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- Abstract

We discretize in time with step-size h a Stochastic Differential Equation whose solution

has a unique invariant probability measure y; if (Y:, p € IN) is the solution of the discretized
system, we give an estimate of

1 N

| [ r@duta) - tim 55 1) Q)

p=1

in terms of h for several discretization methods.
In particular, methods which are of second order for the approximation of Ef(X;) in
finite time are shown to be generically of second order for the ergodic criterium (1).

Résumé

Nous discrétisons en temps avec un pas de temps noté h une Equation Différentielle

. . R . . . . o
Stochastique dont la solution posséde une unique mesure invariante u ; si (X,,p € IN) est la
solution du systéme discrétisé, nous estimons en fonction de h l'erreur

N
JRECUCEM S DM

correspondant a plusieurs méthodes de discrétisation.
En particulier, nous montrons que les méthodes du second ordre pour Papproximation
de Ef(X:) en temps fini sont génériquement du second ordre pour le critére ergodique (1).

*submitted for publication
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1 Introduction

We consider the Stochastic Differential System of dimension d, driven by a Wiener process of
dimension r :

X, = Xo+ /0 *B(X,) do + [ o(X)aw, (2)

The solution starting at = € IR? will be denoted by (Xi(z)).

At our knowledge, up to now the numerical analysis of the Stochastic Differential Systems
has essentially followed five directions : mean-square approximation (Clark and Cameron [2],
Milshtein [10], Platen [17], Rumelin [18]), pathwise approximation (Talay [19]), approximation of
expectations of the solution (Milshtein [11], Milshtein [12], Talay [20], Talay [21]), construction
of schemes asymptotically efficient for the minimization of the normalized quadratic mean error
~ (Clark (3], Newton [13]), numerical computation of Lyapunov exponents of bilinear systems

(Pardoux & Talay [16]). : '

A review of the main results concerning the first three points can be found in Pardoux &
Talay [15].

Here, we will suppose that the solution of the system (2) has a unique invariant measure u.

For many applications, it is interesting to compute the integral of a given function f with
respect to u, for example in order to get the asymptotic value of Ef(X;).

Under the hypotheses of this paper, u will have a density, p. One way to compute [ f(z)du(z)
could be to solve the stationary Focker-Plank equation L*p = 0, where L* is the adjoint of the
infinitesimal generator of the process (X;).

But the stationary Focker-Plank equation is a P.D.E., and its numerical resolution could be
extremely difficult or impossible, especially when the dimension of the state-space, d, is large.

In [5], Gerardi, Marchetti & Rosa propose to approximate (X;) by a sequence of pure jump
processes which converge in law.

We propose an alternative strategy.

Our first objective is to discretize in time the system (2), so that the solution of the discretized
system can easily be simulated on a computer; h denoting the step-size of the discretization,
and (-)—(’:,l ,p € IN) being the approximating process, our second objective is to give, in terms of
h, a bound for the error :

|[ 1@)dutz) - | tim 1K)

In practice, one will choose a large enough N (according to a procedure which will be.

discussed in Section (4.2)), and one will compute :

S . <h |
¥ 2 /%) (3)

The paper is organized as follows :

Section 2 : we present discretization methods of Stochastic Differential Equations, and for a
particular S.D.E., we compute the order of the errors (1) ;

Section 3 : we formulate our hypotheses, and we state our main results ;
Section 4 : we give results of illustrative numerical experiments ;

Sections 5,6,7 : these Sections are devoted to the proofs.

"y,



2 Discretization Methods of S.D.E.

2.1 Notations and definitions

o for any real process (Y3) :
A}LY = Ypr)n— You

e for any matrix o, o; will denote the j** column of o ; if ¢(z1,...,z4) is a matrix-valued
application, d0; denotes the matrix-valued application whose element of the i** line and
kt® row is oot .

e the sequence
( p+l> +1’J:k=1’~'-7r,p€]N)

will be a family of independent random variables ; the (U +1) are i.i.d. and must satisfy
the following conditions :

BV}, = B[V}, = E[U,,)* = 0 (4)
BULL? = 1 (5)
EU +1]4 = 3 (6)
E[U +1]6 < 4oo (7

the (Z:il) are i.i.d., their common law being defined by :

.1 : 1
P Zk P Zl: _
(%’ E) (%’ 2
for example, one could choose :

UJ

p+1 \/E

but also one could choose for U; +1 the discrete law of mass 2 at 0 and of mass { at the

points +4/3 and —/3 ;
e the family (S;‘j ) is defined by :

h
—=ak Wi

kj ki .
Spi1 Uy+l Uy + 255, » k<
. b )
Sp+1 = Up+1 U;n Z3, » k>3
sy = 5 (@ -1

Finally, in all the sequel of this Section, we will suppose that the functions b, o are of class
C* with bounded derivatives.



