N

N

Parallel multigrid methods: implementation on
SUPRENUM-like architectures and applications
Karl Solchenbach, Clemens-August Thole, Ulrich Trottenberg

» To cite this version:

Karl Solchenbach, Clemens-August Thole, Ulrich Trottenberg. Parallel multigrid methods: imple-
mentation on SUPRENUM-like architectures and applications. [Research Report] RR-0746, INRIA.
1987. inria-00075806

HAL Id: inria-00075806
https://inria.hal.science/inria-00075806
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075806
https://hal.archives-ouvertes.fr

AT ARG I,

OS]

N° 746

PARALLEL MULTIGRID
METHODS : IMPLEMENTATION
ON SUPRENUM-LIKE
ARCHITECTURES AND
APPLICATIONS

Karl SOLCHENBACH
Clemens-August THOLE
Ulrich TROTTENBERG

ERAYRSRE WA S

PN,

DS SO I

=Y

SPEREGE 2L

ST LRI e L TN RS AR

Parallel Multigrid Methods:
Implementation on SUPRENUM-Like
Architectures and Applications

Karl Solchenbach
Clemens-August Thole
Ulrich Trottenberg

W! ! D PAPIER RECUPERE ETRECYCLE ~

Méthodes multigrilles paralléles :
implémentation sur des architectures de type SUPRENUM
et applications

Karl Solchenbach
Clemens-August Thole
Ulrich Trottenberg

Suprenum GmbH, Hohe Str. 73, D-5300 Bonn
Gesellschaft fiir Mathematik und Datenverarbeitung (GMD),
D-5205 St. Augustin

Résumé

Les méthodes multigrilles de résolution d’équations aux
dérivées partielles (et d’autres modéles mathématiques appliqués
au calcul scientifique) se sont révélées étre optimales sur
architectures séquentielles. On cherche & les utiliser sur
calculateurs paralléles ou vectoriels afin de tirer profit a la
fois de leur haute efficacité (comparée aux méthodes classiques)
et de toute la puissance de calcul de ces machines modernes. Il
existe par conséquent un besoin en méthodes multigrilles
paralléles. Certaines des méthodes maintenant bien connues (avec
relaxation red-black et "zebra-type", voir [25]) présentent déja
un degré de parallélisme suffisamment élevé.

Parmi les architectures nouvelles de supercalculateurs, les
systémes MIMD a grand nombre de processeurs vectoriels et mémoires
distribuées semblent promis a un bel avenir. La machine virtuelle
SUPRENUM s’'adapte de fagon naturelle & ces architectures. Elle
repose sur un modéle dynamique de processus, ou chacun posséde sa
propre zone de données et échange des messages avec les autres.

Nous montrons dans cet article comment utiliser de tels
architectures et concepts logiciels pour la résolution de gros
problémes avec maillage (équations aux dérivées partielles
discrétisées, etc...). Le découpage en sous-domaines et la
structuration par blocs - la communication ne se faisant qu’aux
points frontiéres des sous-domaines ou des blocs - sont les
approches naturelles dans ce cas. Les méthodes & base de
maillages, en particulier les multigrilles, peuvent &tre ainsi
efficacement parallélisées.

Dans le cadre du projet SUPRENUM ont été développés des
utilitaires performants (comme par exemple des logiciels de
visualisation : des processus/processeurs, des échanges de données
entre grilles); ces programmes facilitent grandement
1l’implémentation de méthodes monogrilles ou multigrilles sur des
systémes multiprocesseurs a mémoires distribuées. Des codes
multigrilles paralléles ont été exécutés sur le simulateur
SUPRENUM [16], sur le "pré-prototype" SUPRENUM [22] et sur
d’autres machines & mémoires distribuées telles 1’Intel iPSC et
1’hypercube CalTech.

Parallel Multigrid Methods:
Implementation on SUPRENUM-Like
Architectures and Applications

Karl Solchenbach
Clemens-August Thole
Ulrich Trottenberg

Suprenum GmbH, Hohe Str. 73, D-5300 Bonn
Gesellschaft fiir Mathematik und Datenverarbeitung, D-5205 St. Augustin

Abstract

Multigrid (MG) methods for partial differential equations (and for other impor-
tant mathematical models in scientific computing) have turned out to be optimal on
sequential computers. Cleatly, one wants to apply them also on vector and parallel
computers in order to exploit both, the high MG-efficiency (compared to classical
methods) and the full computational power of modern supercomputers. For this pur-
pose, parallel MG methods are needed. It turns out that certain well-known standard
MG methods (with RB and zebra-type relaxation, as described in [25]) already contain
a sufficiently high degree of parallelism.

