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. The Input/Output Complexity of Sorting
and Related Problems

La complexité en entrées/sorties du tri
et de quelques problémes voisins

Alok Aggarwal' and Jeffrey Scott Vitter2:3:4

Abstract. We provide tight upper and lower bounds, up to a constant factor, for
the number of inputs and outputs (I/Os) between internal memory and secondary
storage required for five sorting-related problems: sorting, the fast Fourier transform
(FFT), permutation networks, permuting, and matrix transposition. The bounds
hold both in the worst case and in the average case. Secondary storage is modeled as
a magnetic disk capable of transfering P blocks each containing B records in a single
time unit; the records in each block must be input from or output to B contiguous
locations on the disk. We give two optimal algorithms for the problems, which are
variants of merge sorting and distribution sorting. In particular we show for P = 1
that the standard merge sorting algorithm is an optimal external sorting method,
up to a constant factor in the number of I/Os. Our sorting algorithms use the
same number of I/Os as does the permutation phase of key sorting, except when the
internal memory size is extremely small, thus affirming the popular adage that key .
sorting is not faster. We also give a simpler and more direct derivation of Hong and
Kung’s lower bound for the FFT for the special case B = P = o(1).

Résumé. Nous donnons des bornes inférieures et supérieures précises, A un facteur
constant prés pour le nombre d’entrées/sorties entre mémoire interne et mémoire
secondaire que necessitent cinq problémes reliés au tri: le tri, 14 transformation de
Fourier rapide, les réseaux de permutation, la permutation d’enregistrements, et la
transposition de matrices. Ces bornes sont valables dans le cas moyen et dans le cas
le pire. La mémoire secondaire est modéliseé comme un disque magnétique capable
de transférer P blocs contenant chacun B enregistrements, en une unité de temps; les
enregistrements de chaque bloc doivent étre traités comme B emplacements contigus
sur disque. Nous donnons deux algorithmes optimaux qui sont des variantes du tri
fusion et du tri distribution. En particulier, on montre que pour P =1, le tri fusion
usuel est une méthode de tri optimale, & un facteur constant prés vis-a-vis du nombre
d’entrées/sorties. Nos algorithmes de tri utilisent le méme nombre d’entrées [sorties
que la phase de permutation d’un tri sur une clé (sauf lorsque la mémoire interne
est trés petite). Ceci confirme 1’adage d’aprés lequel le tri sur une clé n’est pas plus
rapide qu’un tri fusion. Nous obtenons également une preuve simple et direct d’un
résultat de Hong et Kung donnant des bornes inférieures pour la FFT dans le case
ol B=P =0(1).

N! !'DPAAEH RECUPERE ET RECYCLE
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1. Introduction

The question of how to sort efficiently has been motivation for many studies in the
analysis of algorithms and computational complexity, and rightly so, because the
problem has strong practical and theoretical merit. Recent studies confirm that
sorting continues to account for roughly one-fourth of all computer cycles. Much
of those resources are consumed by external sorts, in which the file is too large to
fit in internal memory and must reside in secondary storage (typically on magnetic
disks). It is well documented that the bottleneck in external sorting is the time for
input/output (I/O) between internal memory and secondary storage.

Sorts of extremely large size are becoming more and more common. For example,
banks each night typically sort the demand deposits (checks) of the current day into
increasing order by account number. Then the accounting files can be updated in
a single linear pass through the sorted file. In many cases, banks are required to
complete this processing before opening for the next business day. It is pointed
out in [Lindstrom and Vitter, 1985] that a typical sort from a few years ago might
involve a file of two million records, totalling 800 megabytes; sorting time would be
1-2 hours. But in the near future, typical large file sizes are expected to contain ten
million records, totalling 10,000 megabytes, and current sorting methods would take
most of one day to do the sorting. (Banks would then have trouble completing this
processing before the next business day!)

Two alternatives for coping with this problem naturally present themselves: One
approach is to relax the problem requirements and to investigate alternate computer
architectures such as parallel or distributed systems. The other approach, which
we take in this paper, is to examine the fundamental limits in terms of the number
of I/Os for external sorting and related problems in current computing environments.
We assume that there is a single central processing unit, and we model secondary
storage as a generalized random-access magnetic disk. (For completeness, we also
consider the case in which the disk has some parallel capabilities.) The parameters

! IBM Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598, USA.
Research was also done while the author was at the Mathematical Sciences Research
Institute in Berkeley.

? Support was provided in part by NSF research grant DCR-84-03613, by an NSF
Presidential Young Investigator Award with matching funds from an IBM Faculty
Development Award and an AT&T research grant, and by a Guggenheim Fellowship.

SLN.RL A., Domaine de Voluceau, Rocquencourt, B. P. 105, 78153 Le Chesnay
Cedex, France. Research was also done while the author was at the Mathematical
Sciences Research Institute in Berkeley, Brown University in Providence, and Ecole
Normale Supérieure in Paris. '

To whom correspondence should be addressed, at Brown University, Dept. of Computer
Science, Box 1910, Providence, R. 1. 02912, USA.



Section 1. Introduction | 3

of interest are
N = # records to sort; ;
M = # records that can fit into internal memory;
B = 4 records that can be transfered in a single block;
_P = # blocks that can be transfered concurrently;

where 1< B< M <Nandl1< P < |M/B]|. We denote the N records by R,
R3, ..., Ry. The parameters N » M, and B are refered to as the file size, memory
size, and block size, respectively. Typical parameters for the two sorting examples
mentioned earlier are N = 2 x 108, M = 2000, B = 100, and N = 107, M = 3000,
B = 50.

