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Abstract

We present a series of three denotational models for CCS, where
finite and infinite behaviours both are accounted for by means of
greatest fixed points. The two extremes in the series are an
operational model, where the meanings of programs are transition
systems, and an observational model, where meanings are a
combination of ready sets and extended communication traces. The
operational model is derived through a systematic construction from
structural operational specifications. The observational model is
obtained both both both from the operational one in two steps,
corresponding to successive applications of a closed and a non
closed erasing morphism. The observational model is proved fully

abstract for the equivalence p ~q iff Vr L(p,r)=L(q,xr), where

L(p,r) is the set of the finite or infinite traces of possible
interactions between programs p and r set in parallel.

MODELES DES COMPORTEMENTS INFINITAIRES DE
SYSTEMES COMMUNICANTS

Résumé

Nous présentons une série de trois modeéles dénotationnels pour CCS,
dans lesquels comportements finis et infinis sont simultanément
représentés au moyen de plus grands points fixes. Les deux bouts:
de la chaine sont un modéle opérationnel, dans lequel les
significations des programmes sont des systémes de transitions, et
un modéle observationnel, dans lequel les significations sont des
associations de ready sets et de traces de communication étendues.
Le modéle opérationnel est obtenu par une construction systématique
a8 partir des spécifications opérationnelles structurelles. Le
modéle observationnel est dérivé du modéle opérationnel en deux
étapes, correspondant & 1' application d'un morphisme fermé et &
celle d'un morphisme non fermé. Le modéle observationnel est fully

abstract pour l'équivalence p ~ q ssi Vr L(p,r)=L(q,x), od L(p,r)
est l'ensemble des traces finies ou infinies des interactions
possibles entre les programmes p et r, mis en paralleéle.
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MODELLING INFINITARY BEHAVIOURS
OF COMMUNICATING SYSTEMS

Ph. DARONDEAU B. GAMATIE
IRISA~INRIA
Campus Universitaire de Beaulieu
35042 Rennes cedex (France)

"Fixed point semantics in my opinion, is a general terminology, to say,
the homomorphic image, in some semantic domain, of the operational semantics,
or more exactly the set of computations. So you consider the unique, or the
set of computations of a bprogram, and then you extract some relevant
information, and you want to characterize this relevant information without
looking at the set of computations. But the problem is, what is the relevant
information about the computation ?"

André ARNOLD, IFIP WG 2.2, 1983 ( in (10], section '‘discussion?')

1. INTRODUCTION

This paper, evolved from [15], suggests a systematic method for deriving
‘models of programming languages from their operational specifications, and
applies it to produce an observational model for infinitary behaviours of
communicating systems (in Milner's C.C.S). Let us explicitate the two
objectives separately.

For us, the observation&l models of a programming language L are those
models which are fully abstract {27] w.r.t. equivalences or preorders induced
by L-defined experiments such as tests [(18,19]. of course, a;l the
observational models are homomorphic images of the operational model which
defines algebraically the meanings of L programs as transition systems, but

arbitrary homomorphisms do not necessarily define observational models, for it



is not always possible to find out families of L-~experiments which induce

their canonical equivalence. Concerning Milner's Calculus of Communicating

Systems [28], observational models based on tests with binary results have been

constructed for the pure version of the calculus [18,25]. However, it has been
established that infinite tests with infinitary results are strictly more
discriminating than binary tests, and therefore induce different models
[13,14]. There lays the main motivation for the present paper where we
construct the observational model for the largest possible family of infinite
CCS tests with infinitary results. Despite some disagreement about divergence,
the resulting model may be seen as a development of the idcas presented in
[20,21,22].

Let us now discuss the issue of systematic methods for producing
semantics of programming languages. A striking feature of the denotational

method is its close affinity to logics, specially patent in the fact that
interpretation functions are homomorphisms between ZX-algebras of terms and
Z-algebras of meanings. Nevertheless, model morphisms have not been paid so

far much attention in computer science. Joining some other authors [10,29] we
would like to emphasize the essential role of model morphisms in any
systematic method for assigning semantics to a programming language L : given
a model of L for some equivalence on transition systems generated by programs,
other series of models may be derived therefrom through morphisms which forget
more and more information about the transition systems. The derivation is not
always easy, for some trouble may arise with fixpoints as will be seen later
on. Nevertheless, the main gap in the method is probably the lack of a general
process for obtaining a primary model from the operational specifications of
L. We contribute to f£ill in that gap by providing a rather general technique
for translating structural operational specifications a la Plotkin ([30] into
denotational definitions of transition system meanings.

The remaining sections are organized as follows. The general problem of
translating structural operational definitions into equivalent denotational
definitions is addressed in section 2; an operational model of CCS is produced
in section 3 along the resulting technique. Section 4 relates several forms of

observational equivalences on CCS programs and fixes the task of constructing
a fully abstract model for the equivalence: p ~ q if and only if p and q have
similar sets of finite or infinite interactions with any program r. Section 5
introduces an auxiliary model of CCS, located halfway between the operational

model and the fully abstract model for ~ ; that auxiliary model is obtained by



8imply erasing intermediate program states from computations and replacing
their endpoints by ready sets. 1In sectior 6, we extend the observational
€quivalence ~ into an observational preorder E and connect £ to preorders in
the auxiliary model. The fully abstract model for £ is drawn from the
auxiliary model in section 7, and is proved correct in section 8. The
concluding section 9 ig followed by ‘an appendix where the proofs of the

Starred propositions may be found.

2. FROM OPERATIONAL DEFINITIONS TO OPERATIONAL MODELS

Id this section, we address the problem of translating structural
operational definitions & 1la Plotkin [30] into equivalent denotational
definitions. We provide a uniform translation, yielding models where the
meanings of recursive programs are greatest fixed points in the lattice of
sets of infinitary transition sequences. An alternative translation, where
the meanings of recursive programs are fixed points of contracting

mappings,has been studied in [2].
2.1 Assumptions on syntax

We assume given a set V of program variables, ranged over by x, and an

arbitrary signature I= U{Z,/ 05k <K}, where L, is ranged over by the k-ary

symbol Wy . The set of recursive open terms ( denoted TERM ) has typical
elements t with the following syntax

t=x]oj(ty,... ty) | t yh (x3 = t3,... %, = th).
In the above, (x; = t1s-..%Xp = ty) is a declaration and represents a function
D:V — TERM with finite non empty domain dom (D) ={X1,... Xn} and corresponding
values D(xj) = tj. In (t wh D) the free Occurences of the xj are bound to the

t{ in t and in the tj's. Recursive terms are defined up to the a-conversion of

their bounded variables, hence we assume that two distinct declarations have
disjoint domains and that no conflict occurs within terms between free
variables and bounded variables. The set of programs (denoted PROG) is the set
of terms without free variables (i.e. closed terms). We let metavariables

s,t,u,v denote both open terms and programs.



2.2 Assumptions on the operational definitions

We assume given an arbitrary set N of transition labels (ranged over by

V), with a distinguished element &, called the null action, and a finite set 4
of schemes of axioms and rules of inference for logical transitions u-UD-)v

where u,v € TERM, V€ N, and D is either a declaration or the undefineq

function 2. We let LT denote the set of the logical transitions between terms.
With regard to recursive definitions, we suppose that A contains the

following axiom and rules for declarations, where t,u resp. D,D' are

metavariables ranging over TERM resp. over (V — TERM).

AXIOM

= x-Do'—)D(x) for D(x) defined DEC1
RULES

t-p’>u = (t wh D')—pV-(u wh D') DEC2
t-pVsu = (t wh D)-q - (u wh D) DEC3
t—Q°—>u = t—DU—-)u DEC4

With regard to operators in Z, we set the requirement that all axioms

and rules appear in the form

{t1pV1-t'y .ty Pt )

{for R(vy, ... YV, sV )}

®(uy, .. .up)—p¥-e" (u'y, .. .u'p)

where braces indicate optional parts and the following are satisfied:

- (erk, ' eZm andm <k, or @ = ide¢X andm-=1

~ the metavariableg tj (resp. t'j resp. uj resp. u'j) stand for generic terms,
and D is a fixed meta-variable ranging over (V —> TERM)

—- all the tj (resp. t'y resp. uj resp. u';j) are different

= b1 tp) © f{ug... ug)

- {t'1... t'g) = {ury... u'miN{ug ... ougl.



These constraints are reminiscent from {17]). Up to the identification

between t and id(t), we consider that the quadruple @(uj...ug)-p¥—u'; is a

logical transition as soon as ®(ug...ux)—Y>id(u’';) has been proved, and we

call it a degenerated transition.

2.3 The operational domain Dop

Our goal is to construct a generic model J‘top of programs s.t.
nop[lt”:{et}U{(ti—ui—')ti"-l)i<‘Y / to=t & Vi (ti—Qui—-)ti.,,l) € LT). The domain Dop
of the model is a complete lattice, namely the powerset (P(*PT), &), where
“PT is the set of the sequences & or (ti"oi")ti+1)i<‘y such that t € TERM, yY<o

and Vi<y: (tj-Viotjyj)€ TERM x N x TERM. We let *PT be defined in the same

way with y#0. Be aware of the fact that the elements of the set *PT = TERM x

N x TERM, called pseudo-transitions, are not necessarily provable in A.
Up to the isomorphism sending' 6, to <u,0,> when 6, is g, or (u—“——)v)ev,

“PT is a complete partial order for the product £ of the discrete and prefix
orders; it is also a complete metric space under product of the discrete and

ultrametric topologies [7]. Observe that 1limits in the Scott topology
induced by £ coincide with limits in the ultrametric topology. Henceforth, 6.
resp. Q range over ™PT resp. P(™PT), and P_ref(e) resp. CL(Q) mean the set of

finite prefixes of 0 resp. the topological closure of Q.

2.4 The generic model Mop

The interpretation of the operational model'ftop is a continuous
algebra (Dop,iu{ox/xe V},g), where the o, are implicit; guard operators of arity
1l (one per variable x). All the operations mkzbopk - Dop are the uniomn
additive extensions of homonym operations (<°pT) kK —Dop- The implicit guard

operators O: (°°PT)—>Dop, are definegl as G, (0) = (e, }u {(x-Y>u)0' / e,< 6'<0}).



As an exception to the standard rule of union additive extension, which
is implicitly used throughout the paper, we set o, (Q) = {e,} if Q is the empty
set.