Among innovative supercomputer architectures, MIMD multiprocessor computers
with local memory and a vector unit in each processor are particularly promising.
A software approch that corresponds to such architectures in a natural way is the
abstract SUPRENUM concept. It is characterized by a dynamical process system,
where each process has its own data space and communicates with other processes by
message-passing.

In this paper, we show how such architectures and software concepts are used for
the solution of large scale grid problems (discrete PDEs, etc.). Grid partitioning and
blockstructuring — with communication only along the subgrid or block boundaries
— are the natural approches in this context. Any grid oriented method, in particu-
larly any MG method can be efficiently parallelized using these approaches. In the
SUPRENUM project, powerful software tools (e.g. a mapping library for the process-
processor mapping and a communication library for the intergrid data exchanges) are
developed that make it very easy to implement single grid and MG methods on local
memory multiprocessor systems. Parallel MG programe have been run on the SUP-
RENUM simulator [16], the SUPRENUM pre-prototype [22] and some other local
memory machines like the Intel iPSC and the CalTech hypercube.

'This report has been presented as an invited paper in the “International Conference on Supercomput-
ing” in Athens, 8-13 June 1987. It was finished during a research stay of the third author at INRIA Centre
de Sophia Antipolis (in connection with the 1987 Alexander-von-Humboldt award for the French-German
scientific cooperation).

1 Parallel Multigrid

For a wide class of problems in scientific computing, in particular for partial differential
equations, the multigrid (more general: the multi-level)- principle has proved to yield highly
efficient numerical methods [13,2,4,14,20]. However, the principle has to be applied care-
fully: if the “multigrid components” are not chosen adequately with respect to the given
problem, the efficiency may be much smaller than possible. This has been demonstrated
for many practical problems. Unfortunately, the general theories on multigrid convergence
do not give much help in constructing really efficient multigrid algorithms. Although some
progress has been made in bridging the gap between theory and practice during the last
few years , there are still several theoretical approaches which are misleading rather than
helpful with respect to the objective of real efficiency. The research in finding highly ef-
ficient algorithms for non-model applications therefore is still a sophisticated mixture of
theoretical considerations, a transfer of experiences from model to real life problems and
systematical experimental work. The emphasis of the practical research activity today lies

— among others — in the following fields:

e finding efficient multigrid components for really complex problems, e.g. Navier-

Stokes equations in general geometries

e combining the multigrid approach with advanced discretization techniques: using dy-
namic local multigrid refinements; adding artificial terms (viscosity, pressure, com-
pressibility, etc.) in certain multigrid components; using “double” discretization,
r-extrapolation, defect correction in connection with multigrid to obtain higher ac-

curacy; using t_:_oarse-grici continuation techniques etc. [2]

e constructing highly parallel multigrid algorithms

In this paper, we want to deal only with the last topic.

Multigrid (MG) methods are known to be “optimal”, i.e. the number of arithmetic opera-
tions that have to be performed is proportional to the number of discrete unknowns which
are to be calculated. This statement directly applies to standard sequential MG algo-
rithms. With the availability of parallel computers, the question arises how MG methods
are suited for parallel computing. Sometimes one can find the conjecture that MG is - in

some sense — an essentially sequential principle, or the opinion that the full MG efficiency

is obtained only on sequential computers and that there is always a loss of efficiency for

MG on parallel architectures.

We do not intend to give a final answer to this question, but we want to contribute to a

clarification of the situation.

First, one may distinguish the approaches where standard MG algorithms are discussed
under the parallel aspect from those approaches where essentially new MG algorithms
(or better: MG-like algorithms) are designed with respect to parallel computing. We will
not discuss new algorithms of this latter type in this paper; we only want to make a few

remarks about them.

The ~ in our opinion — most interesting proposal for such a variant has recently been made
by Fredericson/McBryan [7]. Here on each level several coarse grid problems are solved
simultaneously in order to improve the MG-convergence. This appraoch seems to be of
considerable use particularly for massively parallel machines like the Connection Machine
[18]. '

To the class of new MG-like algorithms belong also all those attempts where several
levels are simultaneously employed. Such methods have been considered by Gannon/van
Rosendale [8], Greenbaum [10], and others. A breakthrough has, however, not yet been
achieved; for theoretical reasons, one may also doubt whether these approches can give a

remarkable gain at all.

