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A DYNAMIC STORAGE PROCESS
ETUDE D’UN PROCESSUS DE STOCKAGE DYNAMIQUE
Claude Kipnis* and Philippe Robert?

1. Centre de mathématiques appliquées
Ecole polytechnique 91128 Palaiseau (France)
2. INRIA Domaine de Voluceau
78153 Rocquencourt Le Chesnay Cedez (France)

Résumé

Nous étudions dans un cadre probabiliste un processus de stockage avec des
arrivées et des départs des pieces a stocker. Nous nous interessons au débit maz-
tmum de ce processus ainsi qu’au tauz d’occupation de l'espace de stockage. Les
formules explicites de ces quantites sont obtenues et discutées.

Abstract

We analyse a storage process with dynamical arrivals and departures. Under pro-
babilistic assumptions, we study the behavior of the storage unit and give the main
features of it: the mazimal throughput and the occupied length of the unit.

Kexwords

Dynamic storage allocation, mazimal throughput, measure valued Markov
processes.



0. Introduction

The phenoﬁxena of fragmentation which occurs in many storage models is a
well known problem. For example if the storage unit is a disk cylinder and the
items to be packed are records or files (we assume that they are stored only at
one address), after some arrivals and departures of the items in the unit, the free
space of the unit is then made of small portions which are useless although the
concatenation of these spaces could be usable. Thus one of the important ques-
tions in this area is when one should compact the storage area given that this

operation has a cost C.

The results concerning dynamic storage are quite rare. The main problems
in this area are presented and discussed in [B] (see also [ACK]). In the case of an
infinite storage unit, fragmentation has been analysed in [CKS]. The authors
assume that the items take the first free space on the unit and that the unit is
not compacted (see also [A]). In [CGJ] a comparison of algorithms in the worst
case is done. In this case there are many storage units and the goal is to use a
minimum number of units given arrivals and departures of items. The problem of
periodically reorganizing the storage unit has been analysed in [S]. The compres-
sion of the unit in this case is done when the address of an item exceeds a given

value.

Our purpose is to study what can be gained with the compression of the
storage unit. We assume that the size and the residence time in the unit of the
itemc ka2 - statistical distribution and as soon as there is a hole in the unit it is
im=~adatly corupacied. In order to evaluate this compression policy we analyse
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'the main quantities of interest : the ma#imal théughput and the occupation of
the storage unit. Our main tool is the description of our storage- ﬁrocess as a
measure valued .Markdv process which seems qﬁite relevant for this analysis.
'Mdst of the models previously analysed are reduced to a one or two diménsion_al
3 prdcess. Ou-r'approa.ch‘is also an attempt to give a vna,t]'aral (although. not easy to
R handle') framework to these problems in order to tackle .thém. Finally we must
:‘ add that we have used 1nten51vely the: symbohc computatlon packa.ge‘
MACSYMA for section 4 and that section 7 owes much to J.L. Bouchenez and -

M. Loyer’ s SM90 “speedy”.

1. The model

In the present paper we start a study of a dynamic storage process, which
can be described as follows: we have a storage unit (the bin) of finite capacity
(say one); items arrive at rate o to be stored which require random independant
identically distributed room. Each item is stored immediately if there is room
enough, otherwise it remains waiting until it can be accomodated. Items are
stored in their order of arrival so that one item waiting forces all the subsequent
arriving items to wait. Each item after having entered the storage unit remains
there for an exponential holding time of parameter p(x) depending only on its
size X. At one departure the storage unit is recompacted so that no room is lost
and then the first waiting item is immediately stored provided the empty space in

" the hir excaecs 1iv 5o, otherwise it waits for the next departure,
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In this context several quantities are of inte;'est: The maxirﬁum throughput
of the system which is the biggest arrival rate that does not generate in the long
run an infinite waiting line before the bin, the number of items that are stored
and the proportion of the bin that is used under this optimal policy. Since our
aim in this paper is to study these quantities, we will suppose that an infinite
number of items is waiting for service. We will thus obtain the quantities related

to the optimal use of the storage capacity.

The paper is organized as follows: In section 2 we set some notations and
study the construction of the process as well»a.s some intuitive results on the out-
put of the process. In section 3 we prove existence and uniqueness of the invari-
ant measure associated with this process. In section 4 an explicit formula for the
maximal troughput is given in terms of the behavior of the random walk gen-
erated by the sizes of the items. From this we derive in section 5 several bounds
based on simple functionals of the sizes of the items. In section 6 we present some
examples and also some additional results in simple cases. Finally section 7 is

devoted to the numerical applications of our results.

2. Notations and construction of the process

In view of the introduction we will describe the set of items inside the bin by
a (random) point measure on °[0,1] i.e. an- element nEM, of the form

n(dz)=Y] 6, (dz) ( , is the dirac mass in a), with a positive but finite number of
oy .

points in the sum . We will write x € 7 if x satisfies ({x})>0. This space is




haturally endowed with the weak topology on measures i.e. the topology that
makes the application n — <f,»> continuous for all continuous functions f on
[0,1], with the shorthand notation <fn>= ff(z)n(dz). For example
<1y4,5m> ( 1[4,5] is the indicator function of [a,b] ), gives the number of items in
the bin with size between a and b. All the relevant quantities can be expressed
as such integrals. In particular the occupied length of the bin is given by <x,n>,
the number of items by N=<1,7> and the processing rate in the state n by

<p,n>. .