Each block transfer is allowed to access any contiguous group of B records on
the disk. Parallelism is inherent in the problem in two ways: Each block can transfer
B records at once, which models the well-known fact that a conventional disk can
transfer a block of data via an I/O roughly as fast as it can transfer a single bit.
The second factor is that there can be P block transfers at the same time, which
models multiple I/O channels and read /write heads and “gather read—scatter write”
capabilities of the disk.

Pioneering work in this area was done by Floyd (1972}, who demonstrated match-
ing upper and lower bounds of 6((Nlog N)/ B) 1/0s for the problem of matrix trans-
position for the special case P = O(1), B = O(M) = 6(N°¢), where ¢ is a constant
0 < ¢ < 1. Floyd’s lower bound for transposition also applied to the problems of per-
muting and sorting (since they are more general problems), and the bound matched
the number of 1/Os used by merge sort. For these restricted values of M , B, and P,
the bound showed that essentially £2(log N) passes are needed to sort the file (since
each pass takes O(N/B) 1/0Os), and that merge sorting and the permutation phase
of key sorting both perform the optimum number of I/Os. However, for other values
of B, M, and P, Floyd’s upper and lower bounds did not match, thus leaving open
the general question of the I/O complexity of sorting.

In this paper we present optimal bounds, up to a constant factor, for all values
of M, B, and P, for the following five sorting-related problems: sorting, fast Fourier
transform (FFT), permutation networks, permuting, and matrix transposition. Per-
mutating records is a dominant component of key sorting. The five problems are
similar, but the lower bounds require different bents, which illustrate precisely the
relation of the five problems to one another. The upper bounds can be obtained
by a variant of merge sort with P-block lookahead forecasting and by a distribu-
tion sorting algorithm that uses a median finding subroutine. In particular, we can
conclude that the dominant part of sorting, in terms of the number of I/Os, is the
rearranging of the records, not determining their order, except when M is extremely
small with respect to N. Thus key sorting typically requires as many I/Os as does
general sorting. A

Our results answer the pebbling questions posed in [Savage and Vitter, 1987]
concerning the optimum I/O time needed to perform the computation implied by
the FFT digraph (also called the butterfly or shuffle-exchange or Omega network).
For lagniappe, we also give a simple direct proof of the lower bound for FFT when
B = P = O(1), which was previously proved in [Hong and Kung, 1981] using a
complicated pebbling argument.
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In the next section we define the sorting, FFT, permutation network, permuta-
tion, and matrix transposition problems. The I/O complexities for these problems
are given in Section 3. We derive the lower bounds in Section 4 and give the algo-
rithms in Section 5. Section 6 is devoted to the ad hoc proof of Hong and Kung’s
result. Conclusions are given in Section 7.

2. Problem Definitions

Let us picture the internal memory and secondary storage disk together as extended
memory, consisting of a large array containing at least M + N locations, each location
capable of storing a single record. We arbitrarily number the M locations in internal
memory by z[1], z[2], ..., z[M] and the locations on the disk by z[M + 1], z[M +
2], .... The five problems can be phrased as follows:

Sorting

Problem Instance: The internal memory is empty, and the N records reside at the
beginning of the disk; that is, z[s] = nil, for 1 <1 < M, and z[M + ] = R, for
1<:<N.

Goal: The internal memory is empty, and the N records reside at the beginning of
the disk in sorted nondecreasing order; that is, z[i] = nil, for 1 < ¢ < M, and the
records z[M + 1], z[M + 2], ..., z[M + N] are ordered in nondecreasing order by
their key values.

Fast Fourier Transform (FFT)

Problem Instance: Let us assume that N is a power of 2. The internal memory is
empty, and the N records reside at the beginning of the disk; that is, z[t] = nil, for
1<t+<M,and z[M + ] = R;,for 1 <i< N.

Goal: The memory configuration is exactly as in the input, except that each record
has log N “tags.”

The number of tags represents the level of a node in the FFT digraph. The digraph
has 1 + log N levels of N nodes each; the first level contains the N input nodes, and
the last level contains the N output nodes. Each non-input node has indegree 2, and
each non-output node has outdegree 2. The FFT digraph for N = 16 is pictured
in Figure 1. The FFT digraph is also known as the butterfly or shuffle-exchange
or Omega network. We shall denote the ith node (0 < + < N — 1) on level ¢ _
(0 < £<logN) in the FFT digraph by nei.t The two inputs to node n,; are np_y
and ny_; ;g¢-1, where @ denotes the exclusive-or operation. (Note that nodes ny;
and ng ;gqe-1 each have the same pair of inputs). Record R; receives its £th tag when
records R; and R;gs¢-1 reside in internal memory at the same time and both have
£ — 1 tags each.

Permutation Network
The Problem Instance and Goal are phrased the same as for FFT.

t Unless explicitly specified, the base of the logarithm is 2.
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The permutation network digraph consists of N input nodes and some number L>
log N of levels. The first level contains the N input nodes, and the last level contains
the N output nodes. Each non-input node has indegree 2, and each non-output node
has outdegree 2. For each of the N! permutations P1, P2, ..., PN, there is a set
of N edge-disjoint paths such that, for 1 < 1 < N, there is a path from the sth
input node to the p;th output node. Record R; receives its £th tag when the records
corresponding to its two input nodes reside in internal memory at the same time and
each have £ — 1 tags.

Permuting
The Problem Instance and Goal are the same as for Sorting, except that the key
values of the N records are required to form a permutation of {1,2,...,N}.