‘In ‘th‘is pa.pef, we consider only standard MG methods .under the parallel aspect. This
»means,k in parti_cixla.r, that we regard the schedule according to which the different grid
levels are passed through as essentially sequential. On each grid lével, however, we per-
form each of the gri_ci operations (the MG components: rela.xa.tion, computing of defects,
interpolation, and restriction) as parallel as possible. It has been known for long that

certain relaxation methods are parallel in a natural way, e.g.
- Jacobi-type relaxations
"and

- Gauss-Seidel-type relaxations with multi-color (red-black, four color etc.) ordeiing of

_ Clearly, also computing of defects, interpolation and restriction can be performed in par-
_allel.

The first systematical papers on parallel MG were those of Grosch [11,12] and Brandt
[3]. In [3] most of the essential phenomena with parallel MG are already discussed or at
least mentioned. In particular, it is stated that the time complexity T*(N) (measured by
the number of parallel arithmetic operations) of a suitable standard parallel full multigrid
(FMG) solver for the 2D-Poisson model equation is T*(N) = O (log: N)?, where N =

number of grid points.
In this paper, we consider two model problems in some detail:

Example 1: A parallel MG-solver for the '3D-Poisson'equation on the unit cube (0,1)3
with periodic boundary conditions. A V-cycle of this algorithm is characterized by the

following components (for a more detailed description see [26}).

Discrete operator: ordinary second order 7-point approximation A, on a regular cubic
grid with meshsize h and N = h~3

Relaxation: 3D-red-black pointwise, all red (black) grid points are simultaneoulsy
treated in the first (second) relaxation half step; v;,vs = 1 relaxation
steps.

Coarsening: standard coarsening h — 2h

ordinary 7-point operator A
Grid transfers: h — 2h: 3D full-weighting

2h — h: trilinear interpolation
Cycle type: V-cycle, correction scheme

The time complexity for a V-cycle of this algorithm is T*(N) = O(log2 N).

Example 2: The 2D-Stokes equations

ép -
_o? op - 1
Véu + 5a f
_vie 42~
by
bu bv 3
wtey =

defined on 1 = (0,1)? with boundary conditions

u = g

v = 9

on d1). In order to guarantee a unique soluﬁon the usual compatibilty condition is required
additionally.

The Stokes equations are discretized in the usual way on a staggered quadratic grid (mesh-
size h). p is defined in cell centers, whereas u and v are defined on the centers of the cell

faces.

A V-cycle of a parallel MG-solver for this discrete problem is characterized by the following
components (see also [21] for details):

Relaxation: One relaxation step consists of two parts: Firstly, the momentum equa-
tions are relaxed for u and v simultaneously using fixed values of p.
Then a so-called distributive relaxation sweep [2] is performed which
updates the unknowns u, v and p in order to fulfil the continuity equa-
tion. Both parts of the relaxation are performed in a red-black ordering.
Altogether, vy = 1, va = 2 of these relaxation steps are carried out on
each level.

Coarsening: standard coarsening h — 2h on staggered grids (the coarse grid is no
subset of the fine grid)
ordinary 7-point operator Azi

Grid transfers: h — 2h: 2D half-weighting on staggered grids
2h — h: bilinear interpolation

Cycle type: V-cycle, correction scheme

The time complexity of this algorithm (V-cycle) is also T*(N) = O(logzN).

In the two algorithms above only pointwise relaxation is needed for smoothing, since the
corresponding equations are isotropic. In [27)] a systematical first study for the practically
important case of anisotropic 3D-operators has been presented. Here line and/or plane

relaxation have been used for smoothing, and corresponding parallel algorithms have been

described. ’ B

2 Parallel supercomputers, the SUPRENUM prototype

For the last decade, a lot of programs for large-scale scientific computing have been devel-
oped and run on vector supercomputers of the CRAY-1 class with great success. Today,
the evolution of single processor vector machines seems to be stagnating and most of the
increasing computational power is achieved by using more than one processor in paral-
lel. Examples for this developrfnent are the CRAY-X/MP, CRAY-2/3, ETA!?, and several

smaller systems, all with a small number of processors.

