3:sieve:50 4:sieve:60

The results can still be improved significantly by some simple optimizations.

The first proposal has not been experimented on iPSC because this machine is
asynchronous and it is obvious that the implementation of synchrony will take too much
overhead. In order to fully assess this synchronous I'-machine, it would be necessary to evaluate
it on a synchronous machine such a connection machine or a SIMD machine. Let us notice that
termination detection is performed in a much simpler wéy with the synchronous machine than

with the asynchronous one, but the synchronization constraints involve a loss of parallelism.
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5. Discussion and issues for further research.

This paper has presented a model of computation called I". We have shown the relevance of
T to different classical applications such as AI problems (Minimax algorithm) and graph
problems (path-finding, cycle detection). The descriptive nature of the language makes it suitable
for a highly parallel interpretation. Two parallel architectures have been proposed : (i) a
" synchronous machine assuming that processors change their states every time period and that
there is a connection between any couple of processors and (ii) an asynchronous machine where
control is fully distributed and values have to move through the network in order to allow the
examination of all pairs. An experimentation of this latter machine on iPSC has also been
presented.

In the rest of this section, we compare the I'-model with the model of guarded commands,
give some details on the I'-program development method and present some further research

ideas.

5.1 Relationship between the guarded command and the I-model.
The reader may wonder about the relationship between our proposal and the Dijkstra
guarded command construct. Actually, let us show how guarded commands may be expressed in

the [-model. An iterative guarded command looks as follows :

*[ C(x) —-> ¥(x) ]
It expresses that the ioop will go on applying ¥ to the variable x while C{x) remains trae. Ii can

* be translated into the following I'-program:

rC', ¥y where
C'(y)=C(y)
Y'(y)={¥ ()}

The reaction condition expresses that if the unique element y of the multiset is such that C(y) then
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it is replaced by ¥(y).
More generally, a loop composed of n guarded commands and operating on k variables

denoted by the vector X=(x{, ..., X) may be written as:
*[ C1(X) ---> ¥1(X)

Cp(X) ---> ¥p(X)
]

and translated into:

T((C'gs ¥'p)seer o(C'ps¥'p))  where
C'i(y)=Ci(y)
¥li(y)={¥i (y)}

In these examples, the state of computation is represented by the state of the variables. The
net effect of executing a statement ¥; is to change the values of the variables. Of course, no
parallelism is possible as in both cases the argument multiset possesses only one element. There
is no simple way of allowing several actions to operate simultaneously on disjoint subsets of the
global state. This could only be achieved by explicitly programming the constitution of
multisets and their modification. Even this solution would imply very important changes in the

- semantics of the usual guarded commands. Furthermore, the data structuring facilities (arrays)
used in conjunction with guarded commands entail a sequential style of programming. It is clear
that more descriptive and more general data structures are necessary in order to construct

programs with a high potental for parallelism.

5.2 Program development for I'-machines.
Another interest of the I-model is that it can be used as a basis for systematic program
derivation.
Our program derivation technique is quite similar to the method used in [DIJKSTRA 76]
and [GRIES 81]. The specification S is split up into two parts Iand V such that IAV = S.11is
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an invariant preperty which should remain true throughout the computation whereas V is the
property which should be established at the end of the computation. The application of this
' technique in [DIJKSTRA 76] and [GRIES 81] allows the development of iterations; as far.as we
are concerned, we derive I'-programs.

As an introduction to the method, let us derive the sieve program. Let M be the multiset
being transformed during the computation of sieve(n), the initial statc of M is the set of all

integers in the range 2..n, and the specification S (in first order logic language) of the final state

of Mmaybe:
(1 VxeM xe [2.n]
(2) Vx e [2.n] (Vy € [2..n] -lmultiple(x,y) = x € M)
3) VxVy e M ]multiple(x,y)

That is to say : (1) M must contain only elements from the range 2..n ; (2) all prime numbers in
the range 2..n belong to M ; and (3) each element of M is a prime number. We choose = (1) A
(2) as the invariant as it is a weakened form of S which is true for the initial state. The
computation has to take place as long as the variant V = (3) does not hold; in other words, as
long as the formula |V =3x Jy € M multiple(x,y) is true. This is expressed by a reaction
condition R(x,y) = multiple(x,y). The associated action has to preserve the invariant and to
transform the multiset in "the right direction” (so as to reach a state verifying the variant property
in a finite number of steps). Let us choose as a termination function f(M) the number of couples
(x,y) of elements of M such that multiple(x,y); f(M) is bounded by 0. According to the invariant,
the action can (1) neither add a value, (2) nor remove the value y as it may be a prime number; so
the only possible action is A(x,y) = {y}. This action maintains the invariant I ; and as a non

prime number is eliminated from M, there is at least one couple of multiples less in M, hence

sieve(n) = I'(R,A) ({2, ..., n}) where
R(x,y) = multiple(x,y)
A(xy) = {y}

The interested reader may refer to ((BANATRE 87], [COUTANT 86]) for the description

of the systematic method for the derivation of [-programs.
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5.3 Issues for further research.

The work presented in this paper may be pursued along several lines, let us mention some

of them.
Improvement of the evaluation scheme.

Several optimizations may be proposed in order to improve the performance of the
I-machines presented in section 4. As far as the synchronous I'-machine is concerned, one may
imagine to consider the destruction of a value as an absence of reaction and then the variable t has
not to be reset to zero (this situation occurs on the sieve example exhibited in section 4.1). This
simple optimization can avoid unnecessary steps which would not involve any reaction.

Concerning the asynchronous machine, an obvious improvement consists in associating
two values V; and V;, with each processor. The basic cycle of a processor would be to send
V41 to the right neighbour, to wait for a value from the left neighbour and to apply R (and
possibly A) to this value and the local value V;. Then a processor has to send its result to the left
neighbour, wait for the result of the right neighbour and apply R (and possibly A) on its two
local values. In other terms, a processor would behave exactly as a couple of neighbour
~ processors in the previous system. This modification has a drastic effect on the efficiency as, in
the best case, it allows us to halve execution time, or to achieve the same performance with half
the number of processors. Other optimizations are currently under investigation and other
evaluation schemes are under consideration.

Static analysis of I'-programs.

Another way of optimizing I'-programs could be by static analysis of their logical
properties and program transformation. To come back to the optimization suggested above for the
synchronous I'-machine, it could be interesting to study the body of the action and the
" transformations applied to the aguments in order to decide whether the improvement may be

applied or not. This topic should receive further attention in the future.

Implementation of m for matic pri velopment.

An interesting area of investigation concerns the design of a suitable programmer interface
for semi-automatic program development. Such an interface would allow for representation of
relevant informations concerning the development process such as invariant and variant
properties, a record of choices already investigated and of the choices still to be considered...
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It would also be very interesting to put forward a method allowing the analysis of failures
in the program development process. Such an analysis would certainly improve the productivity
of the programmer and most probably clarify our understanding of this program development

process.
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