The interpretation (Dop' Zu{ox/x € V}, €) induces a meaning function
Mop: TERM— (ENV-D,,,) where ENV is the set of environments e € (V=Dgp) . In the
inductive specification given hereafter, Fix X ¥ denotes the greatest fixed
point of F in X, and the product operation X : (V — TERM) x PT — PT is
defined as D X &, =€ .., DX (ti—"—niﬂ)iq = (tj wh D-Y>t;,; wh D) i<y

As usual, e[X/®] stands for e[xl/xl]...[xn/xn], where e[X/x] is e' such that

e'(x)=X and e'(y)=e(y) for x2y.

THE INDUCTIVE SPECIFICATION OF nop

1. M lxll(e) = o, (e(x))

2. Mpllog (tg...tx) [I(e) = O Moplitallte), ... 22 itk (e))

3. Mllt wh (xy=ty,...x,=t_)[](e) =D XPoplitll (e (V/x])
letting V = Fixg F(e[X/x)), Fj (e) =n°p[ltill (e),

and D=(x1=ty,...x,=t,), B=(X1/...%), B=(X1,...X,), F=(Fy,...Fp).

Remark Since Dop is a complete lattice, the principle of Bekic' and Scott for

simuitaneous fixed points is valid [5].

In order to specialise the above specification, we suggest now a

systematic construction of Zoperators @yt (Dop)k—)Dop based on the axioms and

rules in A.



2.5 Towards a finitary Z-interpretation

We proceed first to the construction of finitary operations [0 (*pT) kK
= P(*PT). In the sequel, id is the identity on *PT, and (u —Y— v)ed is the
set {g,, (u-Y-v)}u{(u-Y->v)0'/ €, < 0' <0}.

For o in X,let Al®] be the subset of axioms and rules in A of the form:

{ t1-pP2>t'y . tp—pVnstr, )
v: {for R(‘ul,...l)n))}

@(ug, .. up)pV=0" (u'y, .. .utpy)

For y in A[w]}, let relations Y',Y" on {l...k}x{1l...m} and functions
fv:{l...n}—-){l...k}, g¥:{l...n} —{1l...m) be defined as follows:
Y (i, 3)e (31, uy = t] & t'y = u's),
Y (i, 3)= (uy = u'yl,
fy(i)=] & t; = Ujs
gY(i)=j & t'; = u'y.

For Ye€A[®], VEN and 6;...0, € *PT, let my'“(él...ek) stand for the
conditional expression [cond, ((o(vl...vk)-b—)m'(v'l...v'm))oa)'(e'l...e'm), 2

where cond stands for the conjunction of the following conditions 1 to 3 ( for

all i and j ):

1 - (Dl,...l)n,l)) ER,

2 = Oey(a) = ey(a) “Viovigys)) O'gys) o

< 0';y & e,.< 0

3-u'i=uj=59'i=9-&€ v i

j v'i
The finitary operations @y : *pT)k 5 P(*PT) are specified by the

inductive formula F :

Q 8;7...€,) = (g, / t = O (E1-..ty) & gy < 6;lu

[L (0, YV(8,...8,) / ye Alo,] & veN))




The following properties are verified :

- (Vei), mkwl...ek) is prefix closed,
- (Vi, 8,5 0'5) = O (0...8y) <@ (8'1...0").

For t € TERM and D € (V — TERM), let D*[|t[] be the set of sequences €
or (ti=Yioti1)icy s.t. t = to and Vi (tj~Viotj.1) € LT. Next proposition
shows that functions D* act like morphisms between the Z-algebra of terms and

the algebra (Dop' {Q/ we X}).

Proposition 2.,1* Vti € TERM, Vo, €I, V D:

D*fly (t1. ..l = @ (D*{It 1 1,... D* (It ] )

2.6 Towards an infinitary Z-interpretation

We introduce here infinitary operations Tk: (*pT)k - p(%pT) consistent
with formula F. These operations are defined as '(o—k(el e By =
CL (@ (Pref(el) ...Pref(Ok)), and are extended along union additive extension
into operators W, working on sets. Since'(x?];(el...ek) is the set of limits of
the increasing chains in mk(Pref(Gl) ...Pref(ek)), the following arise
directly from the properties of the (O]

- (V6;) T};(Ol. --8,) is closed and prefix closed,

= (Y1, 8;<0'4) =75, (0;...0,) COR(071...0").
The proeof for the consistency with formula F is straightforward but lengthy.

Let us define the saturated subsets of ®PT as the closed and prefix

closed sets Q such that: (916 Q & 9293 €EQ) = (01935 OOPT = 6103 € Q) .

Next proposition states the crucial property of the extended operations @) .

Rroposition 2.2+ For saturated sets Q;

+

W (Q1...Q) = CL(mk(Pref (Q1) ... Pref (Qk)))



2.7 Full adequacy

The following theorem expresses the full adequacy of the model Mop

W.r.t. the logical system A.

Theorem 1 V t € PROG, Ve: Molit(e) = {et}u{(ti-"i-—)ti+1)i<y/ to=t & Y &
Vi, (t-i-gvi—')tiq.l) € LT }

Rroof If we let Q™[|t|}l=CL(Q*[It)), the above reads as J‘top[ltl](e)= Q%tll . In
order to show that equality, let us define Ii*op in the same way as Jiop, but

with least fixed points in place of greatest fixed points. Then J‘t*op[ltl](e)=
Q‘[Itl], by proposition 2.1 and Tafski's least fixed point theorem for
®W-continuous functions (32] . In view of the next lemma, the expected result

.follows with the help of theBeki‘c principle for simultaneous fixed points.

lemma Let X = <X1...X3> and P(X) = <Fj; (Oyq (X1) . +Oyn (Xp)) ,Fy (cxl(xl)...oxn(xn)»
where the F; are finite expressions over I extended with left products (D x).
Let <Q3...Q0,> be the least solution of X = F(X) in (Dop)™ , then
<CL(Q1)...CL(Qy)> is the greatest solution of X = F(X) in (Dop) P

proof Let us first observe that the Q; are prefix closed subsets of *PT,
whence <CL(Q7) -..CL(Q,)> is a solution by virtue of proposition 2.2. Now, for
any solution <Q'1...Q'p>, <Pref (Q'y) -..Pref(Q')> is also a solution, and thus
we are done if we can prove that ¥ has a unique fixed point in (P(*PT))D. Let

us observe that for any Oie'PT and 0. €X, {0/ {Bi<n & Oe mk(el...ek); is includec¢
in ©,(0;<M...0,<R ), letting 6<" denote the longest prefix of @ with length

(|e<n|) < n . Taking into account the implicit guérd operators Cyir the

expected conclusion follows by Tarski's least fixed point theorem for

continuous functions.

The general framework elaborated here is exploited in the next section

where we produce an operational model of CCsS.



3. A CALCULUS OF COMMUNICATING SYSTEMS

We consider in fact a slightly augmented version of Milner's pure
calculus of communicating systems [(18,25]. The extensions affect unguarded
recursion and non deterministic choice. Since the calculus is widely known, we
keep the description concise and refer the reader to the bibliography for more

comprehensive presentations.

We let A denote the union of two disjoint sets of complementary actions
A and M(4), linked together by a system of reciprocal bijections n(i.e., n(nA)=A
for AeA). The set of actions is M=AuU {1}, where T¢A is the internal action. The
set of tfansition labels is N=Mu{o}. Throughout the paper, we let A resp. p
resp. VvV range over A resp. M resp.N. We call renaming functions the one-one
partial functions p from N to N such that p (V=v almost everywhere, p(0)=0,

p(T)=t, and p(M(A)) = N(p(A)) unless both members of the equality are undefined.

The signature I of our algebra of CCS terms is I = Ly VI, U I, where the I

(ranged over by ®;) are the following sets of i-ary symbols

L= {0/ pe M U {p/p is a renaming function},
22 = {], +, ©}.

Operators |, +, ® are the usual asynchronous composition, external choice and
internal choice. The binary operators are infixed, the guarding operators ()
are prefixed, the renaming operators (p) are postfixed.

The operational definition of I is given by the following axioms and

rules (where D is a fixed metavariable for declarations ).

AXIOMS

= ut —ph—t

= t ®u- 95t = t ®u-">u
D D

10



RULES

t—plots = 4y —ph-t rutt s

t—phot = tlu—phot |y ' ult —pH-ulte

(t-protr, u—pMsuny (ult-p®>u'1t"), (tlu—pTst'u') for A'=n(})
t—pVstr = tp—pPP>t'p  forp(v) defined

tpOst' = (¢ @y w) 0>t @, u) ' (W @y t) %> w,tt)

By adding to the above the general axioms and rules (DECl-DEC4),onIe
obtains an axiom System A for transitions between recursive open terms (e.q.
t ¥h D). As regards ccs programs, let us observe that every program has a -

finite number of immediate derivatives and a finite sort, where sort (t) is the

set of all the possible actions A of all the derivatives of t.

Example; A sample proof of transition is the following :

X -UD.—w'(x)

xly -%5.> D' (x) |y

(xIy)¥h D -5, (0 (x) |y)wh D

({(xiy)uh D)wh D* -Su— ((D'(x)|y)wh D)wh D"

((xly)yh D)wh D' - p»— ((O'(x) |y)wh D)wh D'

(({xly)uh D)wh D')uh D" -9q—> (((D' (x) ly)uh D)uh D')wh D"

Remark Since all the unwinding steps of recursive programs are traced by null

actions, infinite sequences of O-transitions are a characteristic mark of

static divergence.

In order to make explicit a specialized version of the fully adequate

model nop' we may now apply formula F and draw from the above specific axioms

and rules inductive definitions of specific operations W) : (‘PT) k—)P("PT). The

11



resulting relations are

P(* PT). For that reason,

valid also for the infinitary operations E;: (*°pT) k>

we omit the underlining or surlining of operator

symbols in the statements given below. To keep notations reasonable, we let

08=(s-u—>t)9t and 9u=(u-°'~)v)6v’ with € <0, and €,<0, . We recall the reader

that (u-Y-v),0 means & if Q=g or otherwise {g,, (u-Y>v)} U

{ (u—‘)—-)v)e'/evse'seeo}.