There is a big difference between permutation networks and general permuting. In the
latter case, the particular I/Os performed may depend upon the desired permutation,
whereas with permutation networks all N'! permutations have to be generated by the
same fixed sequence of I/Os.

Matrix Transposition

Problem Instance: A p x ¢ matrix A = (Ai;) of N = pq records. The internal
memory is empty, and the N records reside in row-major order at the beginning of
the disk; that is, z[s] = nil, for 1 < i < M, and zM+1+1] = AL (i/g) 1 +i-qli/q)s
for0<i<N-1. :

Goal: The internal memory is empty, and the transposed matrix AT resides on disk
in row-major order. (The transpose of A is the ¢ x p matrix AT defined by AT, = 4;;,
forall1<i<gand1<j<p)

An equivalent goal is to store the original matrix 4 in column-major order on disk.

3. The Main Results

Our model requires that each block transfer in an input can move at most B records
from disk into internal memory, and that the transfered records must come from a
contiguous segment z[M + |, (M +¢+1),...,z[M +i+ B - 1] of B locations on
the disk, for some 1 > 0; similarly, in each output the transfered records must be
deposited within a contiguous segment of B locations. Our characterization of the
I/O complexity for the five problems is given in the following main three theorems.

Theorem 38.1. The average-case and worst-case number of 1/0s required for sortir g
N records and for computing the N -input FFT graph is

N log(1+ %’-)
e (PB oL %)) : (3.1)

Similarly, the average-case and worst-case number of I/Os required for computing
any N-input permutation network is

N log(1+F)\
f (PB log(1 + %‘-)) ’ (82)
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furthermore, there are permutation networks that can be computed with

N log(1 + %)
O(PBlog(1+§)) (3.3)

I/Os. We assume that records are indivisible; that is, bit manipulations like exclusive-
oring are not allowed. For the sorting lower bound, the comparison model is assumed
only for the case when M and B are extremely small, namely, when B log(1+M/B) =
o(log(1 + N/B)).

Theorem 3.2. The average-case and worst-case number of I/Os required to permute
N records, assuming the records are indivisible, is

N BN
6 (min {% IZB log(1 + ,{';) }) . (3.4)
log(1 + ¥)

A good way to regard the expressions in the theorems is in terms of how many
passes through the file are needed to solve the problem. A “linear-time” algorithm
(defined to be one that requires a constant number of passes through the file) would
use O(N/PB) 1/0s. -The logarithmic factors that multiply the N/PB term in the
above expressions indicate the degree of nonlinearity.

It is interesting to note that the optimum bound for sorting in Theorem 3.1
matches the second of the two terms being minimized in Theorem 3.2. When the
second term in (3.4) achieves the minimum, which happens except when M and B are
extremely small with respect to N , the problem of permuting is as hard as the more
general problem of sorting; the dominant component of sorting in this case, in terms
of the number of I/Os, is the routing of the records, not the determination of their
order. When instead M and B are extremely small (namely, when B log(1+M/B) =
o(log(1+ N /B))), the N/P term in (3.4) achieves the minimum, and the optimum
algorithm for permuting is to move the records in the naive manner, one record per
block transfer. This is precisely the case where advance knowledge of the output
permutation makes the problem of permuting easier than sorting. The lower bound
for sorting in Theorem 3.1 for this case requires the use of the comparison model.

Another interesting corollary comes from applying the bound for sorting in The-
orem 3.1 tothecase M =2and B= P = 1, where the number of I/0s corresponds
to the number of comparisons needed to sort N records by a comparison-based in-

ternal sorting algorithm. Substituting M =2 and B= P = 1 into (3.1) gives the
~well-known 6(N log N) bound. :

Theorem 3.3. The number of 1/Os required to transpose a p X ¢ matrix stored in
row-major order, assuming the records are indivisible, is

of N log min {M, 1 + min{p, ¢},1 + %})
PE “log(1 + %)
. i
When B is large, matrix transposition is as hard as general sorting, but for
smaller B, the special structure of the transposition permutation makes transposing
easier.

(3.5)
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We should note that all our algorithms that achieve the upper bounds follow
a more restrictive model of I/O, in which only records that were output together
in a single block can be input together in a single block. This restriction allows our
results for straightline programs (namely, for FFT and matrix transposition) to apply
to the I/O model that is given in [Savage and Vitter, 1987], which is essentially the
restricted model with P = 1. B}

4. Proof of the Lower Bounds

Without loss of generality, we can assume that B, M, and N are powers of 2 and
that B < M < N. We shall consider the case P = 1 when there is only one I/0 at
a time; the general lower bound will follow by dividing the bound we obtain by P.
. It also suffices to consider the average case only, since the worst-case bound follows
directly. For permuting and sorting, we assume that all N! inputs are equally likely.
The FFT, permutation network, and matrix transposition problems have no input
distribution, so the average-case and worst-case models are the same.

Permuting

First we prove a useful lemma, which applies not only to permuting but also to the
other problems. Let us call an input “simple” if each record transfered from disk
is removed from the disk and deposited in an empty location in internal memory;
similarly, an output is “simple” if the transfered records are removed from internal
memory and deposited on empty locations on disk. The following lemma allows us
to assume, for purposes of obtaining the lower bound, that all I/Os are simple; that
is, there is exactly one copy of each record present throughout the computation.

Lemma 4.1. For each computation that implements a permutation of the N records
Ry, Ry, ..., Ry (or that sorts or that transposes or that computes the FFT digraph
or a permutation network), there is a corresponding computation strategy involving
only simple I/Os such that the total number of I/Os is no greater.

