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Abstract. This paper deals with state constrained optimal control
problems governed by a semilinear multistate equation. We prove the existence

of solutions and derive optimality conditions.
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Abstract. This paper deals with state constrained optimal control
problems governed by a semilinear multistate equation. We prove the existence

of solutions and derive optimality conditions.
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1. Introduction. This paper is concerned with state constrained optimal
control problems governed by a semilinear elliptic operator. As we make no
monotonicity assumption, the state equation may be unsolvable or may have
several solutions. Our aim is to obtain existence results and to derive the
optimality system.

There exists a vast 1litterature on the control of well-posed
state-constrained systems. The subdifferential calculus of convex analysis is
a useful tool when dealing with linear state equations : see Mackenroth [16]
[17], Bonnans and Casas [7], and Casas [8] [9]. In the nonlinear case, Bonnans
and Casas [4] [5] [6] derived the optimality system using results of Clarke
[10].

The control of non-monotone elliptic systems, but without state
constraints, has been studied by Lions [15]. (see also Komornik [14]). The
optimality system is derived there by penalizing the state equation and

passing to the limit in the optimality conditions of the penalized problem.
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The novelty of this paper lies in the simultaneous presence of state
constraints and of an ill-posed system. Our method consists in approximating
the problem by removing the nonlinearity from the state equation and
penalizing a part of the state constraints. We formulate the problem and get
an existence result in section 2, derive the optimality system in section 3

/

and study several examples in section b,

2. Formulation of the control problem. Let Q be an open bounded subset of

Rr" (n £ 3) with C? boundary TI'. Let us consider the system :

Ay + ¢(y) = u in Q,
(2.1)

y=0onT,
where
n
Ay = - I d (a,,(x)3_ y) + a (X)y,
- =1 % WO o
and
a €L(Q), a(x) 20a.e. x €Q,
)] o
2,4 s Lipschitz on Qa(1s1i,j sn),
(2.2)
n
t  a,  (x) g E. 2 a, |lE]?, a.>0, ¥E € R", ¥x € q,
i,5=1 ij 17
1
(2.3) 6 : R >R is C .

Let K be a non-empty, convex, closed subset of L*(Q), o 2 2 and Vg in L9¢Q) be
given, and let J : L9Q) x L2(Q) » R be the functional

(2.4) Sy = o1y -y 0] © ax v B urooax.

Let Z be a Banach space, B a closed convex subset of Z with non-empty

interior, and let a be given in R" (m 2 0 ; we identify IR® with {0}). Define
2 1

v v fan o~ o w3, IS DN .l e e p
Y= H (@) M no(u), where H (§1) and H,(%i) are the usual Sobolev spaces (see
v

niams [1], Necas [18]). Let C,(Q) be the space of real continuous functions on
@ vanishing on I, endowed with the supremum norm || || . It is known that Y is
compactly embedded in C,(®) for n S 3. The dual of C,(Q) is the space M(Q) of

real and regular Borel measures on @, endowed with the norm
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Il gy = 1ol @,

where |u|is the total variation measure of u (Rudin £19]1). Finally, let T
Co() ~» R" and L : Co(R) + Z be linear continuous mappings. In order to

derive the optimality conditidns, we will suppose that

(2.5) T(Y) = R" and L(Y) = Z.

We consider the following control problem :

(P) | min J(y,u) s.t. (2.1), u€ K, ye Y, Ty = a, Ly € B.

Remark 1 : The assumptions on Q@ and A imply (Ne;és, [18]) that for each f in
L?(Q) there exists a unique solution y € Y of the Dirichlet problem

Ay = f in @,
y=0onr,

and moreover there exists C, independant of f such that
(2'6) |Iy"H2(Q) s Cl"f"Lz(Q).

In fact all our results still hold if we Just assume that Q is bounded, Y is
compactly embedded in C,(Q) and (2.6) holds. This is the case, for instance,
if A is symmetric and satisfies (2.2) and Q is bounded and convex (Grisvard,
(131).