2.2 Milshtein scheme

The “Milshtein scheme” is defined by :

r r

<h h <M\ i ~h Thy Py okl

Xpi1 =X, + Za,-(x,)U; VR +(X)h+ D aa,(x,)a,,(xp)s:ilh (8)
Jj=1 ik=1

Under the above assumptions on b and o, for all function f of class C® such that f and
all its derivatives have an at most polynomial growth at infinity, one can show (see Talay [20]
or [21], Milshtein [12]) :

Vp>0,3C,,Yh<1 : |Ef(X,)~Ef(X") <C,h
P 4 } 4 P

2.3 Two examples of second-order discretization schemes

We define the matrix a and the vectors A; by (with the usual convention for the summation
indices) :

a = oo
1, 1 &,
A = —a,a,,w,-=— Z a; 80
2 2k,l:l

Besides, we will denote by L the infinitesimal generator of the process (X;) :
1
L =b:0; + ai;0;;

We consider the scheme defined by :

r r
<h <h —=h y —h -~—h —h .
Xpt1 = X, + Z af(Xp)U;H\/,_' +b(Xp)h+ Z a”j(Xp)Uk(Xp)S:ilh
i=1 jk=1
1¢ —hy _ =h —hy, <k —h\ 1 i 23, 1 . —h
+3 Zl {90(%3)a; (%) + 00;(Xp)b(Xy) + A; (X)) UZ, 115 + SLUE,)A? (9)
J:

Then, under the same hypotheses on b, ¢ and f as above, one can show (see Talay [20]
or [21] Milshtein [12]) :

Vp>0,3C,,Yh <1 : |Ef(X,s) — Ef(X})| < Cph? (10)

Another example of a scheme satisfying the previous property is the “MCRK” scheme of

alaey [91]
.Amu’ I“LJI

2.4 Second-order discretization schemes

In this Section, 7, will be the o-algebra generated by (78 , ...,Y:).

In Talay [21], it is shown that a sufficient condition for a scheme to satisfy (10) is the set
of hypotheses (C1), (C2), (C3) below (which is satisfied by the Monte-Carlo and the MCRK
schemes) :



(C1) Xt = Xo
(C2) VaneIN,VNeN,3C>0,¥p< N , E[X}r<C

(C3) the following properties are satisfied for all p € IN, where all the right-side terms of the
equalities must be understood evaluated at —fp

- 1
E (A:HX!'TP) = bh+ —(Lb)h2 +é11 , Elépa| < CH
E((ah, X)) (A, X)" )Iff'p) = 0"0"h+(b”b"+ 23:;, 0} 0k,0}0]" o}”

L 1 .
+ Ea,cb"a‘.*a; + Eakb"a;.“a;‘

+% ;‘6 oibk + 10"8 o} b
+ i ;‘6“0""0"0‘ + ia;’aua“a !)h?
+&4 » Elgyil<ch
E((AkaX) ... (AkaX))F,) = (Fofef + 600l + 600} 0}
—al’a o} a;.‘oj + —0;38ka;’a;‘af

—0133 a a"a +%a’ 19 a"a;’ak

+ la 119, 0'30'3 0% + la 229, a"a""a" h?
2 l 1 7 ) 2 ]

+ Et)tgts , Elfi'liglal S Chs
((A IX)"...(A:,‘+1'X_)"‘)|}’,,) = (¢r'-‘¢7.o'x o} +a"a'3al a +a"a o}20;°)h?
+ Eq e , | u..ul < Ch3
E((ak X) .. (AR, XYe)7,) = €y, Ejgh| < CR
E((ApaX)" .. (ApaX)o)F) = gii® , Blgh™l < Ck

Definition

A discretization scheme will be called a “second-order scheme” if it satisfies the Condition (C3).