D1

D2

D3

D4

D5

D6

RATI T
nil = | {enil}
RO, = (ut—“—)t)-et
(St)p: {stp}’
(B5)p = (Ve dom(p), {egp}s (sp-P(stp)e(e,)p)
Eet &y = Epyy)
05t &y = [ vio, (stv-Ut)e, |, (s+v-Yot+v)e(O. + e, 1,
Eet Oy = [ v'#0, (t+u-'v)ep , (tru=""stv)e(e, + 0,) ],
es+ Ou = [ v#o, (s+u—°——>t)09t ’ (s+u—°—)t+u)0(9t+ Ou)]u
[ v'#o, (s+u—"'—)v)09v ’ (s+u—°'—)s+v)o(es+ ev)]
Os © &y = ((®v-T>v)jU (s0v-Cs)e0, U
[ v=0, (s®v-">tDv)e(6, ¢ ), @]
€. ®6, = {(tdu-%>t)ju (tGBu—-"—au)oeu U
[ V=0, (t@u-"">t@v)e(e,®0,), O
05+ 8y = (s@u-T5)0 U (s@u-Csu)es, U
[ v=0, (s@u-">t@u)e(8,06,), @] U
[ v'=0, (s®u-""s50v)e(0, 00 ), @]
Eley = { gy},
B ley = Usiv-aitlreq ey
10y = (tlw-""s(tv))e(e 0,
95100 = ((s1u=(th))e(8c0,)) U ((s1w=">(slv) ) e (0 0,))

[CveA&vi=n(), ((stu)-T-(tiv))e(0,10,)) , D ]

12



4. OBSERVATIONAL EQUIVALENCES OF CCS PROGRAMS

Let us fix some terminology before we introduce the concept of

observational equivalences. A computation issued from program t is a finite or
infinite sequence of logical transitions B = (£3-Vio ti+1)i<y originating

from ty = t (we drop from now on the symbol Q of the empty declaration) . The
Lull trace of Gt is the finite or infinite word ftr(et)= (\)i_)i<Y . The trace of
Bt is the finite or infinite word tr(et)= HAjftr(Ot)), where I, is the

Projection erasing the occurences of symbols © and T. A silent computation is
a computation with trace & (the empty word) . A twin-computation is a pair

(Bu, ev).df computations from which it is possible, by the exclusive use of
the logical rules of parallel composition, to reconstruct some silent

computation Bmv that cannot be extended by silent transitions (labeled G or T)

and cannot be obtained from a strictly smaller pair (6,6') < (0, 0,) .
The idea of looking at observational equivalences induced by program

defined experiments probably dates back to [11]. There, the author addressed

some criticism to bisimulation equivalences and suggested to study another

equivalence and congruence, with the intendto make semantics spring from

syntax by internalizing experiments in the programming language. In the

present framework, these alternative relations may be restated as follows:

Let the set of all the possible interactions between programs u and v be
the language IL(u,v) = {tr(6,) / aeu (0, 8,) € Twincomp]}, wheré Twincomp is
the set of twin-computations; then program t is observationally equivalent to
program u (t ~; u) if and only if L(t,v) = L(u,v) for every program v
and program t is observationally congruent to program u (t =, u) if and only
if Clt] ~; C[u] for every program context cl.].

A similar line of thought has been followed by De Nicola and Hennessy in

[18]), where they introduced tests as program defined experiments with binary
results. Assuming a result function Result defined on computations and such

that 06— Result(0) € {L,T}, the proposal of [18] amounts roughly to the
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following : program t is test equivalent to program u (t ~, u) if and only if
vV v, {Result(ev)/ aet: (et,ev) € Twincomp} = {Result (8,) / 39u: <eu,ev) €

Twincomp}, and t is test congruent to u (t =, u) if and only if C[t] ~y Clu]

for every program context C[.].

The above presented concepts may appear as weakenings of a stronger
concept of observational equivalence and congruence, later introduced in (12}
for a subset of CCS. The stronger relations are the following: program t ig

observationally equivalent to program u ( t ~3 u ) if and only if for every
program v, {(8,)/ 36, (6,,8,) € Twincomp} = {(6,)/ 36, (8,,8,) € Twincomp},

and t is'observationally congruent to ub(t =3 u) if and only if C[t] ~3 Clu]
for every context Cc(.].

Notice that both ~1 and ~3 are variants of the testing equivalence ~2,
since they may be recovered by setting Result (0)=tr (0) resp. Result(8)=0 in the
definition of ~, . However, a main difference between on one hand ~1 and ~j3

and on the other hand ~2s is the non finiteness of the domain of possible
results for tests. That property makes =) and =, strictly more discriminative
than =,, or than the congruence induced by the following form ~'2 of ~» (for

which it was wrongly conjectured in [11] that ='p == )it ~'y u iff vu,

L(t,UNIL)=L (u,uNIL). A simple case of disagreement between ~1 and ~, is shown
by the following pair of ccs programs t and u (where A=n(A)), and function

"/o" is the renaming function acting as the identity on N\{a,a})

t

((xly)lw)/a/B/Yy wh ( x = (ox IBNIL) + oyNIL,

u=t+ (xwh (x=258x)).
For these programs t and u : (t ~, u) but —(t ~3 u) and =(t ~; u) since,
for v = x wh (x = 0x), we get L(t,v) =& # L(u,v) = 8 U (89)

Incidentaly, this example shows that the set of traces of a CCS program is not

necessarily closed in the usual ultrametric topology on words.
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The above programs t and u turn out to be non equivalent w.r.t. ~> under

the assumption of fairness, which thus intensifies the separation power of

tests [26]. However, less obvious cases of disagreemenr still arise between
~1 and ~,, due to the deep affinity of effective transition systems with 211
parts of ¥ — W. The interested reader is referred to [13,14] for the
exhibition of such cases.

As regards the equivalences ~1 and ~;3 , the strict inclusion ~3C o~y
holds obviously, for the mapping tr is an erasing morphism. It will be shown
with small effort in the paper that the induced congruences (==1 and =5 ) are
nevertheless identical. After restriction to finite behaviours, those
congruences may be axiomatized, as they coincide with =, and also with the
congruences studied e.g. in [18,22,8]. In spite of that, we know from [16]

that the search of complete proof systems for the unrestricted congruences =

and =, is pointless.

Now we are ready to formulate our objective, which is to construct a
fully abstract model of CCS for a contextual preorder’sl generalizing the
congruence =, . For the ease of the task and clarity of the presentation, we

introduce beforehand an intermediate stage between the‘operational model
studied in the previous sections and the observational model at which we are

aiming.

5. AN INTERMEDIATE MODEL

According to the terminology of [21,22], let us define the interface set

of a program p as the set of (null or non null) actions that P can perform
instantaneously, i.e. interface(p) = {v/3q, p -V g}. Let ¢int be the morphism

which transforms sets of computations into sets of stateless computations in
an elementwise way, by erasing the initial and intermediate states in all
computations, and replacing the final state of finite computations by the

interface set of the corresponding program. As far as we are concerned with
the investigation of the congruence =;, all we need to capture about program t

is the information wanted for computing L(C{t],u) for any context C[.] and
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program u. Let us forget for the moment about contexts: we claim that enough
information for computing L(t,u) is available from ¢int(f1°pﬂtﬂ) and
¢int(?iopﬂuﬂ). Suppose we have at hands a compositional model of programs, say

jiint’ satisfying fiintﬂu]=¢int(ftopﬂtﬂ),then fiintﬂtﬂ yields enough information
on t for computing L(C[t],u) for every context C[.] and program u, and the

fully abstract model w.r.t. ~; must therefore be a factor model of Mk -
The goal of the present section is to derive M;, from fiop along the

morphism ¢int' The research of the adequate morphism between }zint and the
fully abstract model is left to a subsequent section.

5.1 The erasing morphism ®int

In this alinea, we give the precise definition of ¢int and show the

exact dependance between L(t,u) and ¢int(flopﬂtﬂ).
definition The set of stateless computations, denoted SC, is the set of all
pairs <w,R> or <W,®> such that w € N*, R is a finite subset of N, and WeNO,

The set scfin js the intersection of SC with (N* x P(N)).

definition ¢;,¢ :P(®LT)—>P(SC) is the function : $int (Q) = {95, (8)/ 6 € Q},
where ¢int:”LT-+ SC (and *1T — SCfin) is the function defined as:

bint () = <ftr(6), o> if 6 is an infinite computation,
¢int(9) = <g, interface(t)> if 0 is the empty computation issued from t,
®int ((t=Y>u)0) = <vw, R> if 61,4 (0) = <w,R>

Example: The set ¢;.. (Mopllx wh x=0x+tnil |]) is shown in the following
figure.
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Qwﬂ X= oX+ Tnl:j ( (gx+ Tnil) Wh x= gx + tnil)
Q.
T

(nilwh x= gx+ nil)

q)int

{< (oa)"? » @ >} U {< (ca)*, {o} >} U {< (ca)*t, D>} U {< (c)*o , {o,T} >}

definition: Two stateless computations <Ww1,R1> and <wy,R3> are z-twin
(<wi,R3><%5<wy,Rp>) if and only if the following hold:
i) Tp(wy) = n(z) & My(wy) =z

i1)  [R1#0& Ry#®] = (R} U Ry)N {0,7) = @ & Ry N N(Ry) = @ .

Next statement follows easily:

proposition$.1: L(t,u)={ze A®/ 36.¢€ Mop[ltI], 36,¢ ﬂopllullt bint (Gtﬂ—z—) O30t (6,)}

5.2 The intermediate domain Dint

The domain Dj,+ of the model M;,+ is the powerset P(SC) of the set of
stateless computations, ordered by pure set inclusion. A set Q in Dint is said
to be prefix closed, resp. closed, if the set of traces {w: <w,R>€Q } 1is
prefix closed, resp. closed in the usual topeology on words. Eor Q € Dipp, we

let Fin(Q) denote the set of the finite elements in Q , i.e. Fin(Q) = QN
scfin, and we let CL(Q) denote the topological closure of Q, i.e.

CL(Q)=QU{<w,®>:w=lim(w;) & <wij,Rj>€ Q}.
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5.3 The intermediate model nint

The interpretation of the model nint is a continuous algebra
(DintZU{0},g), where I has been added an implicit guard operator o. All the
operations @, : Dintk"’ Dint are the union additive extensions of homonym
operations @, : (sc)k o Dint . The implicit guard operator ¢: SC — Dint is
defined by o<w,R> = {<e,0>,<0w,R>}). A5 an exception to the standard rule of
union additive extension, we set o0Q = {<g,0>} if Q is the empty set.