Remark 2 : The existence of several states associated to the same control has
been obtained e.g. with cubic nonlinearities [11]. Anyway, the inclusion of Y
in Co(R) for n $ 3 (Adams [1]) implies that A + ¢ maps Y into L2(Q) : hence
all elements of Y are associated to a control. For parabolic systems the
situation is essentially different (Bonnans [3]).

LSt U fw Zive some examples of ébntrol problems which fall in the

prev.oous fovuration.

(P1v min J(y,u) s.t. (2.1), u€ K, y € Y, y(xi) = a,, 1 21 3$m,
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Here {xi} are given in Q and we may take B = Z = C,(Q), L is the identity in
Co(Q), and Ty = {y(xi)}.

(P2) . min J(y,u) s.t. (2.1), u€K, y €Y, S, |[y(x)|dx s,

with 6 > 0. Herem = 0,T = 0, Z = L1(Q), B is the closed ball with center 0
and radius §, and L is the canonical injection from C,(Q) into L!(Q).

min J(y,u) s.t. (2.1), u€ K, yey, IQ y(x) dx = a,
(P3)
| y(x)] s 6, ¥x € @,

with § > 0. Herem = 1 and Ty = IQ y(x)dx, Z = C,(Q), B is the closed ball
with radius § and center 0 and L is the identity. These three examples

obviously satisfy (2.5).

We now give a result about the existence of a solution to problem (P). We

need for this a relation between ¢ and the nonmonotone part of ¢.

Theorem 1 : Suppose that (2.2) and (2.3) hold and that

(i) there exists (y,u) satisfying the constraints of (P) (i.e., (P) is
feasible),

(ii) either N > 0 or K is bounded in L%(Q),

(iii) We may write ¢(t) = ¢,(t) + ¢$,(t), with ¢i continuous, i = 1,2,
¢,(t) non decreasing, and such that for some C > 0 :

l6.(0)] s ¢ (1+]t] %3,

Then problem (P) has (at least) one solution. o

Proof : As (P) is feasible, there exists a minimizing sequence {(yn, un)} in
Y x K. Because of (ii), {un} is bounded in L2?(Q). We are going to prove that
{Ayn} is bounded in L%(Q) and for this we may assume that ¢, is differentia-
ble. Otherwise, we would approximate ¢, by a standard convolution technique
and then pass to the limit.

The form of J implies that {y,} 1is bounded in L°(q) ; hence with (iil), 92(y,)

: N 2
ts bounded in L7(R) and so is £, = = ¢2(y,) + u = Ay, + 6,(y ). As 6,(y ) is
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in C,(Q), Ay belongs to L?(Q). Computing the scalar product of f with Ay in
L2(Q), and- integrating by parts the nonlinear term, we obtain

n y_ 3y
. n “n
"Aynnzz(n) *Ja ¢i(y,) 155e1 aij(x) 3;; 3?; dx s "fn”Lz(Q)"Ayn”LZ(Q).

The second term of the left-hand side is non-negative because of (2.2) and the
monotonicity of ¢,. Hence "Ayn" is bounded in L2(Q) ; with (2.6), this implies
that {yn} is bounded in Y. As Y is compactly embedded in Co(Q) for n < 3,

selecting a subsequence if necessary, we may assume that
¢

v, * y weakly in Y, strongly in C,(Q),
Ay, » Ay weakly in L2(Q),
u, * u weakly in L2(Q).

This implies Ty = a, Ly € B and ¢(y ) > ¢(y) in Co(Q) ; hence Ay, weakly
converges in L%(Q) towards u - ¢(y) ; hence (y, u) satisfies (2.1). As K is
closed and convex, hence weakly closed, u is in K. Finally, the convexity and

continuity of J implies its weak lower semicontinuity ; the result follows. O

3. The optimality system. For any set C, denote by IC its indicatrix,
defined by

0 if x € C,
X =
IC( )
+ o if not.