2.5 Ergodic situation : one example

Let us consider the Ornstein-Uhlenbeck process solution of :
t
Xe=Xo - [ Xods+ VAW,
0
Its invariant measure u is the Gaussian law N(0,1) .

Proposition 2.1 For any continuous function f which has an at most polynomsial growth at
infinity, and for any starting point z :



if (7:,' (z)) 18 defined by the Milshtein scheme (8) with initial value

78 (z)==
with the particular choice '
VAU = g W
then :
D . A,
lim 35~ 1} (@) = [ f(2)du(z) +O() , as (11)
Nooo N p=1
2. o (7:(2)) 18 defined by the scheme (9), with \/iz_UgH = A:,'HW,then :
1 ¥ —~h
dim =3 1Xp(@) = [ f(z)du(z) + O(R?) , e (12)
—00 p=1
Proof
Let us show (11).
The gaussian measure z* with mean zero and variance equal to
1
i

is invariant for the Markov chain (_X-: )
All the transition probabilities of that chain are equivalent to Lebesgue measure. Therefore,
any invariant measure has the same property ; hence, as a consequence of the ergodic theorem,

» is the unique invariant probability measure of (—)?;,') , and (11) follows directly.
The proof of (12) is similar , except that the invariant probability measure is the gaussian

73
measure with mean zero and variance equal to
2
1-h+%
- A2 _ R
1-h+% -3
3 Main Results
3.1 Hypotheses
Wn wanall dh.é aoweet?l Jondos Lee T oabn e tinnton ol o ok o Al —mmmcne VY e L. .
TYC ATVail viiau WC Wiil Uclioue VY 4 Wie ullliivesiimial 5 el AVl U1 Luie plUl.t:aa k/\t}, Bivel U’ .
1
L = b0 + %505

We suppose :
(H1) the functions b, ¢ are of class C* with bounded derivatives of any order ; the function o

is bounded



(H2) the operator L is uniformly elliptic : there exists a positive constant a such that :

vee R , ) a;i(z)ziz; > ofz|?
1)

(H3) there exists a strictly positive constant 8 and a compact set K such that :

Vce R - K , z-b(z) < -Blz|*

It is well known that (H1) and (H3) is a (even too strong) sufficient condition for (X;) to be
ergodic (see Hasminskii [6] e.g.) : (X;) has a unique invariant probability measure, 4, and (H2)
implies the existence of a smooth density p(z) for u. )

Moreover :

Proposition 3.1 (i) Under (H1) and (H3), the following holds :

Vn eIN, 3Cr >0, 39, >0 : E|X¢(2)|® < Cn(l + |z|[* exp(—7nt)) , Vt, Vz (13)

(#i) The unique invariant probability measure of (X;), p, has a smooth density p(z) and finite
moments of any order.

Proof

(i) The inequality can easily be proved by recurrence and by applying the Ito formula.

(ii) We just remark that for any compact set K :
[ lalpla)dz = lim B(X,()"Lx (Xi(=))) < Cn
K t—+o0

. where C,, is the constant in (13).

It remains to let K increase to R%. O

3.2 Statement of the Theorems

We will say that a discretization scheme is ergodic if the Markov chain defined by the scheme is
ergodic.

The common law of the family (Ug+1) may be so singular that the associated scheme is not
ergodic.

Let us give an example of such a situation : let us consider the one-dimensional system
defined by b(z) = sign(z) and o(z) = 1, h = /3, Milshtein scheme, and let us choose the
discrete law defined in Section 2.1 ; then the law of (7: (z)) charges the set z + /32 (where
Z is the set of relative integers); therefore, the process has an infinite number of invariant
probability measures.

But that degenerate situation cannot arise with the natural choice for defining (Ug +1) (other
choices surely are also possible, but there is no reason to simulate more complicated laws than
gaussian laws on a computer, so we have not searched a more general result, which would be
more difficult to establish).



Theorem 3.2 Suppose ]

VhU},y = A3 W
Then, for all step-size h small enough, the Milshtein scheme, as well as the second-order schemes
Monte-Carlo and MCRK of Section (2.4), are ergodic.

Now we will state our main result.

The space CJ° will denote the space of numerical functions f of IR? of class C®, which have
the property that f, as well as all its derivatives, have an at most polynomial growth at infinity.