Proof. 1t is easy to construct the simple computation strategy by working back-
wards. We cancel the transfer of a record if its transfer is not needed for the final
result. The resulting I/O strategy is simple. |

(1]

Our approach is to bound the number of possible permutations that can b
generated by ¢ I/Os. If we take the value of ¢ for which the bound reaches N!/2, an
then divide it by 2, we get a lower bound on the average number of 1/0s. First le
us define some terminology. '

.

e

Definition 4.1. We say that a permutation p;, pa, ..., py of the N records can be
generated at time t if there is some sequence of ¢ I/Os such that after the I/Os are
performed the records appear in the correct permuted order in extended memory;
that is, for all 1, 5, and k, we have

z[:] = Rp, and .’I:[j] = RPk+1 == t<J.

The records do not have to be in contiguous positions in internal memory or on disk;
tacre can be arbitrarily many empty locations between R, and R, ,.
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Definition 4.2. We denote the kth set (k > 1) of B contiguous locations on the
disk, namely, locations z[M + (k — )B+1,z[M+(k-1)B+2), ..., z[M + kB),
as the kth track.

We make the following simplifying réstrictions, which do not change the required
number of I/Os by more than a small constant factor: As mentioned above, we
assume that all I/Os are simple. The following Preprocessing step is done before
any other I/Os are performed: the N /B tracks are input into memory, in groups of
one memoryload at a time; each memoryload of records is arbitrarily rearranged and
output in its new order to consecutive positions on the disk. We require that each
input and output transfer exactly B records, some of the records being possibly nil,
and that the B records come from or go to a single track. For example, an input of
b < B records, with b; records from one track and b2 = b — b; records from the next
track, can be simulated using an internal memory of size M + B by an input of the
first track, an output of the B — b; records that are not needed (plus an additional
b1 nil records to take the place of the b, desired records), and then a corresponding
input and output for the next track. As a consequence, since I/Os are simple, a track
immediately after an input or immediately before an output must be empty. Internal
computation time is not counted in our complexity model, so we can assume that
the optimum algorithm, between 1/0s, rearranges the records in internal memory -
however it sees appropriate.

After the preprocessing, the number of permutations generated is at most

(M)N/M (4.1)

Now let us consider the effect of an I/0. A tth output changes the number of per-
mutations generated by at most a multiplicative factor of N /B + t, which can be
bounded trivially by N (log N +1). For the case of input, let us consider an input
from a specific track on disk. Without loss of generality, we assume that the B
records are deposited in locations z[M — B + 1], ..., z[M] in internal memory. These
- B records come from a single track on disk and were output together during some
previous output. By our assumptions, this implies that at some previous time they
were together in internal memory and were arranged in an arbitrary order by the
algorithm. Thus, the B! possible orders of the B inputed records could already have
been generated before the input took place. This implies in a subtle way that the
increase in the number of permutations generated due to rearrangement in internal
memory is at most a multiplicative factor of (}g), which is the number of ways to
intersperse B indistinguishable items within a group of size M.

The above analysis applies to input from a specific track. If the input is the
tth I/0O, there are at most N /B +t— 1 tracks to choose from for the I/0, plus
one more because input from an empty track is also possible. Putting our results
together, we find that the number of permutations generated at time ¢ can be greater
than the number of permutations generated at time t — 1 by at most a multiplicative

factor of
) N M M . .
(§+t) (B) sN(logN+1)(B>. (4.2)

Ve gel Gut .oive; sound by using (4.1) and (4.2) to determine the minimurs value T >
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N/B such that the number of permutations generated is at least N 1/2:

(JL!!)N/M ( N(log N + 1) (1‘; ))n > 1—2-' ‘(4.3)

Taking logarithms and applying Stirling’s formula to (4.3), with some algebraic ma-
nipulation, we get ’

N M N
(T - —B-) (logN + Blog F) =0 (N log H) . (4.4)
If Blog(M/B) < log N, then it follows that M < v/N and from (4.4) we get
renN, Noef = 0(N) (4.5)
- B + logN | ' '

On the other hand, if log N < Blog(M/B), then (4.4) gives us

N NlgZ\ Nlog ¥ ,
T=0|w+—-"M)|_n|_—2B} 4.6
(B+Blog%-) (Blog%— _ (4.6)
Combining (4.5) and (4.6), we get
Nlog &
T=0|min{N,— 2B \{] 4.7
(mm{ Blog%}) “

We get the lower bound in Theorem 3.2 by dividing (4.7) by P.

FFT and Permutation Networks

A key observation for obtaining the lower bound for the FFT is that we can construct
a permutation network by stacking together three FFT digraphs, so that the output
nodes of one FFT are the input nodes for the next [Wu and Feng, 1981]. Thus the
- FFT and permutation network problems are esentially equivalent, since as we shall
see the lower bound for permutation networks matches the upper bound for FFT.
Let us consider an optimal I/O strategy for a permutation network. The sec-
ond key observation is that the I/O sequence is fixed. This allows us to apply the
lower bound proof developed above for permuting, with the helpful restriction that
each I/O cannot depend upon the desired permutation; that is, regardless of the per-
mutation, the records that are transfered during an I /O and the track accessed during
the I/0O are fixed for each I/0. Thus, each input changes the number of permutations
generated by at most a multiplicative factor of (¥), rather than (N/B +t)(}). Each
output can at most double the number of permutations gencrated. The lower bound

foliow; ™.~ P =1 by finding the smallest number T > N /B of 1/0Os such that

(M1)N/M (lg) ) > N1 (4.8)
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By using Stirling’s formula, we get the same bound as in (4.6). Dividing by P gives
the lower bound in Theorem 3.1. . .