The intermediate meaning function Ming * TERM 5 ((V > D int) 2Dipt) is

inductively specified by the following statements, where Fix denotes greatest

fixed points in the complete lattice (Ding) ™ .

1. M, Uxll(e) = ole(x))

2. 2y llop(tg, .. tp)llCe) = O ( M leillte), ... My Oexlite))

3. Mine [t wh (x = ty,...xq = to)lle) = ;. [th(e(¥ / =)
letting ¥ = FixgP(e(®/m)), Fj(e) = M, , (itill(e) and

R = (Xl, ... Xp), X = (Xl, oo X))o B = (Fl, «..Fp)

The elementary operations W (scrk - Dint are defined by six relations

D'1-D'g , where ®: N*™ x N®— P(N®) is the parallel composition operator

defined as follows:

. ;
i) for w and w' f

b) vw @v'w' = v(u®v'w') U V' (VW®u') U (v=A &v'=nid) , T(wBw'), D)
ii) for w or w' infinite : w®w' is the set of words with infinitely many

left factors in ( 1lE(w)® 1f(Ww') ), where 1f (w) means the finite left factors

of w.
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Examples: a‘”@B“’ is the set of all infinite words on {a,B}, and a“)@(a_w) is the
set of all infinite words on {0t} . am®B is the set of all infinite words on

{a,B} with at most one occurence of B. o®x is the finite language {oaw, 00,7 }.

0"®¢™ is the singleton set {oRtm} |

°

In the following, we let <{w,wel},R> stand for {<w,R>/weL} and we

sometimes omit brackets for singleton sets.

The INTERMEDIATE % INTERPRETATION

D'1 nil = ({<g@>}

D'2 H<w,R> = {<e,u>,<uw,l3>}

D'3 <w,R> = if we (dom(p)*™) then @ else if R=wthen <p(w), R>
else <p(w), Rndom(p)>

D'4 for u,u' €6™ and v,v' € MN* U {g},
<uv,R> + <u'v',R'> = :

[ (v#8) , <(u ® 1f(u"))v,R> , @] U

[ (v'#%€) , <(1f(u)®u')v',R'> , @1 U

[ (u=0®vu'=6Y),< (uBu'),0>,Q] U

[ (uzo® & urzg®Wg V=g & V'=€) , < (uBu'), RUR' > , D]

D'S . for u,u' €c¢™ and v,v' € MN®uU{g},
<uv,R> @ <u'v',R'> = <gfo}>uU
<(u®(1f(u')6))v, R > U<((1£(u)o) ® u')v',R'> U
[( u=0®v u'=e?®) , < (wo®u'c), 0>, F U
[( wzo®s u'o® & v=e¢ & v'=¢),< udu', (o} >, @}

D'6 <w,R>|<w',R'> = (<w",R"> / w"e (w@w') } ,
where R" = jif ( R=w VR'=@) then o else
if (3A:AeRNN(R')) then (RUR'U({T})
glse (RUR')

More genuine definitions might have been expected by the reader: the
above definitions of the operations @, are indeed strongly influenced by our

future use of nint as a springboard towards a more abstract model.
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Examples

- <a, (B}> | <o, {§}> = (<a;, {B,-B-,‘C}>, <°o-za, {33,1}>,<T,{B,[3,T}>}

- <0®, > + <1, (@)> = (<0®, @>) U <o*T, {a)>

- <62, {0,T)> + <0, {B)> = (<03, {a,7,B}>}

- <0oT, {a}> + <02, {Bry> = (<ot, {a}> , <62T, {a}>, <o3t, {o}>)

- <@, 0> ® <1, (a)> = (<, (0}>, <@, w>) U <6*ot, {a}>}

- <0?, {a;1}> @ <0, (BI> = (<&, {0}>, <o3, {0}>, <o3, {a,1)>, <0?, (a,1}>,

<02, (B1>, <a3, (B1>, <ai, (P)>}.

5.4 Full adequacy

The full adequacy of the model nint may be stated as follows:

Theorem 2 VtePROG : Pine U] = ¢5 (T [t .

op

The proof for that theorem relies upon three propositions.

proposition 5.2 VtePROG : ®int (Mop[ltll) is closed and prefix closed, and

Oint PTopllEl]) = CLb, (M opliEl])) where %, [itl]) = Pref (M, [Itl]) .

proof indication Closedness follows from prefix closedness, since the
transition system generated by t has the finite branching property and by

Koenig's lemma.
proposition 5.3 For any prefix closed sets Qj of sequences of transitions
(tj-Uj-—)tj+1) between programs: ‘
(mG €X): q’int (0 (Q1...Q)) = O (014 (Q1) ... ¢int (Qk)) .
Rroof This arises from a direct comparison between D1~D6 and D'1-D'6

Rropogition 5.4 a) For any prefix closed sets Qi € Djnt and for every o€ L,
Op (Q1...Qx) is prefix closed, and CL(wy (Q)-.-Qk)) = @, (CL(Q) .. -CL(Qg)) .

b) For any closed and prefix closed sets Qi € Djht and for every 0, €X,
0y (Qq.. -Qkx) 1is closed and prefix closed, and Fin(mk (Qq.. - Qk)) =
wk(Fin(Ql) . .Fin(Qk) ).

. Toe e s e s e st s s .
Comir g aCK TO tneorem 47 1€L us geriine i int in the same way as J'bint, put
with least fixed points in place of greatest fixed points. By proposition 5.3

and by Tarski's least fixed point theorem for ®-continuous functions, Mtintlltll

= q’int (ﬂ'op[ltl] ). Ip_ view of proposition 5.2, theorem 2 will be proved if we

can show J"lint-[ltl] = CL(M'int[ltI] ). Now, that equality follows from the next

lemma with the help of the Bekic® principle for simultaneous fixed points
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lemma Let X = <X1...Xn> and F(X) = <F1 (0(X1),...6(Xp)) , ..., Fn(G(X1),...0(X,))>
where the Fij are finite expressions over X. Let <Q31...0,> be the least
sclution of X=F(X) in (Dint)n, then the Qi are prefix closed and
<CL(Q1) ...CL(Qn)> is the greatest solution of ¥ = F(¥) in (Dine) .

broof Let <Yj...Y,> be a solution. Clearly, <Fin(Y1)...Fin(Yn)> is also a
solution. Suppose <w,w> € Y;. Owing to the définition of the implicit guard
operators o , there exists for every j some finite word Qj <w s.t. j SIWjI
and <wj,Ry> € Hiorj<®.. .@>. Thus, Y; € Cl(Fin(Y;)). By proposition 5.4, we

are done if we can prove that P has a unique, and furthermore prefix closed
solution in pP(scfinmyn  ye proceed exactly as in the proof given for the lemma

in §2.7

Theorem 2 and proposition 5.1 show that M,

int 18 the image of the

operational model by an erasing morphism which preserves all the informations
relevant to the congruence =1- Nevertheless, some irrelevant informations are

retained, e.g. different meanings are assigned to programs differing only by

null actions. We undertake in the next section the research of a second

erasing morphism, inducing the fully abstract model as a factor of nint . By

the way, we generalize the equivalence ~1 and the associated congruence =y

into corresponding preorders.

6. PREORDERS ON PROGRAMS AND INTERMEDIATE MEANINGS

We successively introduce preorders on programs (§6.1), connect them
with preorders on intermediate meanings (§6.2), and prove the agreement

between two variants of the observational congruence (§6.3) .
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6.1 Preorders on programs

The idea under the observational equivalence ~1 is that equivalent

programs t and u should interact in the same way with any other program v,

Since L(u,v) is the language formed of all the possible sequences of
interactions between u and v, t ~1u iff Vv, L(t,v)=L(u,v) is a faithful
encoding of that intuition.

A natural extension of the observational equivalence is the

observational preorder introduced by the following

definition : t {;u iff Vv, L(t,v) ¢ L(u,v).

Here, the idea is that t is smaller than u if every interactive
behaviour of t is also an interactive behaviour of u ; intuitively, if you
have been put an order for u but have delivered t instead of u then no v can
testify against you. But one may complaint about your trick when using u
inside contexts, and especially sum contexts (e.g. [.] + anil). In order to
avoid any kind of trouble and still optimize the effort, what is needed is

that t be an implementation of u (tE ju) in the following sense

definition: ' tE ju iff VC[.], Vv, L(Clt],v) ¢ L(C[u],v).

The implementation preorder is thus the contextual restriction of the
observation preorder, and the equivalence it induces is the observational
congruence of section 4.

Examples The following relations, as well as all the equivalence laws of [18]

are valid:
T ugE 1 u®v, ug 1 Tu, T(ut+v) £ 1 Tu + v
T U+ v E ] T(utv) + 1Tv, X wh (x=x) =1 X uw. (x = 1Tx).

- Tu + 1Tv ¢ 1 T(u+v),
because €€ L(tanil + TPnil, Gnil) and ce L(t (anil + Bnil), ahil).
- U~ 1u but u fl Tu,

because eeL(anil + tni1, Wnil) and e¢L(onil+ nil, Gnil).

Remark The above examples make it clear why only the maximal computations of

(ulv) have been considered while defining L(u,v).
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6.2 Preorders on intermediate meanings

A natural way to find out a fully abstract model for the observational

Precrder 51 (i.e. a model for £ 1) is to transfer the preorder from programs

to their stateless computations and then to analyse the resulting equivalence
of sets of intermediate meanings : the canonical homomorphism will conduct us
from the intermediatevmodel to the fully abstract model. This program is
undertaken in the next series of statements (proofs are postponed until the
end of the section).

definjtion Relation £ is the preorder on stateless computations such that
<w,R> {<w',R'> if and only if <w,R>e-z-+<w",R"> = <w',R'>6—z-+<w",R"> for any

stateless computation <w",R">. We let £ denote also the Hoare extension of

~

£: gL e Vv 91€ Qs I aqp€ Q) q1 £ qp.

Proposition 6.1 <w,R> $<w',R'> if and only if the following conditions hold:
- HA(W) = HA(W')I
- (R = (x)) = (R' = (D)'

- (R,R" #0 & BRN{(G,T} = O }) = R' ¢ R.

Examples,

The following relations and their symmetrical are true :
<ta(on) @, 0> ¢ <t?, w>,
<ot, D> £ <10, D>
<€ {T,a}> £ <1, {1,0,B},> £ <g, {1}>.