Theorem 3.3 Suppose that the hypotheses (H1), (H2), (H3) hold.
Then, for any function f of C3° : ‘

1. if the Milshtein scheme (8) is ergodic, it satisfies :

o1&
A}‘_’&Yv‘g f(Xt () = f f(2)du(z) + O(h) , a.s.
2. any ergodic second-order scheme satisfies :

lim 1 f: I(Yh(a:)) = /f(a:)d () +O(h?) , as (14)
oo N 2 11 # 8

Let us next state a technical result about Ef(X;(z)), which will be the key of all our proofs.

Notation

In the statement below and in all the sequel, the operators @, V and D applied to a function
u(t, z) always refer to derivations with respect to spatial coordinates.

We will often write u(t) instead of u(t, z).

Theorem 3.4 Suppose that the hypotheses (H1), (H2), (H3) hold, and let f be a function of
the space C°.

Let u(t,z) = Ef(X,(z)).

Then, for any multi-indez I, there ezists an integer s; and strictly positive constants I'; and
V1 such that the spatial derivative 9;u(t,z) satisfies :

|8ru(t, )| < Tr(1+ |2]*) exp(-st) (15)

Remark

As the proof of the previous Theorem will show it, the following result also holds (but we will
not use it in the sequel) :

dseIN, dr >0, 3y>0, |uft,z) - /f(a:)dp(z)l <T(1+|z]*)exp(-7t) , Vt, Vz



L)

4 Numerical experiments

4.1 The discretized system
We have choosen a 2-dimensional system defined by :
. 1. 1. .
b (zl,2?) = —Ea:‘ - Za:’ , JF
and
o(z,2?) = sin(z! + z?%) cos(z! + z?) .
W77 Usin(z? + 22 + §) cos(z! +22+ %)
The invariant law of (X;), 4, is gaussian N(0, Id).
The function f is ||z||? — 1.

4.2 Choice of N

The method used in Florens-Zmirou 4] to prove a central-limit theorem for
7- Jo[f(X,) — [ f(z)du(z)]ds can easily be extended in the multidimensional case, so that, if

f=1-11(z)du(z) : .
v / F(X.)ds 222 N (0,V ()

where, if v(z) is solution of the Poisson P.D.E. Lv = —f :
V() =2 [ He)o(@)du(z)

Moreover, the solution v(z) satisfies : v(z) = f;f ® Ef(X,(z))dt.

It may happen that one a priori knows the repartition of the measure y. Then one may
construct a piecewise constant approximation of the function v on a bounded domain of IR? in
the following manner : in each subdomain of the discretized domain, one chooses one point z,
then one chooses integers J and N as small as possible, and a time dlscretlzatlon step h as large
as possible, in order to simulate several independent paths of the process (Xp (z)), (Xh’J (z)),
and to approximate v(z) by

kl:r'

v(z) ~

I X —h,j 1 & a1

Z 217 (=) - 5 2 f(X, (@)

j=1p=1 p=1

Finally one uses one of the previous simulated paths to roughly approximate V (f ) by

v(f)~2 2 WX (X)) - - Z (X (2))]

p-.

The above centra.l-hmlt theorem then permits to fix the definitive value of N, and a new
single path of (X (z)) is simulated, corresponding to a small value of .

If the estimation of the constant V'(f) appears to be impossible, the procedure to stop the

algorithm may be to wait for oscillations of % TN, f (7:(::)) with weak amplitudes around a
value which is decided to be its limit.



4.3 Numerical results

We have tested the Milshtein scheme and the MCRK scheme.

First we have estimated the constant V'(f), by the procedure described above. The scheme
was the MCRK scheme, the time discretization step was h = 0.01, and the final time NA = 100.0.
The computed value has been V(f) = 1.2.

Our objective being to get a precision of order 1072, we have choosen the final time of the
algorithm Nh = 500.0 .

At the time Nh = 500.0 with A = 0.01, the error due to the MCRK scheme is less than
0.005 , whereas the error due to the Milshtein scheme is more than 0.18. To get an error equal
to 0.005 with the Milshtein scheme, we might choose A = 0.001.

Remark : if the discretization step A is choosen too large, the theoritical precision of the
method is alterated, but also it may appear that the discretization scheme becomes numerically
unstable. From that point of view also, the MCRK has a better behaviour than the Milshtein
scheme (at least in our example).

