N

N

Knuth-Bendix procedure and non deterministic
behavior. An example
[sabelle Gnaedig

» To cite this version:

Isabelle Gnaedig. Knuth-Bendix procedure and non deterministic behavior. An example. [Research
Report] RR-0733, INRIA. 1987. inria-00075819

HAL Id: inria-00075819
https://inria.hal.science/inria-00075819
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075819
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 733

KNUTH-BENDIX PROCEDURE
AND NON DETERMINISTIC
BEHAVIOR - AN EXAMPLE-

I. GNAEDIG

OCTOBRE 1987

o VR AR AR

R

R o o

Ron

g

T

T OCE RS

| Knuth-Bendix procedure and non deterministic
| behavior -An example-
*
Procédure de Knuth-Bendix et indéterminisme
-Un exemple-

I. Gnaedig
INRIA
Campus Scientifique BP 239
54506 Vandoeuvre

N D PAPIER RECUPERE ET RECYCLE

Abstract

In this note, we present and study a typical example to illustrate the non
determinism of the Knuth-Bendix algorithm with respect to the ordering it
uses. Our example shows how different orderings on terms lead to different
completion processes, and how eleven different completion sessions produce
only two different rewrite systems.

Résumé

Dans cette note, nous présentons un exemple typique, illustrant le non-
déterminisme de l'algorithme de Knuth-Bendix vis & vis de 1’ordre qu'il
utilise. Cet exemple montre comment différents ordres sur les termes con-
duisent a différents processus de complétion et comment onze complétions
différentes peuvent ne produire que deux systemes de réécriture distincts.

Starting from a set of equations, the Knuth-Bendix (KB in short) com-
pletion procedure computes an equivalent term rewriting system, which has
the same deduction power than the initial set. Thus the equational deduc-
tion in the initial set of equations can be replaced by the reduction process
with the corresponding term rewriting system [5].

To ensure this equivalence, the resulting set of rules, if it exists, has to
satisfy the two essential properties of local confluence and termination. The
local confluence is ensured by computing critical pairs between the rules of
the current system; the termination is ensured by orienting equations into
rules 1—r in order to have ! > r for a given reduction ordering > [1].

Let us explain how such an ordering works in the completion procedure.
The usual orderings used in the implementation of the completion procedure
(especially in the rewriting laboratory REVE [3]) are the RDO and the RPO.
Both orderings are based themselves on an ordering on operators called
precedence. When the completion procedure starts with a set of equations,
the precedence is empty. There are only the following variable constraints,
to ensure that the given ordering is a reduction ordering:

for every variable z,y, we havez # y
for every operator f, we havez # f.

The precedence is incrementally increased during the completion, when-
ever the current precedence fails to orient an equation. In REVE, suggestions
for a precedence, based on an RDO computation, are proposed to the user,
who can choose among them [4].

It is well known that the set of rules R computed by the completion
procedure is unique, when it exists, for an input set of equations and a
reduction ordering > (for a study of existence and construction of term
rewriting systems, see [2]). So, proposing different precedence possibilities
in the completion leads to different orderings, therefore to different possibly
convergent sets of rules R. This problem was pointed out in [6] when finding
a new complete specification for groups, and in [7].

On another hand, ordering rules differently can lead to different comple-
tion behaviors (generating different rules), although it yelds the same final
system. We present here a new example to illustrate the non determinism
of the KB procedure, when starting with an empty precedence. This ex-
ample was observed by the author, when studying the completion problems
in order sorted algebras. The initial set of rules was found in [8], and then

completed by running the KB algorithm implemented in REVE. It describes
axioms of the boolean algebra:

not(f(z)) = f(z) (1)
y+ty=y (2)
y&y=y 3)

y + not(y) = 1 (4)
not(y) +y =1 (5)
y& not(y) = 0 (6)
not(y)&y=0 (7
not(0) = 1 (8)
not(1) =0 9)

where not is the unary logical negation operator, + the exclusive dis-
junction and f any unary operator. Axiom (1) can be a theorem to be
refuted.

Let us look at a first completion case. The equations 1,2, 3 are oriented
without precedence hypothesis, respectively in:

not(f(z)) — f(z)
y+ty-—y
y&y—y.
Then the critical pair not(0) = 1 is generated and three possibilities are
proposed to orient it:

0>1 (1)
not > 1 (2)
1>0,1> not. (3)

Let us choose the first hypothesis. The equation is then oriented in
not(0) — 1.

The new critical pair not(1) = 0 is then generated and the following
precedence cases are presented:

not > 0 (1)
0> not. (2)

Let us choose the first hypothesis again. The equation is oriented in
not(1) — 0.
Thus the equations 4,5,6,7 are automatically oriented in:

y+not(y) — 1
not(y) +y — 1
y & not(y) - 0
not(y) &y — 0.