The follcwing rela“ions are true, but their symmetrical are false

<ttf, {(t}> £ <ai, {o, B}> £ <oB, {(a}>,

~

<af, {a}> £ <of, D> & <apt®, o>.

Rroposition 6.2" Vu,v € PROG: (u L1v) & (f‘lint ufl £ 250 VD < (u £1v)

Indeed, propositions 6.1 and 6.2 suggest us a model for 51 and also a

way to derive it from .

ints but being aware of the gap between the

observational preorder and the implementation preorder (due to sum contexts as
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shown earlier), we have to fill in that gap and to guess the proper
transposition of £3 to intermediate meanings. The idea is to take into account
the initial internal actions of programs, whence the following definition.
Definition Relation L is the preorder on stateless computations such that
<w,R>E <w',R'> iff the following conditions hold :

- <w,R> £ <w',R'>

- (Ip(w)=e & R#0 & R'#0 & {0, TIN(RUR')=@) = (L (w)#e = L (w')%e) .

We let T denote also the Hoare extension of C .

~

Examples.

<1, {1,a}> g <¢, {1,0,B}> B <g, {G}> and

~

<¢, {o,B}> £ <1, {a}> C <o¥, 0> but

~ ~

<1, (0}> ¥ <e, D>.

Next proposition shows that the attempted transposition is at least half

successful.

Proposition 6.3 * Vu,v € PROG : u £1v ¢« Mipelll g 21, IVl & ugyv

One of the goals of the forthcoming section 8 is to establish the implication
Mint[lul] c J“lint[lvl] = u g1v. Provided that it holds, and seeing the

definition of § ,our implementation preorder L1 on programs turns out to be

an infinitary variant of the preorder studied in {20,21,22). Nevertheless, our
implementation preorder £, makes a total confusion between static divergence
(due to unguarded recursive definitions) and dynamic divergence (due to
infinite sequences of internal actions), and alss a partial confusion between

potential divergence and systematic divergence. We identify for instance (x wh

x=1x}) and ((x+INIL) wh x=tx), although the former Program may terminate
steadily whereas the latter always diverges. These programs are not identified
in [21,22). The reason why our implementation preorder is not so fine is the
absence of a sequential composition in our version of CCS. We prove in the

next alinea that Ly captures precisely those distinctions which ean be

evidenced by CCS tests.
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6.3  An alternative definition of the implementation preorder

The idea under the equivalence ~3introduced in section 4 is that, given

a8 pair of equivalent programs t and u, any program v behaves exactly in the

Same way wether it interacts with t or with u. A contextual preorder €3
generalizing that equivalence may be defined as follows:

t E3u iff VC[.], Vv: 8(cit],v) c®(Clul,v)
where @(p,q) is the set of computations equal to

{Oq € J‘top[lql] / (Op, eq) € Twincomp for some Gpe J‘iop[lpI]}
Let us show £3 = £1 (and thus =3 = =1).
Clearly, £3 €51 . In the reverse direction: t E1 u=C[t] g1 Clu] for all
contexts, and p E1 9 =6(p,v) c 8(q,v) for' all v, by propositions 6.1 and

6.2. Hence, £1 € £3 and the two preorders coincide.

7. AN OBSERVATIONAL MODEL

There emerges more or less from proposition 6.3 that the canonical

homomogphism ¢ induced by the equivalence = on Dint (defined as £ n 5"1 )

bridges the intermediate model M.

int and another model nobs fully abstract for

the observational preorder £1 (on programs). Following that suggestion, we
construct in §7.1 and §7.2 an abstract domain Dyps and an associated
interpretation for the X operators, so that ¢ appears as a continuous
homomorphism between two continuous X algebras. In spite of that, we encounter
in §7.3 some difficulties for representing the ¢ images of greatest fixed
points. This leads us to suggest in §7.4 a polymorphic meaning function M

combining the use of Dj,+ and Dops (for open, resp. closed terms). The full

abstractness of M is studied in §7.5.
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7.1 The abstract domain Dops

Henceforth in the paper, 1 is an abbreviation for ({6,t} and the pairs

<w,®> and <wo?®,0> are identified. Our first definition suggests

representations for the equivalence classes of stateless computations.

definition qsabs’ SC — SC is the forgetful function s.t.
- ¢abs<w,m> = <IIA(w),u)>,

- ¢abs<w, R>

- ¢abs<w,R> = <1'IA(w),R> if RcA & (l’IA(w) #E V I'I,r(w) = g),

<IIp(w), 1> if Rn{o,1} =0,

- ¢abs<w,R> <T,R> if RcA & (HA("’) =g & IIT(w) # E)

Examples

- Paps< (0D O, 0> = <a®, 0>,

- ¢ pg<aoa, {o,a}> = <aa, L >,

= Gaps<TOTO, {a, 1> = <a, {a,B}>, ’
- 0 2ps<T070, {0, B}> = <1, {0, B}>.

proposition 7.1 For all stateless computations <w,R> and <w',R'>,
<w,R>C <w',R'> & Gabs<W/R> B po<w',R'>.

~

definition The poset of abstract computations (AC, E) is the restriction of
(SC, £ ) to the set AC = ¢ (sC) .

abs
An abstract computation is thus a pairof one of the forms <W,@> or

<w,R> or <w,.l> or <1,R> where W €A™ , w €A* and R is a finite subset of A.

Further, £ is the least order relation satisfying the following axioms, where

w € A* and R"C R'C R :

- <w,1>E <w,R>C <w,R'>EC <w,®> ,

- <g,R'>E <T,R'>C <T,R">E <g, 0>.

We introduce now a set Dopg of representations for the equivalence

classes of sets of stateless computations.
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definition ¢ : Djn¢ —Djnt is the forgetful function such that

= 9(Q) = topi{dps(q) / qe Q ),
where top : P(AC) — P(AC) is the function such that
~top(Q) = {qe Q/VgeQqt q' = q'= g

(remark that ¢=¢2).

Rroposition?.2  -For all sets Q, Q' € Dint, Q€ Q' & ¢(Q)E ¢(Q").

definition The poset of observations (Dopgr E) is the restriction of
(Dint’E Jto the set Dobs = ¢(Dint).
Thus, an observation is a set of pairwise incomparable stateless

computations; observations are ordered along the Hoare extension of E on AC.

Next proposition shows that Dops is indeed a domain.

Rroposition 7.3 (Dopss E+ D) is a complete upper semi-lattice, with least
upper bounds of subsets given by Lip =top(UQ /Q €D).

Rroof It is clearly enough to show : (VQ'eD) (Q'C top(u Q / Q €D));

and this is true, since there cannot exist, in view of the axioms of E ,any

strictly increasing chain of abstract computation in (U Q/ QeD).

Our intend is to use Dyps as the domain of a denotational model in which

¢ (flint[kﬂ ) is the meaning assigned to program t. Before we proceed in that

. direction, let us briefly refer the intended model to the readiness model of
[29] [6]. We recall that a ready set is the set of actions a stable program
can perform immediately. The set Ready(t) is equal to Interface(t) if that
interface set does not include 1 (or 0), and is undefined otherwise. When R+,
abstract computations‘<w,R> are indeed ready pairs, with trace w and ready set
R. As regards the observational behaviour of a particular program t, the
axiomaticition of (AC, € ) shows that a ready pair <w,R> can be neglected if
t may diverge after w or may reach after w some stable state with a strictly
smaller ready set R'cC.- R . The axioms also show that all the infinite

computations should be represented as such by corresponding traces. .
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7.2  An interpretation for XU{G} in Dops

We introduce first elementary operations 0 : ack — P(AC) such that

the following diagram commutes for all W, :

sc® Oy, P(SC)
k k
qbabs * +¢abs
ack O, P (AC)

Those operations on abstract computations are defined by the following

relations D"1-D"6 (where some brackets are omitted for singleton sets).

D"1 nil = {<¢,@>},
D"2 V<w,R> = [ve A, <g, {v}>, <, 1>] U
if (v=0) then <w,R>
else if (Re (L,0} v w e {g1})
then [v =t, <w,R>, <vw,R>)
else [v =1, <1,R>, <y,R>]
D"3  <w,R>p = if we (dm(p)*™) then @ else
R € {r,w}, <p(w),R>, <p(w), P (RNdom(p) ) >]
D"4 <W,R> + <w',R'> = [(w #€v R= 0), <w,R>, @] uU
[(w'#€ v R'= @), <w',R'>, @] U
if (w=¢& R0 & w'=¢ & R'#®)
then [(R= L v R'= 1), <g, 1>, <g, RUR'>],
D"5 <w,R> @ <w',R'> = {<g, 1>, <w,R>, <w',R'>},
D"6 <w,R> | <w',R'> = 4if (R= v '=) then {<w",w>/ w"eI‘IA(w Bw'>}
else 4if (R=lv R'=Llv (3A, Ae R A N(R"))
then {<w",1> / w" €Il (w @ w)}
else {<h(w"), RUR'> / w" € (w ® w')}

where h(w") = [ Ty (w") #¢, Iy (W), (M (w")#e, 1, €] ].
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Rroposition 7.4 The operations Wy : ACK—+P(AC) are monotone with respect to ¢

(on AC) and its Hoare extension (on P(AC)).

Examples (continued from section 5)

- <a, {B}> | <o, {E}> = {<oa,Ll> , <ao,l> , <g, 1>},
T <E,0> + <1, {a}> = {<g,0>, <71, {n}>},

= <g,d> + <, {B}> = (<g, 1>},

= <t {a}> + <g, (B}>

{<t, {a}>},

= <t {a}> + <1, {B}> {<r, {a}>, <t,{B}>},

= <€, 0> ® <1, {a}> = {<g, 1>, <¢, 0>, <1, {0} >)

- <€, 1> ® <, (B}> = {<e, 1>, <g, {B}>}).

We now 1lift the operations @, from AC to Dops and show some general

properties of the resulting structure.

definition (Dopgr ZU{G}) is the algebra with carrier set Dypg and operations
®y : (Dopg) k Dobs given as @y (Q1...Qx)=top (Vo (q1...95) /qi€ Q4}), with the

exceptional case 6@ = {<e,1>}.

proposition 7.5 (Dypg, TU{G}, E ) is a continuous algebra.
proof indication The continuity of the operators ®, stems from relations such

as q € mZ(LJD,Q') =3Q €D, qe W5(Q,Q')), which is an easy consequence of

propositions 7.3 and 7.4.

proposition 7.6 Function ¢ is a continuous homomorphism between the continuous

algebras (Djpt, ZU{0G}, <) and (Dgpg, TU(G), C ). '

proof This proposition is a direct corollary of propositions 7.2,7.3 and 7.5.