It is interesting to note that since the I/O sequence is fixed and cannot depend
upon the particular permutation, we are not permitted to use the naive method of
permuting, in which each block transfer moves one record from its initial to its final
destination. This is reflected in the the growth rate of the number of permutations
generated due to a single I/O: the (N/B + t) term in the growth rate in (4.2) for
permuting, which is dominant when the najve method is optimal, does not appear in
the corresponding growth rate for permutation networks.

Sorting

Permuting is a special case of sorting, so the lower bound for permuting in Theo-
rem 3.2 also applies to sorting. However, when Blog(M/B) = o(log(N/B)), the
lower bound becomes £2(N/P), which is not good enough. In this case, the specific
knowledge of what goes where makes generating a permutation easier than sorting.
We can get a better lower bound for sorting for the B log(M/B) = o(log(N /B))
case by using an adversary argument, if we restrict ourselves to the comparison model
of computation. Without loss of generality, let us make the following additional
assumptions, similar to the ones earlier: All I/Os are simple. We preprocess the
tracks one memoryload at a time, sort each memoryload, and then deposit the records
in sorted order in consecutive locations on disk. Each I/O transfers B records, some
possibly nil, to or from a single track on disk. We also assume that between I1/Os the
optimal algorithm performs all possible comparisons among the records in internal
memory. : ‘
After the preprocessing, there are N! /(MY)N/M total orders consistent with the
comparisons done so far. Let us consider an input of B records into internal memory.
The B records come from a single track on disk, which previously was written in
entirety via an output from internal memory. By our assumption, all comparisons
were performed among the B records when they were together in internal ‘memory.
The records in internal memory before the input, which number at most M — B,
have also had all possible comparisons peformed. Thus, after the input, there are at
most (Ig) possible outcomes to the comparisons between the records in memory. The
adversary chooses the outcome that maximizes the number of total orders consistent
with the comparisons done so far. It follows that the number of inputs needed in the
worst case to sort is the minimum value of T > N /B such that

N!
T )

which yields the desired lower bound, Dividing by P gives the lower bound stated in
Theorem 3.1. ‘

The same result holds in the average-case model. We consider the compar-
ison tree with N! leaves, representing the N! total orderings. Each node in the
tree represents an input operation. After the preprocessing, the tree consists of
NY(MOPIY culvirncs, snes Tooimz (MON/M Jeaves Tn each of these subtrees, the
nodes are constrained to have -degree < (g) The external path length divided
by N!, minimized over all possible computation trees, gives the desired lower bound
for P =1. Dividing oy  g.ves the levier Lound of Theorem 3.1.
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Matriz Tranposition

We prove the lower bound using a potential function argument similar to the one
used by Floyd [1972]. It suffices to consider the case P = 1; the general lower bound
will follow by dividing by P. Without loss of generality, we assume that p and ¢
are powers of 2, and that all I/Os are simple and transfer exactly B records, some
possibly nil. -

We define the tth target group to be the set of records that will ultimately be in
the ith track at the termination of the algorithm. We define the continuous function

zlog,z, ifz> 0

4.10
o, ifz=0. (4.10)

o) = {

We assign a charge

Cr(t) = Y flzip) |  (aq1)

1,k>1

to the kth track at time t if after t I/Os the kth track contains Z; k records from the
tth target group. Similarly, we assign a charge

() =Y f(w) (4.12)

1

to the internal memory at timet, where y; is the number of records from the ith target
group that are in internal memory after the tth I/O. We define the potential at time ¢
to be
POT(t) = Cm(t) + Y Ci(t). (4.13)
k>1

Let us denote by T the total number of I/Os that have been performed when the
algorithm terminates. It is easy to verify that the values of POT (t) before and after
the algorithm are, respectively,

0, if B < min{p, ¢};
log, ———, if mi <B< :
PoT(0) = { N8 gy Hmin{pg} < B <max{pg
2
N log, N if max{p, ¢} < B;
POT(T) = Nlog, B. (4.15)

If a block is output from internal memory to disk at time t, then the potential
function does not increase at that point; that is, POT(t) < POT(t —1). Let us
assume that the ¢th I/O is an input from disk to internal memory. The increase in
potential is bounded by

Cu(t) — Omt — 1). (4.16)

. | 4.16), note that the number of records from a given target group that are in
internal memory increases when some of the records were present in internal memory
before the input and some others were included in the input. We use y; and y! to
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denote the number of records from the ¢th target group that are, respectively, present
in internal memory at time ¢t — 1 and input into internal memory at time ¢. We have

Cm(t) ~ Cmlt = 1) = Y (f(ul+ o) - F(¥)) — F (&), (4.17)
i>1
where
D VSM-B and Y y'<B. (4.18)
i>1 i>1

A simple convexity argument shows that (4.17) is maximized when yi=(M-B)B/N
and y! = B2/N,for each1<{ < N/B. For 0 < y < z <1, we have

T
fz+y) - f(z) - f(y) = zlog, (1 + g) + ylog, (1 + -)
z y
z
z
=0(ylog (1+§)> . - (4.19)
Substituting z = (M — B)B/N and y = B? /N into (4.19), it follows from (4.17) that
M
Cum(t) -Cm(t—-1) =0 (B log E) . (4.20)

At the end of the algorithm, we have T > N /B, and thus

N __ ( POT(T)- POT(0)
T—E_n( Bl ) (4.21)

The lower bound

(4.22)

N log min {M,1 + min{p, ¢},1+ B}
T=n|~ M
B log(l + 'B')

follows by substituting (4.15) and the different cases of (4.14) into (4.21). The general
lower bound in Theorem 3.3 for P > 1 follows by dividing (4.22) by P.
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5. Optimal Algorithms

In this section we describe variants of merge sort and distribution sort that achieve
the bounds in Theorems 3.1-3.3. As mentioned in Section 3, the algorithms follow
the added restriction that records input in the same block must have been output
previously in a single block, except for the first input of each track. It suffices to
consider worst-case complexity, since the average-case result follows immediately. We
first discuss the sorting problem and then apply our results to get optimum algorithms
for permuting, FFT, permutation networks, and matrix transposition. Without loss
of generality, we can assume that B, M, and N are powers of 2 and that B < M < N.