The Fortran programs have been generated by a system of automatic generation of programs
of simulation of solutions of Stochastic Differential Systems (see Leblond & Talay [8] for a
presentation).

5 Proof of Theorem (3.2)

The basic fact (which is false for the chain given in the example of Section 3.2) is the existence
of an irreducibility measure, i.e a measure such that any compact set of strictly positive measure
can be reached in finite time from any starting point z with a strictly positive probability.

Namely this measure will be the measure of density 1x(-) w.r.t. the Lebesgue measure,
where K is the compact set of (H3).

Actually, we are going to show that Ko, any open set included in K , can be reached in finite
time from any starting point z with a strictly positive probability.

Indeed, first it is easy to deduce from (H3) and the boundedness of ¢ that, for any starting
point z, the chain reaches the compact set K in finite time with a strictly positive probability.
Let T be the reached point in K. ¢

Using the estimates of the mean-square error of the Milshtein scheme (Milshtein [10]), one
can show that the convergence in Probability of the process (ff ) defined above towards (X;) is
uniform with respect to the starting point on each compact set.

Then (H2) implies that (7:' ) will reach Ko from Z in finite time with a strictly positive
probability.

Moreover, let us denote by P* the transition probability of the considered Markov chain.

One can check that for all small enough h, there exists ¢ positive , such that for all z outside
K .
/Ph(z,dy) y'<z?-¢

Then a result of Tweedie [22] implies the ergodicity of the chain. O

10



6 Proof of Theorem (3.4)
Preliminaries
1. First, it is well known that u(t,z) is a classical solution of the P.D.E. :
iu(t z) = Lu(tz)
dt ) - ’
u(0,2) = f(2) (16)

Differentiating the solution with respect to the initial condition, one can show (cf Ku-
nita 7], Section I-3 e.g.) that the function u(¢, z) satisfies :

VnelN, 3s, € N, Vt >0, 3Cph(t) >0 : |D"u(8,z)| < Cu(t)(1+]|z|*) , VO <t (17)

Therefore, Proposition (3.1) implies that the functions f and D"u(t,z) (for any n) belong
to L2(IR4, ).

2. The functions u(t,z) and u(t,z) — [ f(z)du(z) have the same derivatives, therefore in all
that Section we will suppose that

[ 1@du@) =0 - (18)

3. For an integer s (depending on I) to be defined below, we define

1

)= wT Ry

Plan of the proof
The proof will be divided in 3 parts :

1. in Lemma (6.1), we will show that for any ball B, there exists strictly positive constants
C and A such that

Vt>0 , Vze B , |u(t,z)| < Cexp(-At)

2. then, in Lemma (6.2), we will show that there exists strictly positive constants C and A
such that

V>0, / lu(t, 2)|*s(z)dz < Cexp(~At)

3. we prove that the previous inequality also holds for the spatial derivatives of u(t,z) (with
other constants) and then we deduce (15).

6.1 First Lemma
In this Section, we will prove the

Lemma 6.1 Under the hypotheses of Theorem (8.4), for any ball B ,'there exists strictly positive
constants C and X\ such that

Vti>0 , Yze€ B , |u(t,z)| < Cexp(-At) (19)

11



The proof is in 2 parts :

1. p(z) being the density of the measure u, we show that there exists strictly positive constants
C and A such that
V>0, / |u(t, z)[*p(z)dz < Cexp(~At) (20)

2. then we deduce that for any multi-index J, there exists strictly positive constants C; and
Ay such that :

f |dsu(t, z)|?p(z)dz < C;exp(—Ast) (21)
These results imply (19) : since p(z) is a strictly positive continuous function on any ball
B=B(O,R):
1074z < C [ 10su(t,2) pla)de
and we conclude by applying the Sobolev’s imbedding Theorem.

