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Abstract: We show that almost all binary strings of length n contasn all blocks of size
(1—€)log, n a close to normal number of times. From this, we dersve tight bounds on
the discrepancy of random infinite strings. Our results are obtained through ezplicit
generating function ezpressions and conlour integration estimates

\
DEVIATIONS PAR RAPPORT A LA NORME
DANS LES SUITES ALEATOIRES

Résumé: Nous montrons que presque toutes les suites binaires de longueur n con-
tiennent tous les blocks de longueur (1 — €)log; n un nombre de fois proche de la
normale. De 13 nous déduisons des bornes précises concernant la discrépance des
suites aléatoires infinies. Ces résultats sont obtenus 3 partir de formes explicites de
séries génératrices et d’estimations d’intégrales de contour.
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Abstract: We show that almost all binary strings of length n contain all blocks of ssze
(1—€)logy n a close to normal number of times. From this, we derive tight bounds on
the discrepancy of random infinite strings. Owur results are obtained through ezplicst
generating funclion ezpressions and contour integration estimates

1. Introduction.

Emile Borel introduced in 1908 the notion of normal numbers characterized by the
property that, in their binary representation, each block pattern of zeros and ones
occurs with its natural probability (namely 1/2* with k the length of the block).
He then proved that almost all real [0, 1] numbers are normal, and later in his life
conducted various experiments on digits of particular numbers like ¢, 7 or /2.

Our purpose in this paper is to provide statistical estimates for the occurrences
of blocks in random binary strings of either finite or infinite length, and in particular
try to determine quantitatively which deviations from the “norm” are to be expected
in a random string. '

To take a particular example, if one computes (say, with the Gauss-Salamin
method) 10,000 bits of = and if one looks, for various values of k, at the least frequent
block and most frequent block of size k, one finds:

Length (&} Least Frequent Most Frequent
2 (11)2480 (00)2509
3 (111)1226 (000)1275
4 (1100)¢03 (0000)©52
5 (11100)%°¢ (00000)342
6 (100111)*33 (101101)*7¢
7 (0101100)57 (0110110)°7

t Research of the three authors was supported by the French Austrian scientific
cooperation programme.



It would obviously be of interest to determine whether such deviations from the norm
point out to specific “non-random” properties of the decimals of =.

Much in the same vein, tests on occurences of blocks in bits produced by (pseudo)
random number generators are often employed and the reader may refer to Knuth’s
encyclopedic treatment on this subject (see especially Section 3.5 of [Kn69]).

The present paper concerns itself with eztremal statistics regarding occurrences
of blocks in random strings. The basic concept that formalizes our previous numerical
observations, is that of discrepancy and it is often used in [0,1] distributions problems
(see e.g. Hlawka’s or Kuipers and Niederreiter’s books [HI79], [KN74]). Let b =
bibz...b, be a (finite) binary string. Then its k-discrepancy is defined as:

0Q(b,u) 1
n 2k

Dy (b) = max

where (b, u) is the number of occurrences of a pattern (block) u = ujuz...ux in u:
0(b,u) = card{s | bybj41 ... bj4k-1 = tauz... uk}.

In the definition of discrepancy, (b, u)/n represents the observed frequency of block b
in u and 1/2% is the probability of occurrence of block b at at any position in a random
string. Thus, the discrepancy does represent deviations from normality observed in
string b. Stated informally, a string b will pass a randomness test with block length k
if the discrepancy is “much smaller” than 5*,; It is therefore of interest to determine
for what range of values of k (as a function of n) this test should be meaningful, as
well as to determine what is an “acceptable” deviation from the norm.

Our main result for infinite strings is contained in Theorem 1 below. In essence,
a “finite version” of this theorem (Theorem 2} states that almost all binary strings
of length n contain all patterns of length k a (close to) normal number of times as
long as k < (1 — ¢) log, n. Notice that much stronger results cannot be expected to
hold since a string of length n has only n bit positions so that, when k > log, n, some
patterns are certain not to occur while others will tend to occur only once.

To state Theorem 1 precisely, we first need to introduce the notion of discrepancy
for infinite strings.

Definition. Let w = b;b2bs - - - be an infinite string. Then, for integers k and n, the
discrepancy Dy(w,n) is Dg(biby---b,). Let k{n) be a non—decreasing sequence of
positive integers. Then, the string w is said to be k(r)-uniformly distributed if

lim Zk(")Dk(n)(w,n) =0

17—+ 00

In previous works, we have established several properties of k(n)-uniformly dis-
tributed sequences. Earlier relevant results also appear in [FKT86].