7]
D

AV

On the other hand, certain highly parallel computers with a large number of processors
are entering the supercomputer market (Intel’s iPSC-VX, FPS-T-Serie.;s, AMETEK S14,
NCUBE, Connection Machine). Typically, these multiprocessor computers do not neces-
sarily provide a common (shared) memory for all single processors. In this paper, we will

concentrate our conciderations on local memory multiprocessor computers.

The hardware architecture of these multiprocessor computers with local memory is char-

acterized by P processor “nodes”, each of which has (at least)

e its own CPU
e a floating point arithmetic
e a private local memory unit

e a commaunication component

The nodes are connected by an interconnection network for communication. This network
typically consists of a subset of all possible node connections (tree, grid, ring, hypercube,
...). Also any other topology based on buses may be used. — Each floating-point unit
may be based on a scalar or vector arithmetic processor. — Usually the multiprocessor
computer is connected to a front end computer for control (initialization, termination),

I/O, and user interaction.

Typical numbers of P for specific machines are

P < 128 Intel iPSC

pP< 64 Intel iPSC-VX

P< 256 AMETEK S14°

P < 16K FPS-T-Series (theoretically)
P< 1K NCUBE

P= 256 SUPRENUM prototype

(Also some architectures which do not fulfil the characteristic criteria m.ay be used like
multiprocessor computers of the type above. For example, the P = 64K processors of
the Connection Machine CM-1 may be clustered to functional units which can perform

floating-point arithmetic.)

Figure 1 shows the overall structure of the SUPRENUM-prototype hardware as it was
designed by Giloi [9]. In the SUPRENUM-prototype 256 nodes are connected via a two-

level interconnection network of buses.

F_j)
cluster 1)— -Ccluster 2)— cluster3 cluster 4

ANANANA
v
A
\|)
n
v
zs
|

(front end system
T —— \— \ —

Figure 1: Structure of the SUPRENUM-prototype with 256 processors in 16 clusters

Each node consists of the MC68020 CPU, 8 Mbyte of private memory, a fast floating-
point vector unit (8 Mflop/s peak performance, 16 Mflop/s with chaining) and dedicated

communication hardware.

Up to 16 of these computing nodes are combined to a cluster using the clusterbus (256
Mbyte/s). Each cluster also contains a local disk (1 Gbyte), a disk controller node, a
monitor node which supports_performance measurements, a communication node for the
connection to the sécond bus level (the SUPRENUMBUS), and a spare computing node

for fault tolerance reasons.

As shown in Figure 1, 16 of these clusters are connected by a matrix of serial high-
speed SUPRENUMBUSes (280 Mbit/s) and form the high performance kernel. The
SUPRENUM-prototype is completed by a front end system which is used for operating

and maintaining the high performance kernel as well as for software developement.

%

0

3 A software concept based on message-passing

For MIMD multiprocessor computers with local memory, a software concept has turned
out to be suitable that is based on a process system and on a message-passing communica-
tion handling. The process concept for SUPRENUM (the so-called abstract SUPRENUM

architecture) is a dynamic one which is characterized by the following elements:

e Processes are autonomous program units which run in parallel.
e Processes can terminate themselves and can create but not terminate other processes.

e Processes communicate only by exchange of messages, and no shared memory is

available.

e Applications are started by one initial (or host) process typically running on the

front end machine.

e In arithmetic expressions and communication instructions, array constructs are es-

pecially supported.

e The user defined process system is homogeneous and independent from the actual
hardware configuration. The two-level architecture (cluster structure) is not reflected
in the abstract SUPRENUM architecture and is completely transparent to the user.

The processes are mapped to the clusters and nodes at run-time.

Figure 2 shows, that this abstract SUPRENUM architecture is the central model in the

system software. The user should write his codes only in terms of processes.

The mapping of processes to nodes is supported by the mapping-library. It provides
optimal mapping startegies for some standard process systems (like trees, rings, grids)

and uses heuristical strategies for irregular process structures.

The SUPRENUM operating sytem consists of three components residing on the front
end system, the cluster level and on the node level. The front end system is operated
under UNIX V!, On the cluster level the operating system Qupports the local disk, the
performance analysis and the connection between the two communication levels. In each

node a small operating system (PEACE) is responsible for the process scheduling and the

" message handling.

lregistered trademark of AT&T

s ™\
Abstract SUPRENUM
Machine
. Y,
4
) 4
Prog ing vlronm:
ramming en
User
software tools
J

Figure 2: The SUPRENUM system software

The programming language for numerical computations is SUPRENUM-FORTRAN, an
extended FORTRAN 77. The extensions include special process handling and message-
passing constructs and an array syntax formulation according to the proposed FORTRAN-

8X standard. Additionally Concurrent Modula-2 and a parallel version of C will be avail-
able.