6.1.1 Proof of (20)

Remark : a similar result is obtained in Bouc & Pardoux [1] (Corollary 1.10) with another set of
hypotheses, including the following, unsatisfying in our context, since the density p is unknown :

iC>0, IM >0, |z| > M => 2;8;(ai;p)(z) < —Cp(z)|z|

In the present context, let us choose a positive real number § and let us consider the sequence
(Xt,) with t, = nf ; it is an ergodic Markov chain; moreover, (H3) implies :

Ja>0, 3B=B(0,R)D K , sup E[(1+ ab)|Xe,,,|* = | X, |*| X, = 2] < O
. zcR¢-B

Then (cf e.g. Nummelin [14], Chapters 5,6) the chain is geometrically recurrent and for any
function ¢ integrable with respect to u and satisfying (18), there exists C > 0, A > 0 such that :

n [ IB(X, (2)lp(z)de < Cexp(-Mta)

In particular, this inequality is true for ¢ = f (under (18)).
Using Proposition (3.1), as f is of growth at most polynomial at infinity, we remark :
3Co>0,3INeN, Iy >0, |u(t,z)| < Co(l + |z|N exp(-t))
Therefore :
/ |u(tn, ) *p(z)dz < CoC exp(~Atn) + Clezp(~t) / (1 + |z|" exp(—~t))|z|V p(z)dz
so that we get :

f lu(t, =)?p(z)dz < Cy exp(~Astn)

I \Tred i -—

To conclude, we use the fact that the function [ |u(t,z)|?p(z)dz is decreasing ; actually, the
first prehmmary remark of that Section justifies the following inequality :

33 [t 2@z = [ utt,2)Eue, 2)ple)is

—_21; / a;;(2)0;u(t, z)d;u(t, z)p(z)dz
0

IN A

12



6.1.2 Proof of (21)

We will prove this inequality by recurrence over the length [(J) of the multi-index J.

First step : I(J) =1 (Lions [9])

Let us begin by proving :
+00
6>0, / e / Vu(t)[dp)dt < +oo (22)
0
Using the usual convention on the summation of indices, one may write :
d
141 = L{u(®)") = —ai;(8iu(t))(3;u(¢)
Multiplying the previous equality by €’, integrating with respect to u, one gets :
e“% [ 1u)au + ce* [ [vu(e)dn < 0 (23)

Now, let us choose an arbitrarily large time T and integrate from O to T the previous
inequality :

" [lu()fdu+c [ T [1vu@anar < [ i5tdu+s [ T ey [ 1u@)Fauya

Therefore, it just remains to use (20) to get (22) (for § < A).

Now, let us remark one can choose positive constants C; and C such that :

I

%IVu(t)l2 - L(|Vu(®)[?) —ai;(Biru(t)) (Bju(t)) + (Brai;)(8iju(t)) (Bru(t))
+ 2(81b)(9iu(t)) (Bru(t))

—C1|D?u(t)[" + Co|Vu(t)[?

IN

Now let us choose ¥ < § and proceed as above ; we get : g
T T
o [1vumPap+cs [ ([ 1D dut < [ V1Pt Caty) [ ([ Ivuie)dura
: 0

Thus we have shown :
/|Vu(t,n:)|2p(a:)dz < Cexp(—t) (24)
Second step : Recurrence

Now, let us suppose that for all k < m, there exists strictly positive constants C; and v; such
that :

/ |Dku(t,z)|2p(z)dx < Crexp(—kt)

Let us show that a similar inequality holds for m + 1.

13



First :
IDmu(t, z)lz = Z: (a-’u(t7 x))z
I(J)J=m
Now, it appears that, for every multi-index J of length m+1, there exists a family F; of multi-

indices of length at most equal to m + 1, and a family of bounded functions (¢‘,’“ , K,L € Fy)
such that

4 Dju(t,z) = DyLu(t,z)

dt
1
= bdjupyult,z) + Eaijalu{ij}“(tax) +
+ > b%LOKxu(t,z)dLu(t,z)
1(K)+1{‘!J)t'52m+1
Therefore :
d
;,;ID"'u(t,x)l2 ~ LID™u(t,2)? = —aij(dsugyult, 2))(dsugiyult, 2))
+ Z ¢}'(Laxu(t,z)81,u(t,z)
z(K)+l(KL')L$2m+1
< -CPID™u(t,z)* +CF Y | Dru(t, z)?

k<m

Now, we proceed as above : we choose a strictly positive constant 6,541 small enough, we
multiply the previous inequality by e’=+:f and then we integrate with respect to u, so that we
obtain :

+00
/ efmtif( / |D™ 1 u(t)2dp)dt < +oo
0
Then we write

d
alD"‘“u(t,z)lz ~ L|D™u(t,z)* < ~CP D™t 2) P + Ot Y | DRu(t,x)?
k<m+1

we choose Ym+1 < 641 and we proceed as at the end of the first step. O

6.2 Second Lemma

In this Section, we will prove the

and A such that
VeSO , / lu(t, )|, (z)dz < C exp(—At) (25)