We denote the subdifferential of a convex function f by 3f (see Barbu and
Precupanu [2], Ekeland and Temam [12]). The spaces w1’s(9) and w1's(n) are the
usual Sobolev spaces (Adams [1]). We denote by T the adjoint operator of T
and by R(T ) its range. The aim of this section is to prove the following

result :

Theorem 2 : Let (;, a) be a solution of (P). We assume that (2.2)-(2.5) hold
and that

(3.1) MIgoL) (y) N R(T') = (0.
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Then there exists p in Wugs (2) for all s < n/(n - 1), X in R", u in Z' and
@ 2 0 such that

(3.2 o+ ||E||w1,s () > O
0
(3.3) AP+ WP =aly -yl G-y +TA L,
(3.4) <4, 2-Ly>s0, ¥z¢€B,
(3.5) fQ(E + aNu (v-udk2 o; ¥v € K.

0
Remark 3 : As B has a non-empty interior, we deduce from (2.5) that R(L)MN B #
'@#. This implies (see Barbu-Precupanu [2], Ekeland-Temam [12]) that B(IBOL)(§)
* —
=L aIB(Ly). o

Remark 4 : We will verify that hypothesis (3.1) holds in our three examples.

However, if (3.1) does not hold, then by Remark 3 there exists (X, ¥) in R" x
- %_ %_

3T,(Ly) such that |IN] + [l > 0 and TX + L' w = 0. In other words, if all

hypothesis of Theorem 2 are satisfied except perhaps (3.1), there exists p, 1,
¥, o as in Theorem 1, not all null, satisfying (3.3)-(3.5). o

In order to prove Theorem 2, we need to establish some preliminary results.
Lemma 1 : Let W be a Banach space and D be a convex subset of W (not
necessarily closed) with non-empty interior. Let {(wn, nn)} be a sequence in
W x W such that w €D, w~wandn €3I (w).If liminf | ”n" > 0, then 0 is

not a weak star limit-point of {nn}. 0

0
Proof : Assume that the conclusion does not hold. Let w, be given in D. There
exists r > 0 such that |jwjj s r implies that w, + w is in D ; hence

< s Wo + W — wo > <0,
and this implies

r"nn" = supsr< Ny W > s« nn, wn - W, >.
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The strong convergence of wn allows'to pass to the limit and we get

¥

r lim inf “”n” s o0,
which gives a contradiction. g
Lemma 2 : Let W be a Banach space, and f (resp.g) be a Giteaux-differentiable

(resp. convex) mapping from W into IR (resp.]-=, + =]). Let x be a solution of

the following problem :

min f(x) + g(x), x € W.
Then

<VE(X), x - x> + g(x) - g(xX)2 0, ¥x € W,
or, equivalently :

VE(x) + 3g(x) D 0. o

Proof : A straightforward application of the definition of the subdifferential
[12] allows to verify. the equivalence of the two statements of the conclusion.
Now consider xt = x + t (x - ;) for t in ]0,1[. We have, using the convexity
of g : f(xt) + g(xt) s f(xt) (1 - t) glx) + tg(x) ; hence, as x is a

solution of the above problem :

05 £x) + 8" = (860 + g(3)) 5 2G5 - £(B) + © (8(x) - g(B)).
Dividing by t and passing to the limit, we obtain the result. o
We now consider the following approximate problem. Let the state equation be

Ay = u + win Q,
(3.6)

y Oonr,

The control being now (u,w) in L2(Q) x L2(Q). We define

Je(y,u,w) =J (y,u) + lTe J’Q (w + ¢(y))2dx +
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1 1 - 1 -
+ 5 Ty - a|? + 3 fo(u - w?dx + E”g(w + ¢(y))2dx.

The approximate problem is
(PE) min Js(y,u,w) s.t. (3.6), ue kK, we L*@q), y€e€Y, Ly €B.