Our Theorem 1 states that almost all infinite strings are fairly uniformly dis-
tributed. Here, our measures on finite and infinite strings are the usual product
measures, with individual 0~1 bits being equally likely. The notation ign is the bi-
nary logarithm lgn = log, n.



Theorem 1. Let k(n) < lgn —lglgn — 2lglglgn be a non~decreasing sequence
of positive integers. Then almost all infinite binary strings w are k(n) uniformly
distributed.

As a direct consequence, we get

Cor;)llary 1. Almost all infinite strings w are k(n) uniformly distributed for k(n) = -
[(1—€)lgn], with e > 0.

Notice that from earlier research [KT85], the uniform distribution property was only
known to hold for k(n) ~ ilgn. As already said, our result is in essence the best
possible.

To attain our goal, we mostly study distribution problems on finite strings. The
transfer to infinite strings is then easy by the Borel-Cantelli lemma.

In Section 2, we introduce a particular Markov chain (with 2 states) that records
information about the simultaneous occurrences of all k-blocks in a random string.
Interestingly enough, the graph of this Markov chain is nothing but a De Bruijn
graph (see e.g. [Kn68, p.379]) used classically to construct minimal sequences that
contain all possible k~blocks once and only once. The Markov chain is equivalent to a
probabilistic traversal of this graph, while the construction of the minimal De Bruijn
sequences corresponds to a particular deterministic traversal. Consideration of this
Markov chain shows a prior: that rational generating functions are to be expected in
this range of problems. It also provides useful probabilistic intuitions and could lead
to numerical approximations for parameters of interest when k is kept fixed.

We then proceed in Section 3 with the computation of the distribution of the
number of occurrences of a fixed pattern in a random string of length n. This is
achieved via generating functions. Here, the situation is greatly helped by the fact
that closely related generating functions have earlier been computed by Guibas and
Odlyzko [GO81a], [GO81b]. In particular, it turns out that, although the number of
occurrences of a pattern of length k in an n-string has average:

n—k+1
2k

the corresponding variance depends deeply on the overlap structure present in the
pattern block. The correlation polynomials of Guibas and Odlyzko are essential to
our treatment. .

Section 4 uses crude saddle point estimates that suffice to obtain exponential tail
results for occurrence probabilities. Such results are needed if we want to let k vary
with n and approach lgn. In Section 5, these estimates are used to derive rather
directly the proof of our main result.

Notice the difference with two previous approaches [KT85|, [FKT86|. Firstly,
tail estimates based on Tchebycheff’s inequality are too weak to lead to Theorem 1.
Secondly, another approach based on W. Philipp’s law of iterated logarithm leads to
accurate probability distribution estimates for discrepancies, but is limited to slowly
growing sequences k(n). What renders our proof possible is the clear relation (from
Guibas and Odlyzko’s works) between generating functions and pattern structures.
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2. A Universal Markov Chain.

We introduce here a Markov chain that is in a sense “universal” for counting pattern
occurrences. It takes into account the simultaneous occurrence of all k-blocks in
a random string of size n. Fix k, the block length. The Markov chain M(¥) has
£ = 2F states; state i means: “the block of {0, 1} which corresponds to the binary
representation of integer 1+ with length k has just occurred”. Thus if a new element
a € {0,1} of a random string is added, the new state is y = (2¢ +a) mod 2*¥. Whence

Definition: The Markov chain M(¥) has 2% states. Its transition matrix M(*) is
given by

MY = % if (5= 2 mod 2¥) or (j = 2 + 1 mod 2¥),

all other entries being equal to 0.

It is of interest to note that the graph I'¥) associated to M(¥), whose adjacency
matrix is 2M (%), is nothing but a classical De Bruijn graph used in combinatorics
[Kn68,p.379): The fact that this graph has a Eulerian circuit (all its nodes are of even
degree) entails the existence of a (minimal) string of length 2* + k — 1 which contains
every k—block once and only once.

Let V be the diagonal matrix with elements {vo,v1,...,v¢~1). Then from
the standard matrix theory of Markov chains results that the Taylor coefficient of

[vgovTt ... vp 7'} in the quantity:

1,11 1
(L4 )= VMY)T (o 550 (1)

represents the probability that a random string of length n = ng+ny+-- - +ne_;+k—1
has n; occurrences of block with number j, for all 5.