Merge Sorting

The standard merge sort algorithm works as follows: In the “run” formation phase,
the N/B tracks are input into memory, in groups of one memoryload at a time; each
memoryload is sorted into a “run,” which is then output to consecutive positions
on disk. At the end of the run formation phase, there are N /M runs on disk. In
each pass of the merging phase, M/B — 1 runs are merged into one longer run. (Let
us assume for simplicity that M > 3B; otherwise we reduce B appropriately, which
increases the number of I/Os by at most a constant factor.) During the processing,
one block from each of the runs being merged resides in internal memory. When the
records of a block expire, the next track for that run is input. The resulting number
of I/Os is '

2N N Nlog &
B l’IOgM/B-l H] =0 (—-———B Tog % . (5.1)

This does not yield an optimal algorithm, however, when P is not bounded by a
constant, since there is no way of knowing which P tracks should be input next. The
solution is to modify the information that goes into each track. Besides the records -
themselves, we also place into each track P — 1 “endmarkers,” which are the key
values of the last record in the each of the next P — 1 tracks of the run. Using a
generalization of the forecasting technique described in [(Knuth, 1973], we can then
determine the P tracks that will expire next. Note, however, that several of these
tracks might not yet be present in internal memory. Merging proceeds until a track
not currently in memory is needed. An input can then be performed to transfer the
next P tracks needed, using the forecasting information, and the process continues.

First let us consider the case P < B/2. In each pass, the endmarkers are not
output at the same time that the track is output, since they are not yet determined
at that time. Instead, when we output the records of the £th output track, we also
output the endmarkers for the (£ — P)th output track. To do that, we have to store
in internal memory the addresses and the largest key values of the last P — 1 tracks.
This consumes O(B) space, under our assumption that P < B /2, so the number of
tracks and the number of I/Os needed to store a run of a given length do not change
by more than a constant factor. The number of passes in the merging phase alss
does not change by more than a constant factor. The resulting speedup is O(P), as
desired.

However, if P > B/2, then there may not be enough room to store the end-
markers without increasing the number of tracks per run by too large an amount. In
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this case, we form “metatracks” of size B’ = {\/ 2M ] > B. The number of meta-
tracks that can be input concurrently is P! = PB/([B'/B]B)|, which is bounded
by M/B' < B'/2. This satisfies the requirement for the construction in the previous
paragraph, using P’ and B’ in place of P and B. The result is that the number
of I/0s is reduced by ©(P’) from the number used by standard merge sort. By (5.1),
the number of I/Os performed by the standard merge sort would be

0 (M) } ‘ (5.2)

B'log %—I;

Dividing (5.2) by P’ = PB/B’ and with some algebraic manipulation, we get the
desired upper bound stated in Theorem 3.1.

Distribution Sorting

For simplicity, we assume that M /B is a perfect square, and we use S to denote the
quantity \/M/B. The main idea in the algorithm is that with O(N/(PB)) 1/0s
we can find S approximate partitioning elements b1, b2, ..., bs that break up the
file into roughly equal-sized “buckets.” (For completeness, we define the dummy
- partitioning elements by = —o00 and bs+1 = +00.) More precisely, we shall prove
later, for 1 < ¢ < S+1, that the number of records whose key value is < b; is between
(f—3)N/S and (i + 2)N/S. Hence, the number N; of records in the sth bucket (that
is, the number N; of records whose key value K is in the range b;,_; < K <)
satisfies
1N 3N
235 <N; < 25" (5.3)
For the time being, let us assume that we can compute the approximate parti-
tioning elements using O(N/(PB)) I/Os. Then with O(M/(PB)) additional I/Os
we can input M records from disk into internal memory and partition them into
the S bucket ranges. The records in each bucket range can be stored on disk in
contiguous groups of B records each (except possibly for the last group) with a total
of O(M/(PB) + S/P) = 0(M/ (PB)) 1/0s. This procedure is repeated for another
N/M — 1 stages, in order to partition all N records into buckets. The fth bucket
will thus consist of G; < N;/B + N/M = O(N; /B) groups of at most B contiguous
records, by using inequality (5.3). The buckets are totally ordered with respect to one
another. The remainder of the algorithm consists of recursively sorting the buckets
one-by-one and appending the results to disk. The number of 1/Os needed to input
the contents of the ith bucket into internal memory during the recursive sorting is
bounded by G;/P = O(N;/ (PB)). Let us define T'(n) to be the number of 1/Os used
to sort n records. The above construction gives us

T(N)= > T(N;)+O(%). (5.4)

1<i<S+1

Using the facts that N; = O(N/S) = O(N/\/M]B) and T(M) = O(M/(PB)), we
get the desired upper bound given in Theorem 3.1. '