Then the rules

1&0-0
0&1—0
140—-1
0+1—-1

are generated. The equation f(z) = 1 appears and is oriented in
flz) -1
if the precedence proposition f > 1 is chosen. The rule
0— -1
is added and after reduction of the rules, the complete system

yty—y
y&y—y
not(1) — 1

y + not(y) — 1
not(y) +y — 1
y & not(y) — 1
not(y)& y — 1
f(z) =1
0-1

(1)

(2)
(3)
(4)
(5)
(6)
(7
(8)
(9)

called A, is obtained.
Let us look at another possibility. Start the completion as previously,
but at the first choice, valid the second possibility instead of the first one:

not > 1.
As in the first case, the equation not(0) = 1 is ordered into:
not(0) — 1.

From here, the different precedence we choose leads to different compu-
tations. Now, the equations 4 and 5 are ordered into

y +not(y) — 1
not(y) +y — 1

without further hypothesis of precedence. The rules

0+1—1
140—1

are generated, and the equation not(1) = 0 appears, which cannot be
oriented with the current precedence. Completing it, the following are pro-

posed: ' ',
1>0 (1)
not > 0 (2)
0 > not. (3)

With the first possibility, the equation is oriented into

not(1) — 0.
Then the equations 6 and 7 are oriented into

y & not(y) — 0
not(y) & y — 0.

The rules

1&0—-0
0&1—-0

are generated; the new equation f(z) = 1 is oriented into
flz) =1
in accepting the unique precedence case proposed: f > 1. The equation
1-0

is then generated (whereas 0—1 is generated in the first completion).
The resulting system B is symmetrical to the previous one, with respect
to the constants 0 and 1:

Y+y—>y (1)
y&y—y (2)
not(0) — 0 (3)

y + not(y) — 0 (4)
not(y)+y—0 (5)
y& not(y) - 0 - (6)
not(y) & y — 0 (7)
f(z) =0 (8)
1-0. (9)

One could foresee this result, since the roles of 0 and 1 are reversed in
the completion: we choose 1 > 0 instead of 0 > 1.

Let us observe a third computation. It is interesting to observe that a
different ordering can lead to different rules during the completion, but gives
the same resulting system as in the first completion.

Start the completion as in the first case until the second precedence
choice proposition. Let us here choose the second unequality: 0 > not. The
rule

not(not(1)) — 1

>0, +>0

Precedence Performances
-

0>1, not>0, f>1 27 {0.71| 156 | 3.84| 27 | 15
$>11- 0>not, not>1, 1.09 |0.49 |1.43 |284 | 20 | 12
>
- 0>1, 0>not, +>1, 1.14 |0.59 [2.75 |1.98 | 20 | 12
f>1, not>1

0>1, O>not, +>1, 1.18 (0.59 |2.09 |2.62 | 20 | 12
notf>1, &>1 :
not>1, 150, f>1 257 |0.76 |1.67 |3.94 | 27 | 15
not>1, not>0, f>1, 2.87 (0.85 |2.39 |[3.70 | 27 | 15
0>1 .

not>1, not>0, >1, 2.31 [1.02 |1.94 [3.46 | 27 | 15 |
1>0

nots1, O>not, f>1 1.79 |0.58 [1.77 |267 | 24 | 14 |
1>0, 1>not, not>0, 1.07 |0.53 |1.88 [1.92 | 19 [11
f>0

1>0, 1>not, 1>0, 1.65 [0.55 [1.87 [1.98 | 19 [11
&>0, >0, not>0

1>0, 1>not, &>0, 1.04 |0.51 |2.07 |2.08 | 19 | 11

We mention respectively: obtained system, total runtime, unification,
rewriting, ordering, overhead time, number of critical pairs and number of
ordered equations. Times are given in seconds.

- Let us remark that two identical orderings can be obtained by complet-
ing precedence in a different order, with different completion processes (for
example, the first and sixth cases below).

References _ v

1. N.Dershowitz, " Termination”, Proc. of 1rst Conf. on Rewriting Tech-
niques and Applications, Edited in LNCS, Springer 1985

2. N.Dershowitz & L.Marcus, "Existence and Construction of Rewrite
Systems”, Research Report University of Illinois, 1982

3. R.Forgaard, "A Program for generating and analyzing Term Rewriting
systems”, Master of Science in Computer Science, MIT, 1984

4. 1.Gnaedig "Trois extensions du processus d’orientation des regles de
" reecriture dans REVE”, Research Report CRIN 83-R-097, Nancy, France,
1983

5. D.Knuth & P.Bendix, "Simple Word Problems in Universal Algebras”,
Computational Problems in Abstract Algebra, Ed. Leech J., Perga-
mon Press, 1970

6. P.Lescanne, "Term Rewriting Systems and Algebra”, Proc. of CADE
7, Napa Valley, California, Edited in LNCS, Springer 1984

7. P.Lescanne, "Divergence of the Knuth-Bendix Completion Procedure
and Termination Orderings”, Bulletin of EATCS, Number 30, October
1986

8. J.Meseguer & J.Goguen, "Deduction with Many-Sorted Rewrite Rules”,
SRI International Technical Report, Menlo Park, California, USA

Imprimeé en France

par
VInstitut National de Recherche en Informatique et en Automatique