Let (No, Ni,..., Ne-1) denote the random vector where N; represents the (ran-
dom) number of times state 5 is reached in a sequence of n transitions of the Markov
chain M(¥), The expectation of each N; is asymptotically, for large n, ~ n/2%: The
matrix being doubly stochastic, the stationary probability of each state is 1/2%. In
other words, a random n-string tends to contain each k block about n/2* times.

Stronger normality results follow if we appeal to the standard theory of limit the-
orems for Markov chains. We then find that, in the limit, vector (No, N, ..., No—;)
obeys a limiting multivariate Gaussian distribution. This strongly suggests that de-
viation from expected values for occurrences of any “small” block should be of small
amplitude.

The above observations are useful when k stays fixed while n varies and they
may be used to derive aproximate numerical estimations in this case. However, for
the purpose of proving Theorem 1, we must let k vary and approach lgn so that we
need uniform error terms in n and k, for the class of Markov chains M{*¥), We shall
therefore need to continue in Section 3 with another route, less probabilistic and more
analytic.

As a first result here, notice that restrictions of the “universal” generating func-
tion (1) give almost all conceivable generating functions of interest, when counting
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occurrences of blocks in words. In particular, we expect such generating functions to
be rational. Let ﬂ.‘,'). be the probability that a random string of length n contains the
pattern u exactly r times. The associated bivariate generating function:

Pu(z,0) = Y wlho'zm (2)

n,r>0

is obtained from Eq. (1) by the substitution v; — 2zv and v; — z for 1+ # j with
7 being the number whose binary representation (with length k) coincides with the
"string u. Thus P, (z,v) is a linear fractional transformation of v with coefficients that
are rational in z.

Proposition 1. The bivariate generating function for the probabilities of occurrence
of pattern u s of the form

_ Ay(2) +vBy(2)
Pulev) = G ¥ oDa(a)’

for some rational functions Ay(2), B;,(z), Cu(2) and D, (2).
In particular, for r > 1, we find that the generating functions

P{(z) = 3 ni)e" ()

n>0

are given by ,
P{(2) = o(2)(8(2)", (4)
for some rational functions a(z) and B(z) that depend on pattern u.

The purpose of the next section is to make explicit the dependency of those
functions with respect to the structure of the pattern using the correlation polynomials
of Guibas and Odlyzko.

3. Generating Functions for Pattern Occurrences

This section relies heavily on explicit expressions for generating functions related
to occurrences of patterns in strings. These were derived by Guibas and Odlyzko
[GO78], [GO81a], [GO81b] and later surveyed by Odlyzko [Od84]. Our notations
follow Odlyzko’s survey, except that the variable in our generating function is z while
he uses 2~1. Thus our generating functions are the usual ones, and they are analytic
at the origin while Guibas and Odlyzko’s are analytic at oo.

Let u = ujuz---u be a binary string of length k. The primary notion is that
of the correlation polynomial associated to u. This is a polynomial p(z) = py(2) of
degree k — 1, such that p(0) = 1; the correlation polynomial has 0-1 coefficients given
byt

[2%]p(2) =1 if  ujup - -uk_e = Ugprterz o Uk (5)

t We let as usual [2"]f(2) denote the coefficient of 2" in the Taylor expansion of
f(z) at the origin.



and [z%]p(z) = 0 if the condition in (5) is not satisfied. In other words, the correlation
polynomial describes the way the pattern “matches” slided versions of itself. For
instance, the correlation polynomial of u =‘00100100’ is p(2) = 1 + 23 + 2% + 27,
Given a a string u, we define the following sets of binary strings:
1. The set ¥, is the set of binary strings that end with u and contain only a single
occurrence of u.
2. The set §,, is the set of strings that start with u, end with u and contain exactly
two occurrences of u. Note that the two occurrences of u are allowed to overlap.
3. The set M, is the set of strings that start with u and contain only one occurrence
of u.

If £ is a set of strings, we let L(z) denote the generating function of £, in the
usual sense of combinatorial analysis. Thus [2"]L(z) is the number of strings in set
L. Observe that, since there are 2" binary strings of size n, [z"]L(£%) is also the
probability that a random string of length n belongs to £.

Guibas and Odlyzko have provided expressions for the generating functions of
set %, and §., which in our notations read as

2* x 28+ (1-22)(p(2) = 1)

RE=ormmmre ™ 0=

(6)

with still p(z) = py(2z) the correlation polynomial of u. These are equations (4.5) and
(4.10) in [OdB84). .