All that remains to show is how to get the S approximate partitioning elements
via O(N / (PB)) I/Os. Our procedure for computing the approximate partitioning
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elements must work for the recursive step of the algorithm, so we assume that the
N records are stored in O(N/B) groups of contiguous records, each of size at most B.
First let us describe a subroutine that uses O(n/(PB)) 1/Os to find the record
with the kth smallest key (or simply the kth smallest record) in a set containing
n records, in which the records are stored on disk in at most O(n/B) groups, each
group consisting of < B contiguous records. We load the n records into memory,
one memoryload at a time, and sort each of the [n/M] memoryloads internally.
We pick the median record from each of these sorted sets and find the median of
the medians using the linear-time sequential algorithm developed in [Blum, Floyd,
Pratt, Rivest, and Tarjan, 1973]. The number of I/Os required for these operations
is O(n/(PB)+ (n/B)/P+n/M) = O(n/(PB)). We use the key value of this median
record to partition the n records into two sets. It is easy to verify that each set can
be partitioned into groups of size B (except possibly for the last list) in which each
group is stored contiguously on disk. It is also easy to see that each of the two sets
has size bounded by 3n/4. The algorithm is recursively applied to the appropriate
half to find the kth largest record; the total number of I/Os is O(n/(PB)).

We now describe how to apply this subroutine to find the S approximate par-
titioning elements in a set containing N records. As above, we start out by sorting
N/M memoryloads of records, which can be done with O(N/(PB) + (N/B) /P) =
O(N/(PB)) 1/Os. Let us call the jth sorted set Uj. We construct a new set U’
of size at most 4N/S consisting of the $kSth records (in sorted order) of Uy, for
1<k<4M/S —-1and 1< j < N/M. Each memoryload of M records contributes
4M/S > B records to U’, so these records can be output one block at a time.
The total number of contiguous groups of records comprising U’ is o(|U’|/B), so
we can apply the subroutine above to find the record of rank 4:N /82 in U' with
only O(|U'| /(PB)) = O(N/(SPB)) 1/Os; we call its key value b;. The S b;’s can
thus be found with a total of O(N/(PB)) 1/Os. It is easy to show that the b;’s
satisfy the conditions for being approximate partitioning elements, thus completing
the proof.

Permuting

We use either of the sorting algorithms described above, unless Blog(M/B) =
o(log(N/ B)), in which case it is faster to move the records one-by-one in the naive
manner to their final positions, using O(N/P) I/Os.

FFT and Permutation Networks

As mentioned in Section 4, three FFT graphs concatenated together form a permu-
tation network. So it suffices to consider optimum algorithms for FFT.

For simplicity, let us assume that log M divides log N. The FFT digraph can
be decomposed into (log N)/log M stages, as pictured in Figure 2. Stage k, for
1 < k < (log N)/log M, corresponds to the processing of levels (s —1)logM +1,
(#—1)log M+2, ..., klog M in the FFT digraph, or equivalently to the acquisition of
of tags (k—1)log M +1, (k- 1)log M +2, ..., klog M for each record. The M nodes
on level (k — 1)log M that share the same ancestors on level klog M are processed
vogetlier in a phase. The corresponding M records are brought into internal memory
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via a transposition permutation, and then the next log M tags for each record can
be obtained.

- The 1/O requirement for each stage is thus due to the transpositions needed
to rearrange the records into the proper groups of size M. The transpositions can
be collectively done via a simple merging procedure described in the next subsec-
~ tion, which requires a total of O((N/PB) logps/p min{M, N/B}) 1/Os. There are
(log N)/ log M stages, making the total number of I/0s

0( Nlog N (logmjn{M,% )) (55)

PBlogM log %

which can be shown by some algebraic manipulation to equal the upper bound of
Theorem 3.1. ‘ '

Matriz Transposition

Without loss of generality, we assume that p and ¢ are powers of 2. Matrix trans-
position is a special case of permuting. The intuition gained from the lower bound
proof in Section 4 can be used to develop a simple algorithm for achieving the upper
bound in Theorem -3.3. In each track, the B records are partioned into different
target groups; each group in the decomposition is called a target subgroup. Before
the start of the algorithm, the size of each target subgroup is

1, if B < min{p, ¢};
B
———» if min{p, ¢} < B < max{p, ¢};
B2
~ if max{p,q} < B.

The algorithm uses a merging procedure. The records in the same target sub-
group remain together throughout the course of the algorithm. In each pass, target
subgroups are merged and become bigger. The algorithm terminates when each tar-
get subgroup is complete, that is, when each target subgroup has size B. In each
pass, which takes 2N/PB 1/0s, the size of each target subgroup increases by a mul-
tiplicative factor of 6(M/B). The number of I/Os done by algorithm is thus

N B

We get the upper bound in Theorem 3.3 by substituting the values of z from (5.6)
into (5.7).
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Figure 2. Decomposition of the FFT digraph into stages, for N = 8, M=2.
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6. Alternate Proof of Hong and Kung’s Result

In this section we give a simple proof that the FFT requires H(N (log N)/ log M ) I/0s
for the special case B = P = O(1), which was proved in [Hong and Kung, 1981] using
a complicated pebbling argument.

Our model for this special case can be phrased in terms of the red-blue pebble
game, introduced in [Hong and Kung, 1981]. There are M red pebbles, representing
internal memory storage, and an unlimited supply of blue pebbles, which represent
information stored on disk. The FFT graph must be pebbled using the standard
pebbling rules applied to the red pebbles, except that the following special I/O oper-
ations are allowed: A blue pebble may be placed on any node containing a red pebble,
and a red pebble may be placed on any node containing a blue pebble, each at the
cost of one I/O. The “cost” of the red-blue pebbling game is the number of 1/0s
performed; the red pebbling moves are free.