Theorem 3 : Let (y, u) be a solution of (P). We assume that (2.2) - (2.5)
hold. Then

(i) problem (Pe) has at least one solution.

(ii) to each solution (ye,ue,we) of (PE) is assoclated p_ in wé's(n) for
all s < n/(n-1), M € Z' and xe in R™ such that

Yy p. =]y -y Io_z(y -y,) + R
€ € d € d € €
e Lty v ety ),
p8 =0onTr,
< He? z - LyE >s0, ¥2z¢€B,

f (pe + NuE + u_ - u) (v - ue)dx 20, ¥v € K,

p,t g W+ 8y )] +w_+ 6(3) = 0. o
Proof : (i) The triple (;,ﬁ,—¢(§)) is feasible for (Pe). Any minimizing
sequence is bounded in L%gq) x L2(Q) x L2(Q) ; hence by (3.6) in ¥ x L2(Q) «x
L2(Q). Taking a subsequence if necessary and using the compactness of
Y CCo(R) (n S 3) to pass to the limit in the nonlinear terms, we get the
result as in the proof of Theorem i.

(ii) Denote by yu,w the solution of (3.6) and by 6(u,w) the mapping
(u,w)- JE(Yu’w,U,w). It is easy to verify that 8 is C! and that

eh(u,w) =g+ Nu+u-u,
' 1 -
o, (u,w) = g+ = (w+ ¢(yu’w)) +w o+ oy,

%*
where « .5 .2c uolution of (A being the formal transpose of A)
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* _ 0—2 - 1
Ma=ly, ] TRy, v e ey, W ety )
1 * : .
+ T T (Tyu,w a) in Q,
q = 0 onT,

Let (ye.ue,we) be a solution of (Pe) and qE the associated adjoint-state. Let

us define :

>

L : L2(Q) x L%2(q) » Z,

(u,w) + Ly

K =K x L?(Q),
glu,w)= I (Lu,w)) + IK(u,W).
Problem (Pe) is equivalent to

min 8(u,w) + g(u,w), (u,w) € L2(Q) x L2(Q).

Applying now Lemma 2, we get
+
The mapping w » Yy (with u fixed) is an isomorphlsm from L2(Q) onto Y. Hence
by (2.1) there ex1sts (u,w) in K with L(u w) in B This allows us ([12]) to
apply the rules of subdifferential calculus to the mapping g and we get the
equality
) =L - )

ag(ue,w€ = aIB(Lye) + aIK(ue,we .

Hence there exists "g in BIB(LyE) such that

. ~
Ve(ue.we) + L w ot aIK(ue,we)IB 0,
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or equivalently
(e'u(ue.we), U*ue) + (e'w(us,we). w - we) +

+ < Mo Lyu o Ly€> 2 0, ¥(u,w) € KxL?(Q),

Let re be the solution of
* *
A re= L Mo in q,
Fs =0 onT,
we get
(e'u(ue.we) *rou- ue) 20, ¥Yu € K,
and
e'w(ue.we) tro- 0.
1
We obtain the result with ps a *r, and - (Tye a). o
Lemma 3 : Let {(ye u. We)} be a sequence of solutions of (Pe)‘ Then
F] ’

o=1m|ly. - ¥, = lim [Jlu_ - u = 1im ||w_ + &(y) .
tn 7, = Tl = 23m = Ty = 1im o, + 6Pl

Proof : From the inequality J (y u_ W ) s 4 (y.u, #(y)) = J(y,u) and the form
of J, we deduce that {(y ue’we.) is bounded tn L9(Q) x L2(Q) x L2(Q) ; hence
{y } is bounded in Y by (3 6) and (2.6). This implies that for ¢ € D, D being
a subset of 10,=[ having 0 as limit-point, we have for some (y,u,w) in Y x

L2(Q) x L%(Q) when € » 0 :