In the sequel, Dj,, denotes the subset of Dint with elements Q such that
either {w/<w,R>€ Q} or Q{w/<w,R>€ Q} is prefixed closed, letting Q(1)=¢ ,

Quo® =u for u eAA*, and Q(w) = w in all the other cases. Thus Q and ¢Q are

both in Djny if Q is a prefixed closed set in Dint-
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7.3 Where fixed points are altered by morphisms .

Suppose we know a closure operation CL on Dops making the following
assertions true:
a. for any function ¥(Xj.. -Xp)=<F1(0X1,...0%Xp),...Fy (0X1,...0X,)>, where the
Fj are finite Xexpressions, the greatest solution of X=F(X) in ( Dgopgr £ )1
is the componentwise closure of its least solution;

b. for all t in PROG, ¢(CL(Fin(/"£int[ltl]))) is the closure of ¢(Fin (ﬂint[ltll)).

By simply charging the interpretation for the ¥ operators in the

definition of Mint' the latter might be turned into a meaning function nobs

satisfying M50l = ¢ (PLiltl) for all t in PROG. This is indeed the method

we have followed for deriving nint from nop through morphism ¢int

from nint

Unfortunately, the method is not correct for deriving nobs

as we shall see, the relation ¢(Fix F)=Fix(¢F) is not valid in that framework,
although a similar relation holds for least fixed points ( by proposition
7.6).

In fact, the assertions a and b cannot be satisfied together, as is evidenced

by two remarks:
a'. the least solution of X=0X in Dobs 18 < €,4L > whereas the greatest
solution is {<w,®>/weA™}, thus CL{< ¢, L >} = < A®,0> if a is valid;
b'. by setting t=x yh (x=X%) in b, we get the equality between <€, > and CL<g, 1>
and thus the assertions a and b cannot hold together, for <g, > # <A%, 0>

In a more general regi;ster, the inequality between <g, 0> and <A™, >

entails the invalidity of the relation ¢(Fix F)=Fix(¢F) , because_ <€, 0> =

7.4 A polymorphic meaning function

An alternative method for extracting from nint a meaning function nobs
(hopefully) satisfying (VtePROG) Mops (£) = 62, he(t)is to modify the

definition of nint in the following way:
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— everywhere in the definition, substitute dﬂ‘tint(t) for ;. .(t) provided that

t is a closed term.

Since Dyng is a part of Dints the above substitutions make sense. The result
of the construction is a meaning function M : TERM— ((V-3Djn¢ ) 9Djn¢), which
assigns constant values Me]d (V‘9Dint)—’Dobs to closed terms t. As for

nobs’ it is the restriction of M to the set PROG of closed terms.

The above ideas are put in practice in the following statements, where M

is given an inductive and polymorphic definition. Constant functions are

identified with their constant values, mkobs stands for 0y : Dobsk Dy g0
mkint stands for u)k:Dintk—wint, €€ (V-Djine), and Fix denotes greatest fixed

points in (Djn¢, )0,

. THE INDUCTIVE SPECIFICATION OF M

l. £t is a variable x e V
MitN(e) = olnt (e(x))
2. Lia_a&lgsgd_tem_mkihl.._._._tk)_

M = @0 0P8 ( PHlitql, .. Ml )

3. L is an open term @ (tj...ty) with free variahles
MitNe) = 0 10t Mltyfie), ... Mityll(e) )

4. uwmwﬂmmm;wulﬂlw_xnﬂn4:
Miitll(e) = MMt [I(e[V/g])
letting ¥ = Fixg F(e(X/=]), Fj(e) = MltiI(e)

and & = (x7...%5), ¥ = (X3... %X,), P = (F1... Fp).
5. £.is closed term t' wh D
MLl = o it I (e (V/R])

with ¥ defined as above
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The full adequacy of the meaning function M is stated by the

following theorem.

theorem 3 Vt € PROG 2 MEN =622y (L.

The above is an immediate consequence of proposition 7.6 and the

following assertion HOM, the proof of which is slightly deferred.

HOM : For any set U € Rint and for any finite X expressions Fj, let
F(U) (X1...Xp) = <F1(U,0X)...0X,),...Fy (U,0X1...0X,)> then

OFix gB(U) = ¢Fix g F (V)

The general derivation method which was suggested here works indeed
as soon as the equality ¢ Fix X !‘(J“lint[lull ) = ¢Fix x F(¢ﬂint[|ul] ) is

valid for closed terms.

remark The Beki'c principle for simultaneous fixed points is valid in M ( this

follows clearly from HOM)

7.5 Full abstraction

Theorem 3 states the full adequacy of M (w.r.t.¢), but it does not say
anything about the full abstractness of M (w.r.t.<$41). We recall from [27]
that full abstraction means the logical equivalence :

- Vu,vePROG: Mljull & Mv] < (VC[.]) Clul] £1 C (v].
The full abstractness of M is claimed by the following statement:

Theorem 4 Vu,vePROG: Mjul] £ Mlv]] © u E1 v.

o3

(4]

[+ ) T

w
J

-2 and theorem 2, we know that the right to
left implication is valid. There remains to establish the reverse relation. In
view of proposition 6.2, the left to right implication is an immediate

consequence of the following claim:
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= for any programs u,v and for any program context cl[.]:
Ml e Mivi) =2lcul] e c[v]].
By proposition 7.4 and theorem 3, that assertion follows from the next

Property MON with the help of the Beki'c principle for simultaneous fixed

..points.

MON For any sets U,V e Rint and for any finite X expressions Fj, let
F(u) (Xl. o Xp) o= <F; (U,O’Xl. «+0Xp), .. -Fn (U,O’Xl -« 0X,)> then

U C ¢V = ¢Fix g F(U) € ¢Fix € F(V) .

The goal of section 8 is to prove the fundamental property MON, which

obviously entails HOM.

8. ABOUT INFINITE XTREES.

The fundamental relation MON, which is the cornerstone of our fully

abstract model, may be equivalently expressed as:
VU,V€Ripne: UG V = Fix X F(U) © Fix g F(V).

That relation is not immediate : it states the monotony w.r.t.

preorder £ of functions defined by means of greatest fixed points w.r.t.

inclusion, and ¢ is strictly included in § . Our first step towards a proof

of MON is to state, for that property of fixed points and (extended) operators

@y on Dijne (= P(SC)), an equivalent formulation in terms of infinite trees and

(elementary) operators @y on SC. This is accomplished in §8.1 to §8.4. At this
stage, we observe that the resulting assertion concerns only the trace
component of stateless computations, i.e. the first projection of pairs <w,R>.
We construct in §8.5 an interpretation for the X operators in a simplified

domain of trace languages, and finally rephrase our assertion in that

framework in §8.6. The proof for the final assertion is given in appendix.
[ ]
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In all the section, we let fix F(U), resp. Fix F(U), denote the

least, resp. the greatest, fixed point in (X1...Xp) of F(U)(Xy...X,), where

'(U)(xl...Xn) = <F1(U,ox1...oxn),...Fn (U,0X;...0X,)> and functions F; are

induced by finite term contexts ti(.) with free variables (%1...%,).

8.1 Unfolding trees

Terms t([e] in the free X algebra over generators {e, x3,... Xn} may

be isomorphically identified with finite trees . For 1<i<n let T; be the
unfolding tree that arises from tij(e] through the continuous expansion of the
variables X3, 1s j S n, into corresponding trees c(tj[0]). Then T; is an

infinitary rational tree on the (extended) signature ZU{o} and the (reduced)

set of variables (e}, and every infinite branch of Ti has infinitely many

O-nodes. A typical example is the following tree T;, obtained from tjle} =

(e+a(x;))| (G(nil)®x;)

We assume in the sequel the usual representation of trees by partial functions

from ®* to Tuic).
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8.2  SC-assignments for I-trees.

Given an unfolding tree T and a set U in Dint, we let UT denote the set
of the U-assignments of T, defined as the partial functions f:dom(T)—-SC that
assign computations to nodes of T in agreement with the following rules:

— & (the root node) € dom(f) ;
- if s € dom(f) and T(s) = e then f(s) € U ;

- if s € dom(f) and T(s)

nil then £(s) = <g,@> ;

- if s € dom(f) and T(s) W, k > 0, then

ei.ther f(s) € 0 (£(s.1),...£(s.%k)), or W, =6 and f(s) = <g, {G}>.

A partial assignment f € UT is said to be finite if dom(f) is finite,
infinite if dom(f) is infinite. A finite assigrment f is finitary if Vs €
dom(f): f(s) = <w,R>= R # ®. An infinite assignment f e UT is productive if

£(e) #g(e) for every finite assignment g € UT. Clearly, for any productive

assignrhent £, f(¢) = <w,R>= R = @.
8.3 Fixed points as sets of assignments

Since (@) is the singleton set < g, {G} >, the following equality appears

as an immediate consequence of Tarski's least fixed point theorem:

M (fix F(U)) = { £(e) / £ € UTi & £ is finite).

Now for any fixed f e yTi ; let Vj = { £(s) /s € S'ij }, where sij is the set of

the nodes s € dom (T;) which represent occurences of Xqr then <Vi...Vp> is

componentwise included in P (U) and hence in Fix F(U) which is the greatest post

fixed point of WF(U). Hence we can claim:

I; ¢ Fix B(U)) = ( £(e) / £ e uTi)
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From the above, there emerges:

II; ( Fix F(U) - £ix P(U) ) = { £(e) / £ € UTy & £ is productive}

where "-~" is the componentwise difference between vectors.