Performance analysis tools will collect performance data from each cluster for graphical
presentation. This enables the user to analyze the utilization of nodes and buses and to

tune his parallel programs.

The SUPRENUM programming environment will provide a lot of tools-which support
the programmer in developing parallel software. Here, the syntax-directed editor, the
communication library (see below), a SUPRENUM-simulator [16], an auto-vectorizer
- for SUPRENUM-FORTRAN and a visualization package for parallel program execution

should be mentioned.

10

.é\‘

4 Grid partitioning

In Section 1 we have considered standard parallel MG algorithms which are highly parallel.
However, if they are implemented on real vector or parallel computers, it usually is not

possible to fully exploit their parallelism.

By the pipeline processors in vector computers for instance, only a low degree of parallelism
can be achieved; and even highly parallel multiprocessor computers always have a certain
limited number of simultaneoulsy working processing elements (say P). Nevertheless,
the high degree of parallelism in the algorithms is useful or even necessary for several
reasons. Firstly, it is preferable to construct algorithms which independently of P can
be used on any parallel machine. Secondly, the full performance of vector units can
usually be achieved the better the longer the occurring vectors are, i.e. the higher the
degree of parallelism offered by the algorithm is. Finally, the recently designed high
performance MIMD multiprocessor computers (like SUPRENUM) combine the — global
— MIMD structure with — local — SIMD pipeline processing (vector floating point units)
in each node. For such MIMD/SIMD systems, the MIMD and the SIMD degrees of

parallelism are multiplied and have to be provided by the implemented algorithm.

We would like to emphasize that the communication problem in MIMD multiprocessor
computers with local private memory has essential algorithmical implications. Since for
such systems one has to make a decision about the interconnection structure of the nodes,
this structure defines a “neighborhood” and by that, a topology of the nodes in a natural
way. In the design of the algorithms this topology has to be taken into regard: Apart from
the (sufficiently high degree of) parallelism that has to be provided by the algorithms, as
a second important property “locality” of the algorithms of the algorithms with respect
to the given topology is required. This means that the amount of data which have to be
communicated, the number of communication packages, and the distances which have to

be run through in the architecture become of essential significance.

If grid applications are to be implemented on MIMD multiprocessor computers, a straight-
forward approach is to use grid partitioning {26,19,23]. For all methods, single grid and
MG, this means that the original domain is split into P parts (subdomains) in such a
way that, with respect to the finest grid, each subdomain consists of (roughly) the same
numBer of grid points (see Figure 3). Each subdomain is then assigned to one of the P

processes of the parallel program. The partitioning generates certain artificial boundaries

.11

within the original domain.

Figure 3: 2D-grid partitioned into 16 logically rectangular subdomains.

If we consider a typical component of a parallel grid algorithm, e.g. a parallel relaxation
step, we see that on each subdomain this relaxation step can be carried out independently,
provided all necessary data are available. Because of the only local dependencies of the
grid points, each process needs foreign data only from boundary areas of neighboring

subdomains. After the step is performed, again data have to be communicated (exchanged)
along the artificial boundaries.

The extension of the single grid case to parallel MG is obvious: On the finest grid level,
all communication is a strictly local one. Similarly, also on the coarser grids necessary

communication is “local” relatively to the corresponding grid level (i.e. neighborhood is

12

H

af *

defined with respect to the grid level).

One should distinguish the grid partitioning approach as sketched above from the decom-
position [5] or substructuring methods [1] which are often considered in connection with
finite element discretizations on parallel computers. The decomposition and substructur-
ing methods lead to algorithms which are numercially different from the undecomposed
or sequential version. In contrast to that, parallel algorithms based on grid partition-
ing are algorithmically equivalent to their non-partitioned versions (running on sequential

computers) as the results of the partitioned and the non-partitioned versions are identical.

For the simple grid partitioning approach only static features of the process concept (as

described in the previous section) are needed.

Parallel programs on SUPRENUM and on similar machines typically have the following

structure:

o The host process creates the set of processes and sends them the necessary control
data (identification of their “neighbors”, index range of the subdomain, certain global

parameters of the algorithm).

e The host process sends each process the initial data belonging to its part of the

domain.
e The node processes receive the initial information.

e After each computational step the points near the interior boundaries (which are

stored in overlap areas) are updated by mutual exchange of data.

e During the corﬁputation certain globally needed results (like norms of residuals) are

assembled treewise.

o After the computation, the results are sent to the host process, where the solution

for the entire domain is assemnbled.