14



First step
Let us recall the property (17) : A
VnelN, 3s, e IN, Vt >0, 3Cpn(t) >0 : |D"u(f,z)| < Cn(t)(1+|z|>*) , VO
Thus, for any integer n > 0, there exists an integer s, such that, for any0<m S'n‘ and any
=0 |D™u(t, z)|7,, () € L*(R?) (26)

Second, we remark that for any multi-index J and any integer s, there exists a smooth
function #;,(z) such that :

1. the derivative 9;7,(z) can be written
0yms(2) = Y s(z)7s(2)
2. Y7,4(z) — 0 when |z] — 400
Let Mj be the integer defined by :
(1) = [M; - d/2)
Then (26) implies that it is possible to choose an integer sp such that
V¢e>0 , Ve>s , Vm< My, D™(u(t)r,) € L*(R%) (27)
Second step

Let s be an arbitrary integer larger than sp.

Our definition of the integer M; implies that | D(u(t)r,)| € L2(IR?); therefore the following
holds :

/ u(t,z)Lu(t, &)mo(z)dz = —% / (05b3)[u(t) Prodz — % / bilu()[2(3;x,)dz
- 5 [Gias)@u)uinadz - 5 [ aij(8:u(0)(@j0(0)mde
= 1 [ aii(0;u(0))u(t) (Bims)dz

so that, by (H2) :

sttt om@iz < -3 [@blutPrds+ [ sl—l%_.—l::ijilu(t)lzw,dz
+1 [@aq)lu@)Prde + 5 [(@iaig)lu)Poymde
- %a f |Du(t)[*r.dz
+7 [@ia)uimde + 5 [ ailu(e)gisnda

= [010) + #2(e) + o) ult) e 3 [ 1DUOPrade

- where
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o ¢1(z) is a bounded function independent of s

® ¢2(z) is a function depending on s, but tending to 0 when |z| — +o00
Now we fix s > g in order to get the following inequality, possible under (H3) :

lulnsup(¢1(x) + #2(z) + &7 b . |2) <0

z—ooo

For any ball B = B(0, R) :

[6:10) + 6a(2) + o T i = [ (¢1(z)+¢g(z)+81L_';_.Iz—'i2)|u(t)|27r,dz

+ fea 1)+ 2(0) + o E ) e

Choosing R large enough (in terms of s), using (19), one may deduce that there exists strictly
positive constants such that :

/(¢1 (z) + ¢2(z) + 5 lbj".|:12 )u(t))?x,dz < —Cy / [u(t)|*x,dz + Cy exp(—)t)
so that :
m / lu(t)Pr.dz < —C / |u(t)[*7,dz + Cy exp(—At)

Thus we may deduce (25).

6.3 End of the proof of Theorem (3.4)

First step

Let us suppose that we have shown

3Cr>0,3A>0 : Vm< M, Vt>0 , [ID"‘u(t,x)l’w,(z)d:r < Crexp(—-Ast) (28)

We already have remarked that for any multi-index J :

0smys(z) = Yy(z)ms(z) , s(z) bounded (29)

Then we could deduce (15) as a consequence of the previous inequality and of the Sobolev’s
imbedding Theorem.
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Second step : proof of (28)

Again we use (29) to remark that a sufficient result would be : there exists strictly positive
constants Cy and A; such that, for any multi-index J of length I(J) < M;

/ |8su(t, z)|?7,(z)dz < Cyexp(—Ast)

Then let us fix such a J, and begin with the case : I(J) = 1.
The proof is very similar to that of Section (6.1).
In Section (6.1.2), we used the fact that

L*p(z)=0
in order to get the inequality (22) and the next ones..
Here, we remark that there exists functions ¢1(z) and ¢2(z) such that
e ¢1(z) is a bounded function independent of s
e ¢2(z) is a function depending on s, but tending to O when |z| — +o0

o the following equality holds (since s satisfies (27)) :
/ Llu(t)frdz = / lw(t)PL %0 dz
b; -

[#1@)+ ¢a(@) + 207 T utts )P e)ee

As in the previous Section, after having possibly increased the value of s, we can choose a
ball B = B(0, R) such that :
b,' b 7

<0
1+ |z|?