8.4 Towards a proof of relation MON

By Tarski's least fixed point theorem, the following variant of relation
MON holds, because ¢ is a continuous homomorphism between two continuous
Z-algebras: V U,v €Rint : U E ¢V =26 fix F(U) € ¢ fix P (V)
The aboye may be equivalently expressed as

V U,VeEDipe : UG V = fix F(U) c fix F(V)
Relation MON will therefore follow if we can show:

VU, VeDijpt : UG V= Fix F(U) = £ix F(U) T £fix F(V)

~

In view of §8.3, this last implication is entailed by the following claim:

Claim]l For any set U€DRintr there exists a class I of U-assignments for
unfolding trees T with the following properties:

- all the productive U-assignments are in r,

¢l £(&) /£ (TnUT)} = { <wwo>/ wekp(U) },

= Kr(U) is an g-increasing function of HA{ w/ <w,R>€e U }

o]

.5 Trace assignments for I trees

It may be observed that the above claim has nothing to do with the
second projection of stateless computations, and may thus be rephrased in terms

of traces. Fortunately, the defining relations which have been stated in §5.3
for operations W : sck - P(SC) induce corresponding operations mk:(N“)k—)

75 vO0
(N

P ) s.t. for all stateless computations, <W1rRp>, oL o<Wp Rp> 2 @ (WL W) ={ W

/ 3R <w,R> € mk(<w1,R1>, -+ .<Wg,Ry>)} . Using these derived operators on traces,
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let us weaken the previous definitions given for SC-assignments into
Corresponding definitions for trace assignments, by simply dropping the second
Projection of pairs <w,R> . OQur previous claim may be rephrased into the

following.

Claim? For any set U & N*® s.t. either U or Q(U) -see §7.2- is prefix closed,

there exists a class I' of U-assignments for unfolding trees T with the

following properties:

- all the productive U-assignments are inT,

- I\ { £(e) / fe(TA UuT)} = Kp (I, (U)),

~ Ky is increasing for c.

As we shall see now, the class I' of the :laim may even be reduced to a

class of productive assignments, to the cost of a slight modification of the

operations @, on traces.

8.6 Subscripted actions

The modification amounts to supply actions with subscripts which
identify agents in unfolding trees and are used to indicate the logical origin

of the actions.

Modified .

Let N=NU { v, / VeN & se W'} U { Tes,st> / 8i8' € HY),
For se B* and Wy, € X, we introduce operations Og : NP ( N™): Og(w) = {e,osw}

and new operations mk:(N”)k — P(N*), defined by variants of relations D'1-D'¢
where the second projections are dropped and the following changes are made:

- u resp. u',v,v' are replaced in the statement of conditions by &u resp.
du',dv,8v' where 8§ denotes the subscript erasing morphism ( from N®to N*),

- the parallel composition ® is adapted in such a way that the following holds

for v,v' €N and s,s' # ¢ :
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VW@ VW = (W(w®V'W') U v'(ow ® w'))u
if v=2X1& V' =n(A) then T(w ® w') else
if v =25 & V' =70 Lthen T (w ® w') else

ifv =X &V =nQ)g then T, (w ® w') else

ifv=2,& V' =n(A) g then Teg,s>(w ®w).
Modified

et £ =X u {og/ s € ¥t} . For any unfolding tree T, we define an

associated tree I (on X U {e}) by stating the following relations:

- dom (I) = dom(T),
- I(s) = 0y if T(s) = 0, I(s) = T(s) otherwise.

Thus, I may be decomposed into finite subtrees according to the following
diagram:

I

Modified .

Let yg : N5 N*® be the morphism Vg(d) = Ay and Yg(v) = v if v e
{0,T}. For any set U eP ( N + we denote by UL the set of the U-assignments of

I, defined as the partial functions f: dom(I) - N™satisfying the

following conditions of coherence:
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~ € (the root node) e dom(f) ;

- if s € dom(f) and I(s)

® then f(s) =Yg (u) for some uev ,
~ if s € dom(f) and I(s) = nil then f(s) = £,

= if s € dom(f) and I(s) = ®., k > 0, then

either f(s) € mk(f(s.l),...f(s.k)) or o, =0y and f(s) = ¢

A definition of T

For Ue P(N*®), we state I' = {86 / £ € L } where L is the family of all
the productive U-assignments for unfolding trees I. Mcte that an assignment f e
ul is productive if and only if f(e) contains an infinite number of subscripted

symbols O (each of which occurs only once). Our previous claim 2 follows now

from the next proposition, where we let y: N*_, N® be the morphism that erases

the non subscripted symbols o, and leaves all the other symbols invariant.

proposition 8.1% VU,Ve P ( N°): if U or Q(U) and V or Q(V) are prefix closed,

and if HA(U) = HA(V), then for any productive assignment £ € UL , there is a

productive assignment g € VI s.t. Y(E(e)) = yi(g(e)).

9. CONCLUSION

The outcome of the study is manyfold. We have shown that definitions of
programming languages along Plotkin's method of structural operational
+ semantics may also be taken as specifications of initial denotational models,
where the meanings of programs are sets of computations. We have determined
which informations should be kept and which informations should be erased from

the initial model of ccs for. obtaining a model of ‘the equivalence p ~1 @ if and

only if p and q have similar sets of maximal interactions with any program r.

We have suggested a way for turning the difficulties encountered in deriving
the abstract model through a non closed erasing morphism, namely a polymorphié
definition of meanings in which open, resp. closed terms are dealt with

differently.

39



Let us stress the limitations and open perspectives of our work, in
relation to some other approaches to concurrency. '

A rough separation may be observed between two families of denotational
models for concurrency, namely the family of purely order theoretic models and

the family of mixed space and order theoretic models. Models of the first class
use classical ®W-algebraic domains [9,18,24,25,29). In the second class of
models, the order relation is usually the (reverse) inclusion between closed

subsets in some metric completion of languages, trees or tree-languages

[3,23,31]), and the considered c.p.o.'s are W-algebraic because all those metric
spaces have denumerable bases.

For the sake of simplicity, we have presented a translation of
structural operational semantics into ordered models, but the topological
treatment has indeed been left behind: our (initial) semantic operators are set
extensions of profinite operators on words, and they preserve distances in the
usual ultrametric topology . A clearly topological approach of the problem has
been taken in (2], where an alternative translation of structural operational
semantics into models of the second category is defined and applied to the full
version of CCS with value passing.

In the two categories of denotational models discussed above, it is
usually assumed that each element or open set of the denumerable base
reﬁresents & property that may be tested under finite experiments [1], i.e.
under experiments that either succeed in finite time or fail ([18]. Thus,
identical meanings are assigned to some pairs of CCS programs which differ by
their respective sets cf ®-traces. A possible escape to that criticism is to
restrict oneself to a proper subset of CCS, in which the assumption of 'uniform
concurrency' is valid [4]. Behaviours are then closed sets in the usual
ultrametric topology, and infinite stream semantics resp. finite observation
semantics are isomorphic [3]. In the present paper, where the full version of
pure CCS was considered, we were not enrightened to set the assumption of
uniform concurrency. So, we could not expect a countabkle base for abstract
meanings, and had no hope to get closed meanings for programs in the usual
ultrametric topology. The investigation of alternative topologies is an open
way of research .

The artifice we have suggested for turning the non closedness of the
erasing morphism ¢ ( namely the polymorphic definition of the abstract meaning

function ) is valid in every other situation where ¢ ( Fixg F(U) (X)) =

¢(FixxF(¢U)(X)) for all parametric functions F(U) in the abstract
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interpretation. In order to raise things to a more methodological level, there
remains to investigate to what extent the validity of the above relation

depends on the profinite properties of the operations.

Acknowledgment This paper owes much to an illuminating remark of E.R. Olderog.

APPENDIX

Indications of proof for proposition 2.1

The inclusion 2 follows by induction on the length of transition

Sequences (simultaneously for all operators). The reverse inclusion is more

difficult to prove. Given OezD'ﬂmk(tl...tk)ﬂ, we must construct Gi € D*Utiﬂ s.t.
eeg%jel,...ek). This is trivial for sequences 8 of length zero (i.e. 0 = g).
Suppose 6 = (@ (uy...ug)pYs0'ylury ... u'm))@', where the logical transition
before 0' is a non degenerated transition proved along some rule Ye Aloy].
Suppose 6' € @' (8'1...0';) for some 8'j € D*[lu'4ll. Then one obtains the 6, from
the e-j by prefixing some of them with the transitions used as premisses for
applying rule Y. But some sequences O'j may be left unchanged (up to a change

of their index), and zero- length sequences 9i may also appear in this

induction step.

roof of proposition 2.2

The inclusion ¢ follows from the definitions. We establish the reverse

inclusion, i.e. @€ CL(mk(Pref(Ql),...Pref(Qk))) =0 €0p(Q) ... Q).

If0 is a finite sequence, then Oesmk (61...9k) for some finite 0; € Pref(Q;),
and hehce Oe mk(Ql...Qk) by the assumption of saturatedness. In the remaining
part of the proof, we assume 0=(u;-Yiou;49) i¢q € CL(@, (Pref(Q)... Pref(Qx))),

and show 8 € ©,(Q)...Qx) by recursively solving the general problem P (6,0,

Qj...Qx) stated as fqllows
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- for j = 1...k and n € ¥, construct k decreasing n-indexed chains of non

empty subsets an C 0y such that either an is utltimately constant or annj is

a singleton set, and 6 belongs to15;(91...6k) for arbitrary Gj in annj.

Let uy, = @, (t;...tx), whence (Vi) € i € Pref(Qj), and let 8" =

(uj~Yi>uiy1 )i<n , whence (Vn) 6<P € W (Pref(Q3)...Pref(Qy)). We proceed by
cases.

gcase a3 For some axiom of the form : mk(sl...sk) -D°—+id(sp) for R(v) ;
R(v,) holds and there is an infinite number of m s.t. @M = (ug Y0 t) 67 for

some 6" € Pref (Qp) .
For all n, we set Q"4 = {eg4) for j # p and Q7 = ((u341-Yi+190545) i< } -

case b For some operational rule of the form :

L}
for R(v',v),

mk(sl...sk) -DD—)id(S'p)
the following conditions hold for infinitely many m :
- R(D'mr uo)l
= (tp=""moug) (ujy; Pitlosug,) jene Pref(Qy) .
For all n, we set Q“j ={etj} for j#p and

an = {(tp—u'm—eul)(ui+1—ui+1—+ui+2)i<m } for some (fixed) m.

gase ¢ For some operational rule Y of the form

sl‘Dvll'*s'lr--- sp—Du'p-as'p
Y: IQ: R(‘U'l,...l)'p,()),
Oy (¥1-+-YR)-pP2 01 (y'1...¥"])

the following conditions hold for infinitely many m :
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- 0™ e @ VoV gmy, ++.0T) for some 8™; € pref(Q;)
=0T = (£~ )0 for some v, if i = fy(z)
= ROV, ... ump, v,) -

Observe here that the t'; are independant of m !
Now, we set Q°j = Q4 for all j, and we specify Qi"”'l in terms of auxiliary sets

Q'“j which are the solution of a recurrent problem . More precisely, we set

Qi™1 = {g.;} if i ¢ dom(y') U dom(y"),

Qi = o0y i y(4, ),
,Qin"'l = (ti—umz—-)t'i)Q'nj for some (fixed) m if y'(i,j) and i = £y (z)

The auxiliary sets Q'nj are in turn defined as the solutions of
P(B',ml,Q'l...Q'l) with parameters as follows
=0 = (ui41-Yi+190540) i<,
- Q'y =04 if ¥ (4,9,
T Q' = 18" / 3v ((£4-¥>t'5)8" € Q) } if ¥'(i,3) and i = £y (z).