For certain grid applications, the explicit programming of the communication can be
hidden from the user. In the SUPRENUM project, for example, a library of communication

routines has been developed [15] which ensures
e clean and error-free programming,

13

e easy development of parallel codes,

e portability within the class of local memory multiprocessor computers. Programs
can be ported to any of these machines as soon as the communication library has i

been implemented.

Good experiences have been made in porting programs from the Intel iPSC to the SUP--
RENUM simulation system and vice versa. A corresponding library for block-structured
(see below) applications is currently under development. Most of the application software,

which is written in the SUPRENUM project, will be based on these routines.

5 Some multigrid results

If a certain program is implemented on the multiprocessor architecture the central question

is how much faster the calculations can be executed here than on a single processor.

-

This is measured by the multiprocessor speed-up

T(N,1)
T(N, P)

(T(N, P) = execution time for the parallel algorithm for a problem of size N on P nodes).

S(N,P) =

As usual, we furthermore define the multiprocessor (MP)-efficiency

S(N,P)
P o

Usually E is essentially < 1. Reasons for MP-efficiency losses are:

E(N,P) =

e The algorithm may not be totally parallelizable.
o The amount of work given to each processor is not balanced.

¢ The algorithm requires communication. (Start-up time for the initialization of com-

munication is needed as well as transfer time for each item of the message.)

o Additional overhead is necessary for organization (handling of loops, general deci-

sions, etc.).

n

(Note that the quantity E gives no information about the quality of an algorithm - its
efficiency in the common sense — at all. It only says something about its parallelizability.

A numeyically totally inefficient algorithm may be optimally “MP-efficient” J) .

14

Y

Example 1:

The 3D-Poisson MG-solver has been implemented on the CalTech Mark II hypercube [26].
Multiprocessor efficieny rates are given in Table 1. Obviously, the problem with N = 83
grid points is too small for a system with P = 32 nodes. However, already medium-sized

problems with N = 323 grid points achieve an MP-efficiency of more than 50%.
N | time | S(N,32) | E(N,32)

8% | 0.306 6.8 - 0.21
163 | 0.847 12.4 0.39
323 | 3.370 18.6 0.58

Table 1: Computing time, MP-speed-up and MP-efficiency for a multigrid method for the
3D-Poisson equation with periodic boundary conditions using V-cycle with vy = 2,13 =1
relaxations. '

Table 2 gives a comparison of the MG-solver with a standard relaxation solver and with
a FFT solver. With respect to MG, one has to be aware that on (very) coarse grids the

following phenomena occur:

e The number of processors exceeds the number of grid points in some dimension.

Some of the subdomains contain no grid point on coarse levels.

e The volume/surface ratio is getting smaller as the grids get coarser. On message
passing parallel systems the communication time may dominate the computing time

thus leading to inefficient algorithms. -

e Since the messages become shorter on coarser grids the “start-up” time which is

necessary to initialize exchange of surfaces of subgrids becomes more important.

These are the reasons for the worse MP-efficiency of MG algorithms. There are, of course,
ways to come around this difficulty. The parallel MG implemetation (but not necessarily
the parallel MG algorithm) which runs on the finer grids may be modified when the

computation proceeds to the very coarse grids. A possible coarse grid strategy is:

Collect all coarse grid points to fewer and fewer processes as the coarsening proceeds.
Although the numerical work per process is increased and unbalanced, a lot of communi-

cation time can be saved. This agglomeration strategy is included in the communication

15

library and causes no additional work for the user. Detailed investigations [24] show that
— depending on the ratio of communciation versus calculation times — the correct coarse

grid treatment may be crucial for the MP-efficiency.

method | time | S(32%,32) | E(32%,32)

relaxation | 381.3 25.9 0.81
MG 3.4 18.6 0.58
FFT 22.0 - 29.8 |- 0.93

Table 2: Computing time, MP-speed-up and MP-efficiency for different solvers applied to
the 3D-Poisson equation with periodic boundary conditions and N = 323 grid points.

Although the MP-efficiency of the relaxation and the FFT solver is considerably better
than for the MG-solver, the absolute computing time is essentially worse. So both, MP-
and numerical efficiency are important in designing good algorithms for multiprocessor

systems.