Now comes an easy combinatorial argument. First, let & denote the mirror image
of u (elements of u are taken in reverse order). There is a clear bijection between X,
and 7. Also from the definition of the correlation polynomial, it immediately results
that pa(2) = pu(2). Thus, F,(2) is also the generating function of the set ¥,.

Next observe that there is a direct bijection between the following two sets: (i)
the set O, of strings containing r possibly overlapping occurrences of pattern u; (ii)
the set of r + 2 tuples 7, x (Gu)" X Xy. Furthermore under this bijection, there
corresponds to a string of length n in O a tuple of strings with total length n + kr.
Thus, from standard combinatorial analysis (products of sets correspond to products
of generating functions etc.), see e.g. [GJ83], we find

O )(2) = 27" (Fu(2))*(Gul2))"- ()

Equations (6) and (7) thus provide for the explicit form of the generating function of

probabilities x.7) since, from a previous observation, P)(2) = 0.(,')(%).

Proposition 2. The generating function P")(z) for probabilities of a pattern u
occurring k times is given by

P —22)(p(z) - 1)1
P{)(2) = 2%2* [ [:; (:_ (12_)2(:)222)]}4)’]1 forr>1 (8a)

where p(z) 1s the correlation polynomial of string u.

The generating function Pi% (z) is also found from [Od84] to be

_ p(z)
P9 (z) = FIO-2050) (8b)

-6 -



4. Saddle Point Estimates

We now have at our disposal the explicit form of Proposition 2 , Eq. (8) for generating
functions of probabilities. One can return to the probabilities themselves by means
of Cauchy’s theorem,

1 dz '
{r) — [,n]pl(r) — (r) .
Tan = [z ]Pu (Z) Zim /(;+ Pu (z) Zntl (9)

"We shall get bounds on the probabilities, when r is far from the mean ~ namely n/2*
-, by estimating the integral in (9) along a circle |z| = R, where R is chosen so as
to traverse an approximate saddle point of the integrand. We shall find that, in our
range of values of r, k and n, it is sufficient to take R = 1+ € (with adequate ¢ — 0),
and use trivial bounds on the integral. This leads to uniform exponential tail results
for the probabilities: These are summarised by Equations (18) and (23) below. In
the next section, we shall see how to derive discrepancy estimates from there.

In the sequel, n is large and tends to infinity. The block lengths we consider are
k = k(n) with
k(n) =|lgn —Ilglgn —2lglgn].

A patternt u (block) of length k in a random string of length n has an expected
number of occurrences that is asymptotic to jo(n) = n/2*. We are interested in the
probabilities that the random variable J,, representing this number of occurrences
deviates from the mean. Set n

1= iy Rl

2k 2k’
where § € [—1,+1]. We need estimates on the probabilities that J, < § when § < 0
(lower tail) and J, > j when 6 > 0 (upper tail). Thus, we need to estimate

(10)

L.(8) =Pr{J. < j} (6 <0), and U.(8) = Pr{Jp, > j} (6§ >0).

These quantities are sums of the =y, ,, probabilities defined earlier:

La(6) =) al)  Un(8)=3_al. (11)

r<y r>7

 We shall use integral representation (9) to evaluate these sums.

For k = k(n) and § in the fixed interval, all subsequent estimates are uniform in
n and §, and implied constants in O(.) notations are absolute constants. Now comes
a batch of notations. We set u = 2* so that

n

= 2k EY . T
# ®lgn(lglgn)?

We can rewrite Eq. (8) as

P")(z) = P (2) = 2%a(z)b(2)" ",

t Throughout this section we omit all subscripts u in formula for readability.

...7_.



with
: 2k(z — 1)

2*
a(z) = ‘Q—Z(—z-)-, b(z) =1+ ——Q-(—z)-—, (12a)
where
Qe) = * + 2*(1 - 2)a(3). (126)
We have obviously
b(1) =a(1) =1, and (1) = u=2F. (12¢).

Upper Tail. There § is strictly positive, accordingly j > n/2*, and from (9), (11),
(12), we find

1 x b(z) d=
Un(6) = E?/mz ole) ;s e (13)
We propose to evaluate the integral in (13) using the contour
gl
lzl=1-€, e=¢(n)= ES—E—’%&E (14)

whose choice is dictated by a saddle point heuristic. Provided we check that the
integrand in (13) is analytic for |2 < 1, trivial bounds on the integral lead to

s(l—¢)

Un(6) < 2k1—_m—_—e)

b (1—e)(1—¢)™". (15)
The analyticity condition that justifies (15) is given by the following lemma.