This completes the resolution of problem P, since Qin"'l S Q;j follows

recursively from the assumption of saturatedness (which is inherited by the

Q'Ms) . Hence the proposition is proved .
J

roof T ition

The lefmost implication is a direct consequence of propositions 5.1 and

6.1 . The proof for the rightmost implication is a weakening of the proof for

proposition 6.3
f of pr ition
Assuming ¢int(eu) = <w,R> for some fixed Oue J‘top[luI] + we proceed by case
analysis on <w,R>, to show that u E1 v implies the existence of some Gve

Mop[lvll satisfying ¢int (eu)Eq’int(ev) . In each of the five cases encountered, z

stands for I'IA (N{w)), and u C41 v is supposed to hold.
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case 1. R #0, RN{0,T} = &, Il (w) &, I (w) = ¢ :

if z= Ay ...A, and (sort (v)\R)=n{0;...0}, let t=hy(...A (@ nil+...+opnil)...),
then z € L(u,t) = z€ L(v,t), hence there is some Ov in Mop[lvl] s.t. the
following holds of <w',R'> = ¢int(ev)

MyMmw))=z & ((R'= @ VR'NN{C,T,0y,...0,) = D) .

Suppose R'#0 and R'N{0,7}= & then, since R' is included in the sort of v, the

assertions R'NT{0;...0.} = @ and R'c R are equivalent. Therefore, <w,R>E
<w',R'> in all situations.

case 2. R #mw, RN{o,1} = D, My (w) = ¢, T (w) #€ :

if T](ao) ¢ sort(u)usort(v) and (sort(v)\R)= n{al...o.m}, let C{.]}=(. + nao(nil))
and t= aonil +...'+ a.nil ; then €€ L(C[ul,t) = €€ L(C[v],t).

Only two possibilities are left : either, for some Oveﬂop[lvl],
0;nt (8,) = <w',R'> where Il (w')=¢ & R'=0, .or for some 0, € ﬂop[lvll, ¢int(ev)
<w',R'> where l'IA(w')=' e & I (w')#€ & R'#0 & R'N{0,T} = 1] &- R'NN {0 .. .00} =2
But then <w,R> £ <w',R'> in all situations for the same reasons as above.

‘case 3. R#w, RN{0,T} #9 :

there, (-)u can be extended by silent transitions; choose ', maximal in the set

of silent extensions of 6,, substitute 0'y, for 6, and iterate the proof : case
3 cannot occur again, and Ou c o'y .

case 4. R =0, 1z € A*

if z= Ay...A, and o,f € sort(u)u sort(v), 1letC[.] = (.| Xl(...kn(a(Bnil))...))
and t = na(nP(nil)), then mae L(Clul]l,t) = nMae L(C[v],t) and there must
exist Oveﬂop[lvll s.t. O5ne(0,) = <w',®> and M (M(w')) =z .

case 5.M(z) e€{A; ... A }® :

let t = x wh (x = Ayjx + ... + A;x), then mM(z)€L(u,t) =mn(z)e L{v,t) and there

must exist Ove Mop[lvl] s.t. ¢’int(ev) = <w', 0> and I'IA(n(w')) =z

No other case can occur, thus the proof is complete.
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Proof of proposition 8.1

The proof is rather complex and calls for a lot of auxiliary
definitions and facts. The presentation is in three parts. In a first part, we

equip sets of assignments ‘with both an ordered and a metric structures. In a

second part, we state two properties of the operators @, concerning the non

subscripted symbols O,T erased by y . The main body of the proof appears in the
third part.

a.An ordered and a metric structures on assignments

definition N*™ is ordered by £ : usv & 3w v=uw .

factl Let wy € Z, , z7...2x € N* and z €W ( 23...2¢ ) then for any z' € z
with length at most n, there exist z'] < z3... z2'y S 2z with length at most n
S.t. zhew( z'3...z' ).

definition The order < on UL is the relation such that h € h' iff dom(h) ¢

dom(h') & Vs € dom(h) h(s) £ h'(s)

fact2 Let (fn)n be an increasing sequence of finitary assignments in Ul ’
where U = V U Pref(V) and lim, £,(s) € V for all s € Updom(£f,) , then (£n) has

a least upper bound f € yl ‘ and indeed f € VI (this property comes mainly

from the continuity of @).

definition The distance d on UL is d(f,g) = 270 yhere n is the least integer
such that either dom(f) and dom(g) differ by some string s of length n , or
f(s) and g(s) differ by some prefix of length n, for some s of length less than

or equal to n.

fact3 Let (f,), be a Cauchy sequence of assignments in UL, where U = vV v
Pref (V) and lim, f,(s) € V for all s € U, dom(f,) , then (fn)n converges to an

assignment f e Ul r and indeed f € VI

{( this property follows as a corollary from facts 1 and 2 ).
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b.Two properties of the operators @ w.r.t. silent actions

defipition Relation ¢ on N* is the preorder s.t. z&z' if and only if y(z) =

y(z') and for any left factor w < z in { Oy : s € N*}"' r Y(W) = y(w') for some

left factor w' < z' in { 05 : s N*)* .

definition Relation « on finitary assignments is the preorder such that feg

if and only if dom(f) = dom(g) and Vs € dom(f) : f(s)eg(s).

factd4 Let ®, in I, and let z;,z"; € N° be s.t. ziez"; for i=1...k, then for
k k i i i i

all ze€ O ( 27...2x) there exist z2',z2'y €N s.t. z¢z', z'€ O 2'7...2%)

and z'j < 2z"; for all i .

factb Let W, € Zk and for i=1...k, let w; € N® be s.t

WE @y (wy...wx), then for any ze {0,1}™ and ie{l...k}, the set Op (W .. .WiZ. .. W)

contains either w or wz or woz.
¢.The main body of the proof

Let U and V denote sets of (non subscripted) action sequences in N%,
s.t. U or Q(U) and V or Q(V) are prefix closed and Iy (u) = I'IA(V’) . Let £ € UL

be a productive U-assignement of T for some unfolding tree T. We must construct

g € VI such that V(E(e))= y(g(e)).

S Define PU = U U Pref(U), and let Q denote the following predicate on
assignments: Q(h) =Vsedom(h) max(|lh(s)|, #{s'Ss / h(s')= ¢}) < |h(g)].

Since f is productive, f£(g) may always be written in the unending form:
¥9C50%10g1+ - -WnOgp--+-+ Where wij € ( N - {05 / s#e} ) *

From factl, f(g) = lim, (f'(€)) for some sequence of finitary assignments f'p

in PUT satisfying: f£'; < £ & Q(f'p) & £'p(e) = W0OgoW10g1 - - -WnOgp, -
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Again from factl,each f', is the upper bound f," of a finite chain of finitary

assignments fnj in pyl s.t.: fanf'n & Q(fnj) & fnj(e) = WO°'30"1°31"'wj°sj

Since T is an unfolding tree, the set of all the possible fnj is finite for
fixed j. Thus, by Koenig's lemma, there is an increasing chain of finitary
assignments f, in pyl satisfying: £, <f ¢ Q(fn) & f£,(e) = WoOgoW10g7] - - - WnOgp, -

We set the following definitions for the remaining parts of the proof:

S =1{ s e dom(T) / T(s) = },

uS = f£(s) for se S N dom(f) and up® = £5(s) for se S N dom(fy).

$ Define PV =V u Pref(V) . For each s € S, fix vS e v s.t. I, (uS) = Iy (v8),
anf then for all n e W + define v,% as the shortest left factor of v s.t.
Iy (uy8) = IMp(vpS). From facts 1 and 4, there exists for each n a finitary
assignment g'n in pvl satisfying: dom(g',) © dom(£f,) , g'n(s) < v,8 for all
SE€ES, and g'(g) & W0%50%W10g1 - - -WnOgp -

Again from factl, each g'n is the upper bound gn® of a finite chain of
finitary assignments gnj in pvl satisfying: |
Q(gnd) & g ie) € WOgoW10s1 - - W30g4 & gp(s) < V413 for all s € s.

Now, the set of all the possible gnj is finite for fixed 3, and thus by
Koenig's lemma, there is an increasing chain of finitary assignments 9n in pvl
satisfying: gn(€) & woosowlosl...wnosn for all n.

From fact2, that sequence has a least upper bound g in PVL | For obvious

reasons, the corresponding assignment satisfies Y(f(e)) = y(g(e)) + but g does

not necessarily belong to Vi .

§ If V is prefix closed, then g € VI ang the proposition is shown. We

consider now the converse case where Q(V) is prefix closed. From that property
and for any s€S : g(s)eV or g(s)zS € V for some z3 € (1,09).

Let sp denote the n-th element in the lexicographic ordering of S§. By

iterating the following process for constructing h, from hn-1, one may

construct from hy = g a sequence of assignments h, € pvl :
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= given h,_;, take h,(s) = h,_1(s) for s # Sn s bn(spy) = hp_q(s,) 23" , and form
the h,(s') from the hp.3(s') , s'<s, , by appending to the latter the

appropriate words in the set ¢* uUs’t U ¢® .
The success of each step in the construction is guaranteed by fact 4. The

resulting sequence (hy)pn is clearly a Cauchy sequence of assignments in pvl |

- From fact 3, that sequence converges to a V-assignment h € vI |

For obvious reasons, y(h(g)) = V(g(e)) , thus wy(h(g)) = Y(f(e)) and the

proposition is shown.
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