Example 2:

The 2D-Stokes MG solver (see Section 1) has been implemented on the Intel iPSC. Figure
4 shows the MP-efficiency rates in relation to the number of processors and the problem
size. For a 64-hypercube, a problem size of N = 2562 grid points is necessary in order to

achieve an efficiency of more than 50%.

16

E (N P) N
512x512
(] SUSRRUR. VU
() RO . W .
256x256
(7Y ARSI, VO . .
128x128
(X SR ST
64x64
_ . 32x32
1 2) i
2 2 2 2! 2 £ P

Figure 4: Parallel MG-code for the 2D-Stokes problem. Each curve shows the
MP-efficiency for constant problem size N and increasing P.

6 Further applications in the SUPRENUM project

In the near future .(up to 1988), the following CFD models will be implemented on the

Suprenum computer.

o (Nonlinear) Potential equation for subsonic and transonic flow past airfoils. A Fi-
nite Volume (FV) discretization is used and a special relaxation is appﬁed at grid
points near the shock front (transonic case). This causes an inhomogeneous load
distribution over the grid and special care has to be taken in order to avoid load

unbalancing.

e Euler equations for 3D-computations employing advanced acceleration techniques.
The system of equations is discretized by a FV scheme on a non-staggered grid. The
stationary problem is solved by marching in pseudo time-steps (explicit Runge-Kutta
method). The time marching can be viewed at as a Jacobi-type relaxation which is

accelerated using coarser time-steps in a MG-like manner [28]. '

17

e Euler equations combined with boundary layer methods for the 2D- and 3D- simu-

lation of flow past cars;

o Navier-Stokes equations (incompressible and compressible) for internal flows on gen-
eral 2D- and 3D-domains. This is the most complex application imposing additional

requirements on discretization, MG components and grid refinement strategies.

e Navier-Stokes (compressible) for the full simulation of the flow past cars (3D). This
code allows also the simulation of large wake area which is impossible with Euler-

/boundary layer methods.

e Grid generation codes for the generation of 2D- and 3D-boundary fitted grids. The
grid structure is either a single logically rectangular grid (see Figure 3) or an arbitrary
aggregation of blocks (=single grids). Six}gle boundary fitted grids are generated by
the solution of a system of Poisson-like equations (which corresponds to a mapping
of the physical domain to a rectangular domain). This step itself may require large
computing times and can be solved by MG methods [17]. We would like to point out
that block structures have been introduced also independently from parallelization

aspects for two reasons:

— the geometry is too complex and cannot be mapped to a single rectangle (L-

shaped domain)

— due to core memory limits only a part of the grid can be computed at a time.

In both cases the need to have regular data structures and to make efficient use
of vector processing units motivates a partitioning of the grid into several logically
rectangular blocks. Therefore existing codes which support block structures can

easily be parallelized, in two steps:
| ISR e | B 5% PN SN, SNEpepegn § IS N
vy processulg all DIOCKS 111 pai’ 11€1,

A
)
(2) by parallelizing each block with respect to an overall balanced process size (load

balancing).

In addition to the CFD codes, some selected simulation problems with huge computing
time requirements will be implemented on Suprenum. These include particle simulation

codes and nuclear reactor core simulations [6].

18

References

[1]

[2]

Bjgrstad, P.E., Widlund, O.B.: Iterat:;ve methods for the solution of elliptic problems
on regions partitioned into substructures. SIAM J. Numer. Anal. 23, 6, 1986.

Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics.
GMD-Studie No. 85, 1984.

(3] Brandt, A.: Multigrid solvers on parallel computers. In “Elliptic Problem solvers

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

(M Schultz, ed.)”, Academic Press, New York, 1981.

Braess, D., Hackbusch, W., Trottenberg, U. (eds.): Advances in Multigrid methods.
Proceedings of the Conference Held in Oberwolfach, December, 8-13, 1984. Notes
on Numerical Fluid Mechanics, Vol. 11, Vieweg, Braunschweig, 1984.

Dihn, Q.V., Glowinski, R., Periaux, J.: Solving elliptic problems by domain decom-
position methods with applications. In “Elliptic Problem Solvers II (G. Birkhoff and
A. Schoenstadt, eds.)”, Academic 'Press, New York, 1984, pp. 395-426.

Finnemann H., Volkert, J.: Parallel multigrid solvers for the neutron diffusion equa-
tion. Proceedings of the International Topical Meeting on Advances in Reactor

Physics, Mathematics and Computation, Paris, April, 27-30, 1987.