«g
v
<
[wbe
3
<
£
o
[V
~

=
¥
=

in L2(Q) weak,

=
¥
%

in L%(Q) weak,

with (y,u,w) satisfying (3.6)..As K and B are closed and convex in L?(Q)and Z

we have u € K and Ly € B. The form of J_ implies that [lu_ + ¢(YE)"L2(Q)+O and

[Ty, - all>0 ; hence w + ¢(y) = 0 ; with (3.6) this implies that (y,u)
satisfies (2.1). We have, as J is l.s.c. :
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J(y,u) 2 lim sup Je(ye'ue’ We)
1 - 2 ) 1 — 2
2 lim sup {J(ye,ue) + Fl "Ue - U”Lz'(ﬂ) *3 ”we + ¢(y)"L2(Q)}
1 - 2 ‘ - 2 »
20w ¢ 3w = Ul * 3 Iv e 62 gy

As (y,u) is feasible for (P), this implies that u = u and w + ¢(§) = 0 ; hence
o(y) =¢(y). With (2.1) this implies that y= }. But the above inequality also
implies [lu_ - u”Lz(n)+0 and ||w€ + ¢(y)"L2(Q)+O ; using (2.6), the result
follows. o

We now are in position to prove Theorem 2, by passing to the limit in the

optimality system of (Pe)'

Proof of Theorem 2 : Let (ye ue we) denote a solution of (Ps) and (pE e AE)
1 ’ ? ’

be given by Theorem 3. If {(pe M Ae)} is bounded we obtain the result with

— » ’

a = 1 by passing to the limit in the optimality system of (Pe) with the help

of Lemma 3. Suppose now that a_ = 1/("pe"L2(Q) + ”ue"Z' + ”AEH) converges

towards 0. Multiplying by a. the optimality system given by Theorem 3 and

defining

Pe = @ Po» uc = UeMer Ae " aexe’

we obtain, eliminating % (we + ¢(y€)) from the last equality of Theorem 3 :

* - - - *_ *_
Ap.+ ¢'(ye)p€ a, lyE - yd|° 2(yE Ty T Ae v Lo -
(3.7)

= 0 ' (y) (W_+ 6(y)) in g,

Pe

Oonr,
< EE, z-Lly_> 50, ¥z € B,

£[p€ + ae(Nu€+uE-u)] (v-ue) 2 0, ¥v € K.

As "5§"L2(9)+ "Ee"Z'+ "xe" is bounded, using Lemma 3, we may pass to the limit

in Lnhe above systems ; then we obtain (3.3)-(3.5), with here § = 0. It remains

to prove that p # 0. If p = 0, then T*% ¥—
P A+ L% = 0 by (3.3). But (3.1)




12

and the injectivity of T* and L*(by(2.5)) imply then that y = 0 and A = 0. As
(X} is in " and because of Lemma 1, this implies that lim inf [[ufl,, = ©
and "I€"+o ; hence ||p "Lz(ﬂ) . From (3.7) and Lemma 3 we deduce that A p is
bounded in M(Q) ; hence {p } is bounded in W S(Q) for all s < n/(n-1). The

compact injection from W S (2) into L2(Q) (for n $ 3 and s close to n/(n-1))
implies that "pe"Lz(Q)*"le’(n) = 0, which gives a contradic¢tion. o

4. Applications : In this section we are going to consider the three examples
stated in section 2 and we will derive the optimality system for each of them.

EXAMPLE 1

THEOREM 4

Let (y,u) € ¥ x K be a solution of (P1). Then there exist a real

number o 2 O and elements % € R" and p € W1o’s (@) for all s < n/(n-1)
satisfying
(4.1) a + "p"wl):s (Q) > 0,
Ay + 6(y) = u in g,
(4.2)
y = QonT,
A*B + ¢ (y)p - ;|— - [0_2 (y - y.) + 2 ; 8 in Q
(4.3)
p = 0 on r,l
(4.4) Jo(p + ollu) (v - uddx 2 0 ¥v € K.