Our simplified proof of Hong and Kung’s result rests on the following intuitive
lemma:

Lemma 6.1. Given any initial configuration of M red pebbles on the FFT digraph,
at most 2M log M red pebbling moves can be made without I/0.

Proof. To bound the number of red pebbling moves, we use a dynamic charging

strategy to allocate the moves to individual red pebbles. Let num(p) denote the
number of moves currently allocated to pebble p. A generic red pebbling move in
the FFT digraph has the following form: Two pebbles P1 and p; rest on nodes ¢,
and £;, and they share common parents u; and u;. Both p; and p; are then moved
to the upper level nodes u, and uz. (Keeping one of the pebbles behind might only
reduce the number of possible red pebbling moves, which we are trying to maximize.)
Our charging strategy is to charge 1 to p1 if num(p;) < num(p;), and 1 to ps if
num(pz) < num(p;). The total number of red pebbling moves is therefore bounded

by
2 E num(p). (6.1)

pebbles p
The lemma below can be proved easily by induction; the proof is therefore omitted.

Lemma 6.2. For each pebble p on node n in the FFT digraph, the number of
nodes that contained a red pebble in the initial configuration and that are connected
by a directed path to n is at least 274 ()

There are M red pebbles, so each pebble pcan “cover” at most M original placements.
By Lemma 6.2, we have num(p) < log M. Plugging this into (6.1) completes the proof
of Lemma 6.1.

Each node in the FFT digraph must be red pebbled at least once. Since there are

N log N nodes, Lemma 6.1 implies that the number of 1/Os required for the P = M,
B=1 case is at least Nlog N " 2),
2Mlog M’ '

For the case P = B = 1, which is what we want to consider, we appeal to the
following lemma.
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Lemma 8.3. Any fixed I/0 schedule can be simulated by consecutive groups of
I/0 operations, in which each group consists either of M inputs or M outputs, and
the total number of I/Os does not increase by more than a constant factor.

Proof. The lemma follows easily from the fact that the I/O schedule is fixed, and
thus caching can be done in order to group the I/Os in the desired fashion.

If we treat each group of inputs and each group of outputs as a single operation,
we find ourselves in the case P = M a lower bound on the number of groups is given
by (6.2). In terms of the P =1 model, each group represents M 1/Os, and our lower
bound follows by multiplying (6.2) by M.

7. Conclusions

We have derived matching upper and lower bounds, up to a constant factor, for
the average-case and worst-case number of I/Os needed to perform sorting-related
tasks, which include sorting, FFT, permutation networks, permuting, and matrix
transposition. In addition, the algorithms that achieve the upper bounds obey a more
restrictive I/O rule that limits what records can be input and output together. If
certain other restrictions are made on I/0, such as requiring that each block transfer
must be simple and correspond to exactly one complete track, then the bounds are
asymptotically tight in many cases; that is, the multiplicative factor between the
upper and lower bounds is asymptotically 1. Our results also apply if the disk has
a special “gather read—scatter write” capability that allows each block to be split
up arbitrarily on the disk among S groups of contiguous records. This situation
corresponds to a disk without the special capability that has block size B’ = B/S
and degree of parallelization P' = PS.

Recently, Beigel and Gill [1986] have independently considered the problem of
determining how many applications of a black box capable of sorting k records are
necessary to sort N records. Their problem corresponds to the sorting problem for
the case P = M =k and B = 1. They have shown that 8((N log N)/(klog k)) 1/Os
are optimal in that case (cf. Theorem 3.1). In addition, they have derived bounds on
the constant factors involved in their version of the problem.

The optimal upper bound for B = 1 when M = N (1), can be obtained via
a recursive application of Columnsort [Leighton, 1985]; however, for smaller M the
upper bound is greater than optimal by a factor of roughly loglog N,

Kwan and Baer [1985] study an alternative disk model, in which P = 1 and
the disk is decomposed into contiguous cylinders, each composed of several tracks.
(The track size is a hardware parameter, and can be different from the logical block
size used for data transfer, unlike our use of the term in Definition 4.2.) The tracks
all revolve at a constant rate. There is one read/write head per track, and the
set of heads can move in unison from cylinder io cylinder. Seek time in an I/O

is proportional to the number of cylinders traversed by the heads, and rotational

latency time is proportional to the radial distance between the head positions at
the start of an I/O request and the head positions at the beginning of the actual
data transfer. An algorithm for permuting records is given that takes advantage of

”



References [ 21

locality of reference on the disk; it achieves better running times than merge sort in
this model when the file size is large. __

. However, we believe that the simpler model we use in this paper gives more
meaningful results, because the model of [Kwan and Baer, 1985] is overly pessimistic
in how it models a random seek, in comparison with current technology. For example,
for the large-capacity magnetic disks made by IBM, the time to do a seek between
adjacent cylinders is of the same order of magnitude as the time for a random seek or
for a complete revolution. In this more realistic context, the permutation algorithm
of [Kwan and Baer, 1985] is slower than merge sort. In addition, the I/O block size
in large external sorts is often on the order of the disk track size, Thus, the time for
the data transmission during an I/O is as large in magnitude as the seek and latency
times, which justifies the simpler model we study in this paper.

We conclude this paper with a challenging open problem: It would be nice
to remove from the lower bound proofs the assumption that the records must be
indivisible and to allow, for example, arbitrary bit manipulations and dissections of
the records. Intuitively, the lower bound should still hold in this more general model,
since it is unlikely that these operations are of any great help, but no proof of the
lower bound is known. Such a proof would no doubt provide great insight into the
nature of information transfer and sorting-related computations.
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