Frederickson, P.O., McBryan, O.: Parallel superconvergent multigrid. Cornell Theory
Center Technical Report CTC87TR12 7/87.

Gannon, D.B,, Rosendale, J,R. van: Highly parallel multigrid solvers for elliptic
PDEs: An ezpeﬂmental analysis. Report 82-36, ICASE, NASA Langley Research
Center, Hampton, VA, 1978.

Giloi, W.K., Miihlenbein, H.: Rationale and concepts for the Suprenum supercom-

puter architecture. GMD, St. Augustin 1985.

Greenbaum, A.: A multigrid method for multiprocessors. Appl. Math. Comp. 19, pp.
75-88, 1986.

Grosch, C.E.: Performance analysis of Poisson solvers on array computers. Report
TR 79-3, Old Domion University, Norfork, VA, 1979.

19

[12] Grosch, C.E.: Poisson solvers on large array computer. Proceedings 1978 LANL
Workshop on vector and parallel processors (B.L. Buzbee and J.F. Morrison, eds.),
1978.

[13] Hackbusch, W., Trottenberg, U. (eds.): Multigrid methods. Proceedings of the Con-
ference held at Koln-Porz, November 23-27, 1981. Lecture Notes in Mathematics
Vol. 960, Springer, Berlin, 1982.

[14] Hackbusch, W., Trottenberg, U. (eds.): Multigrid methods II. Proceedings of the
2nd Conference on Multigrid Methods, Cologne, Oct. 1-4, 1985. Lecture Notes in
Mathematics Vol. 1228, Springer, Berlin, 1986.

[15] Hempel, R., Schiiller, A.: Vereinheitlichung und Portabilitit paralleler Anwender-

software durch Verwendung einer Kommunikationsbsbliothek. Arbeitspapiere der
GMD, Nr. 234, GMD, St. Augustin, 1986.

[16] Limburger, F., Scheidler, Ch., Tietz, Ch., Wessels, A.: Benutzeranleitung des
SUPRENUM-Simulationssystems SUSI. GMD, St. Augustin, 1986.

[17] Linden, J., Stiiben, K.: Multigrid methods: An overview with emphasis on grid
generation processes. Arbeitspapiere der GMD Nr. 207, GMD, St. Augustin, 1986.

[18] McBryan, O.: Numerical computation on massively parallel hypercubes., to appear.
[19] McBryan, O., Van de Velde, E.: The multigrid method on parallel processors. In [14].

[20] McCormick, S.F. (ed.): Proceedings of the 2nd International Multigrid Conference,
April 1985, Copper Mointain. Appl. Math. Comp. Vol. 19, North Holland,1986.

[21] Niestegge, A., Stiiben, K.: A parallel multigrid method for the Stokes problem. GMD-
Arbeitspapier, GMD, St. Augustin , to appear.

[22] Peinze, K., Thole, C.A., Thomas, B., Werner, K.H.: The SUPRENUM prototyping
programme. Suprenum-Report 5, SUPRENUM GmbH, Bonn, 1987.

[23] Rice, J.: Parallel methods for PDEs. Report CSD-TR-587, Purdue Univercity, West
Lafayette, Indiana, 1986.

[24] Solchenbach, K.: Parallel multigrid methods: Efficient coarse grid techniques.
Suprenum-Report, SUPRENUM GmbH, Bonn, to appear.

20

U"

.
~

n

e~

oo

(25] Stiiben, K., Trottenberg, U.: Multigrid methods: Fundamental algorithms, model
problem analysis and applications. In [13]

[26] Thole, C.A.: Ezperiments with multigrid methods on the CalTech-hypercube. GMD-

Studie Nr. 103, GMD, St. Augustin, 1985.

[27] Thole, C.A., Trottenberg, U.: A short note on standard parallel multigrid algorithms
for 8D-problems. Suprenum-Report 3, SUPRENUM GmbH, Bonn, 1987.

t
[28] Wagner, B., Leicher, S., Schmidt, W.: Applicati'ona of a multigrid finite volume
method with Runge-Kutta time integration for solving the Euler and Navier-Stokes

equations. In GMD-Studie 110 (U. Trottenberg, W. Hackbusch, eds.), GMD, St.
Augustin, 1986.

Imprimé en France
N . . par .
I’ Institut National de Recherche en Informatique et en Automatique

Was