Lemma 1. For large enough patterns (k > ko), the polynomial Q(z) has no zeroes
in the domain |2| <1 + .

Proof. Using the substitution 2/2 = 1/w, the equation Q(z) = 0 is equivalent to
1+ (w — 2)p(1/w) = 0. Following again Guibas and Odlyzko [GO78, Lemma 3], we
find that this equation has only one zero in the domain jw| 2 1.7. Applying Lemma
4 in [GO78], we obtain for the zero w (and k large enough) |w| < 2 — (1/k). Hence,
for k > ko, the equation Q(z) has no solution satisfying |2| < 1+ o < 2—_(—217,;)-. [ |

Remark that ue = 6o/(lglgn) tends to 0 as n — co. Estimates that follow are stated
for values of functions a(z) and b(z) at 1+ ¢ since they will be used later.

a(l £e) =1+ O(ue)

b(1+e) =14 pue+ O(u3e?)
b (1te) = exp (£ eps + O(ju%€%))
(14¢€)™" = exp ( F ne + O(ne?)).

(16)

These bounds all follow by inspection from the explicit forms (12), and the observation

that

1+e
2

Q(1te) = (1£e)* F pep( =1+ O(ue), (17)

- 8-
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since the correlation polynomial p(z) has 0-1 coefficients. Applyhxé estimates (16) to
bound (14), we get an upper bound on U,,(&) in the form

2k1+ O(ue) n?

Un(6) = eplt O(pe) xp (— bne+ o(lg n(lglg n)’ €)-

This gives our main upper bound for the upper tail:
Un(8) < exp (- élgniglgn+cilgn) (18)

for some absolute constant ¢; and n large enough.

Lower Tail. Now § is strictly negative, and accordingly j < n/2*. From (9), (11),

(12), we find
Lnls) = 5= [ 2ala) =58 0 (19

We evaluate the integral in (19) using the contour

Ig nlg lg n

l2|=14+¢ e=¢(n)= (20)

If we know that b(1+€) > 1 and that a(z), 5(2) have no poles in the domain |z| < 1+¢,
then (19) is upper bounded by

L.(6) < 72%a(1 + )b (1 + €)(1 +¢)". (21)

The transition from (20) to (21) is obtained via Lemma 1: Note that b(1+¢) > 1is
equivalent to Q(1+ €) > 0, which follows from Lemma 1, Q(1) > 0 and 1+¢ < 1+ .
The conclusion for the lower tail comes directly from (21) and (16), so that

Lo (8) = 725 (1 + O(ue)) exp(eps + O(ju?e®) — ne + O(ne?)). (22)
But 5 = O(n) and 2* = O(n?), so that finally
L, (6) = exp(éne + c2lgn) (23)
for some absolute constant ¢, and large enough n.
5. Discrepancies of Finite and Infinite Strings

From Equations {18) and (23), we have exponential tail estimates for the probabil-
ity distribution of occurrences of a single pattern u with length k when k = k(n).
Returning to discrepancies is easy: if § is > 0, and b represents a random string of
length n, we have

Pr{2¥Dy(b) > 6} < > Pr{|Q(b,u) - n| > 6}
lu|=k (24)
< 25(Lna(—6) + Un(+6))

-9~



Thus, by (4) and estimates (18), (23), we obtain

Theorem 2. Let k = k(n) = |lgn—Iglgn—2lglglgn| and § be such that0 < § < 1.
Then the probability distributson of dicrepancy over the set of strings b of length n
satisfies

Pr{2¥ Dy (b) > 6} < n~0l8lente, (25)
where ¢ denotes an absolute constant.

In essence, the result can be extended to smaller values of k using the following lemma
from [KT85] (Proposition 2.1 there):

Lemma 2. Let s and t be two integers such that s < t < lgn. Then, for an arbitrary
string b of length n, we have

2°D, (b) < 2D, (b) + 2° % (26)

Applying Lemma 2 to Theorem 1 shows that bound (25) actually holds not only for
k = k(n) but also for all k < k(n). Notice that a slight improvement of our result is
possible, and the 2lglglgn coud be replaced by (1+ n)lglglgn for any n > 0.

We are now ready to complete the proof of Theorem 1. Choose § a function of

§ = 6(n) = (lglgn)~1/? (n=4)

and observe that
Zn—G(n)lglgn+c < oo.

n

Hence, by the Borel-Cantelli lemma (cf [Fe68, p.201]), we obtain Theorem 1.
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