Vze R~ B , ¢1(z)+ d2(z) + s

Using (19), we deduce that there exists positive constants Cp and )¢ satisfying :

/Llu(t)lzﬂ',dx < Coexp(—Aot)

Proceeding as in Section (6.1.2), we can show that the inequality (22) remains true with
m,(z)dz instead of du(z) and § small enough, and then show that (24) remains true with x,(z)dz
instead of du(z) and 7 small enough.

Again, a recurrence permits to generalize to the derivatives of higher order.

7 Proof of Theorem (3.3)

7.1 Moments of the approximating process
The approximating process satisfies an analogous property to (13).

Proposition 7.1 For Milshtein scheme or any second-order scheme with initial condition z,
for all integer n : '

3Ch>0,31,>0,3H >0, VA< H, El-)_(-:(a:)|" < Cn(1+]|z|" exp(—7nph)) , Vp , Vz (30)
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Proof

Using (H3) and (C3), it is easy to show the existence of strictly positive constants C; and C,
satisfying, for any h small enough :

E[Xp|? < (1 - Cih) X2 + Cah

so, iterating the previous inequality, one proves the Lemma for n = 2.
By recurrence, one shows the result for‘any integer n. 0O

Therefore, the unique invariant probability measure u* of the approximating process has
finite moments of any order.

Moreover, as f has an at most polynomial growth at infinity, the previous Proposition implies
that the sequence

= Zf(xp( )

p-—l
is equiintegrable.

Therefore one may deduce that for any deterministic initial condition z :
[ 1@t = lm < }: 1(Xp(2) ae.

= lim F:L;oln:f(xf,'(z)) (31)

7.2 End of the proof of Theorem (3.3)

First, we define the symbol £ : we will write X £ ¥ instead of E(X)=E(Y).

We will just treat the case of an ergodic second-order scheme, the case of Milshtein scheme
leading to simpler computations.

Let us perform a Taylor expansion up to order 6 of the function u solutnon of (16). As shown
in Talay [21]:

g J— R 1 .
u(ih, Xp4a(2)) £ u(ih, Xp () + Lulin, Xy (@) + 5 L0u(ih, Kp(@))h? + rkyy h°

with the remainder term r"p +1 expressed as a sum of terms, each one being of the form :

where :

e ¢(z) is a function equal to a product of functions among the set constituted by the coor-
dinates of b, o and their derivatives

e 0<flc<1

18



Thus, using (H1), (15) and (30), one can check that the above remainder term satisfies, as

soon as h < H (where H has been defined in the previous Proposition) :

C 8 ~h 8 C 8
A>0,3eN Z|r il € TR B+ K@) + Xpsa@)]Y) < 5 (1 +121Y)

=0
~ Now we use the equation (16) in order to write :
w((5 + 1)k, Xy (2)) £ u(jh,Xp(2)) + Lu(ih, Xp(=))h + 5 L’ﬂ(Jh Xp(@)h? + 7pyrh®

with a remainder term r" which can be expressed in the same manner as r*
p+1 P 5P+l

Therefore, if we define Rh p+1 by

h —_Jh ~h
Ript1 = Tipt1 ~ Thpt

R? ., satisfies (by (30)) :

Zl il < 20+ el (32)
and moreover :
u(ih, Xp11(2) £ (G + A, X (2)) + Rlprh® (33)
Remarking :
1 N —h 1 N —h
= 2 f(Xp(2)) = 5 2 u(0, X, (2))
N & N —
p=1 p=1
with successive uses of (33) one obtains :
1 N — E N p-1 s
L /XK@ = 5 Z (ph,2) + ZZR h
p=1 P-—l p—l 3=0
But :
e (X:) being ergodic and u(t,z) satisfying
u(t,z) = Ef(Xy(z))
we know :
1 X
hm ﬁpz_:u(ph ,Z) = /f(:c)dp
e the estimation (32) implies
N p-1
— Z 3" R K < Ci(1+ |z)°)h?
p=01—0

To have proved (14), now it just remains to use (31). O
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8 Conclusion

We have built schemes which are of second-order for the ergodic criterium (1), and tested them
numerically.

There is no theoritical reason for which one cannot build schemes of higher order, but such
schemes would be very costful in computation time. Besides, the error due to the necessarily
reasonable number of integration steps N would likely mask the gain in precision due to the
scheme.
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