Proof : Hypothesis 3.1 is trivially satisfied as B = C,(Q). Hence we may apply

Theorem 2 which gives the result. o

Tn some cases it is possible to prove that the previous Theorem lies true with

o= 1. Ve are going to study two situations where it is so.
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‘THEOREM 5 : Let a;; € C2(2), 1 S 1 S J S n. Then the results of Theorem 2 are
obtained with g = 1 if 2 18 connected and one of the two hypothesis holds :

Py o~

i) There exists an open subset , of @ such that K = K + L2(Q,) (L2(9,)
is the extension by zero from L2(q,) to L2(Q)),

11) K= {v € L2(Q) : v(x) 2 0 a.e. x € R}, and u=0 is not optimal for
(P1).

Proof : 1) If a = 0, it follows from (4.3) that
% - - m _
A p+ ¢' (Y)D - i§1 Aié[xi] in Q,
(4.5)
p =0onT,

Now from (4.4) and the property of K, we get that p=0 in fo. Taking @, =
m
Q\{xi}i=1, we have

* - - -
A p+¢(y)p=o0 inq,,
(4.6) '

m
p = 0 in Q°\{xi}i=1.

Then we can use the prolongation unicity Theorem (Saut and Scheurer [20])and
we deduce that p=0 in Q,, hence in Q, which contradicts (4.1).

ii) If o = 0, we deduce from (4.4) that p 2 0 in Q. If p is null on an
open subset Q, of Q, we can do as in i) and we obtain a contradiction.

Otherwise for each open subset R, with 50 included in @, we have :

(4.7) max B(X) > 0.
x€Q,

We remark that p satifies

* —_ —_
Ap+max (0, ¢'(y)) P20 in Q,,

Pp=0onr.
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* -
Applying the Harnack inequality to A + max (0, ¢'(y)) (Stampacchia [21]) as
in [5] we deduce that p(x) > 0 everywhere in Q,, wich implies with (4.4) that

u=20 a.e. 0O
EXAMPLE 2

THEOREM 6 : If (y,u) € Y x K is solution of (P2), then there exists a real
number & 2 O and elements p € L (Q) and p € w;’s(n) such that

(4.8) = 1Al qy > O

AY + ¢(y) = u in Q,

(4.9)
y =0 onT,
L 0-2,— -
Ap+ e (Mp=aly-yyl “(y-yy)+uinag,
(4.10)
P = 0 onT,
(4.11) [ji(z - Vax s 0 ¥z € B,
(4.12) [P+ aNu) (v-u)dax 20 ¥v €K,
Proof : Here again, (3.1) is satisfied because T=0. Hence we may apply

*
Theorem 2 and remark that Z' = L°(Q) and L is the canonical injection into
M(Q). Moreover the regularity of p follows from (2.6), (4.10) and the fact of
that a|y - ydlo_z(i -y, *+u- ¢ (y)p belongs to L2(R). o

EXAMPLE 3

THEOREM 7 : If (y,u) € Y x K is solution of (P3) then there exist a real
number o 2 0 and elements p € wo' (9) for all s < n/(n-1), » € IR and u € M(Q)
such that
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(4.13) a + 1,
a "S"wos(n) >0,

Ay + ¢(y) = u in @,
(4.14)
y =0onT,

*__ — = — — - —_ -
Ap+ ¢'(y) p=a]y - ydl0 2(y - yd) + )+ y in Q,

(4.15) _
p =0onT,
(4.16) fQ(z - y) du S0 ¥z € B,
(4.17) IQ(E + aNu) (v - udx 20 ¥v e K.

Proof : We have to verify that (3.1) is satisfied. For it remember that in
this case L is the identity in C,(Q) and T € C,(2)'. Take p € aIB(y) and
A € R such that

*
<uyz2 >=<KTAr,2> = Afgzdx, ¥z € C,(Q) ;

this implies that y = Am, where m is the Lebesgue measure. If A # 0 this

implies that y(x) = + & a.e,,which contradicts the boundary condition. o
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