We will use the notation P for the probability measure on U =
([0,1]x R )N which is the product measure of p(x)e™?(*)¥ u(dx)du and (X;,T;);
will denote the coordinate random variables, respectively  the size of the items
and their residence time. Thus X has the distribution yx and T, is exponentially

distributed with parameter p(x). The shift operator S on U is defined by

S((zs5t:)i) = (Zigrotiva)i-

Our dynamic storage process is completely described by (n;,R )50, With
N €M, being the state inside the bin and R, the size of the first waiting item at

time t. Its generator (1 is given by the formula:

) (n, 7= 5 ple) x| B (35 Flrd,+6,+ 33 bxo Xon)
zEN =1 =1

x1 5 41 )
{r+<1, >-z+ 3 X, < I< r4+<1,p>-z+ 3 X}
t=1

= i=1



+F(77_5z’ r)l{r+<l,n>—z>l}] - <p, ’7>F(77, ")'
where F is a continuous bounded function on Mp xR ,.

Proposition 2.1

The process described by the generator N is uniquely defined.

Proof

Since we are dealing with a jump process, the only obstruction to uniqueness
is explosion i.e. that in a finite time an infinite number of items enter the bin. To

see that this is impossible, we define by induction the non-decreasing sequence

(U 1)a 0 such that:

U0=0

n-1
U,=Inf {t/X,+ 3 X; Liy,47,00)<1) (2.1)
i=0

Note that U, is the time at which the n-th item is packed in the bin. Our

storage process is then defined by

00
M=3] L{u,+T,>t>U;} 6%,
1=0

R,=X, if U, ,<t<U,

Now it is sufficient to prove that lim U, =+00. Recall that we assume
n—+00

#{0}=0 so there exists p>0 and a subsequence (X, )& such that X, >1/p.Now we
remark that U, > Uyt Inf{T, wvpyi/0Si<p-1} because the item of index

ngp can be packed in the bin only if one of the (X, eapJ0<i<p has left the bin.
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Using that (Inf {T J0<i<p-1});>; are i.id. and the law of large

n k-Np+i

numbers, we get that U, —+oo P. as. and our proposition is proved. []

We now prove an intuitive and useful:

Coupling lemma 2.2

Suppose that (X,,T,) and (Y,,K,) satisfy almost surely for all n, X, >Y, and
K, <T, then also U, >V where U, (resp V) are defined by (2.1) for the

sequences (X,,T,) resp(Y, K,)).

Proof
Let us denote by u,, ..., u,,. the entrance times in the system of item
number n in the (X,T) process and vy, ..., ,,.., those corresponding in the

(Y,K) process. Then clearly it is enough to prove that u, >v, for all n.

The claim is true for n=0 ; Denote by N the first index n such that u, < v,
. Suppose that N is finite then vy, the entrance time of X y, is equal to one of
the v,+K, with 0<k<N . But since K;<T) we have for all k<N
v+ K <uy+ Ty by induction hypothesis and the inequality between the X'’s
and Y’s. Therefore all the items that have left the processor for the X-process
have already left also for the Y-process and the items that remain are smaller.
Therefore there is room enough to accomodate the Nt item also in the Y-

process. This is a contradiction, our lemma is proved. []

Proposition 2.3




The sequence ( )n >0 18 a.5. converging to a constant p(,p) called the mazimal
n

throughput of the storage process.

Proof

If w= (z,,t,),>0 then
U‘n+p (w):Un (w)+Ukl+p ((yl’sl)’ "-’(ykl’tkl)’ (%25t0)), (xn+1’tn+1) eese)
where y,, ..., i, (resp. sy, ..., s;,) are the sizes (resp. residual processing

times) of the remaining items in the bin when X, is packed . But

Uk1+p ((YIssl)~’ s s(Ykpskl)a (%a tn)s (xn+1’tn+l)a"r)

ZUk1+p (0""’0'!(xn it ), (x Xn +1s n+l) ces)

according to the coupling lemma applied to the two sequences

((yl,sl)v"" (ykpskl) (zmtn) (= n+Ltn41)e)s ((0’0)""’(0’0)’ (xmtn)’(zn+1’tn+l)'")’
the right term of this inequality is simply U ((Xy,t), (g 415t 41)yer:) OF

U,(S"(w)) with S® the n® iterate of the shift S.

Finally we get that

Un+p (w)Z U, (w)+Up (s® (w))
The sequence ( U, ), 5, is thus super additive and the shift S is associated with

a product measure so Kingman’s super additive theorem ensures the a.s. existence

of a limit for the sequence ( )n >0 []

We now prove an intuitive result on this throughput:




Proposition 2.4

If u is stochastically larger than v and inf {q(y)/y<z}<p(z) then p(n,p)<p(v,q).

Proof

Since pu >* v we can couple the two probabilities on [0,1], that is we can
construct a measure Q on [0,1]> such that its first (resp second) marginal is u

(resp v) and that it is concentrated on { (x,y)/ x>y}

Denote now by (X;,Yy),..,(X,,Y,) ».. a sequence of i.i.d. random variables

with distribution Q. In particular it satisfies X,,>Y,, a.s. for all n>0.

Besides we can choose a sequence of i.i.d. exponential (mean one) random

variables (7,),50 and set Tn=—1—-— T,

r(X,) "

(resp S,= T,

) w) for the
n

residence time of the X, (resp Y,). The result follows from the coupling lemma.

O

3. Existence and uniqueness of a stationary probability

In order to prove existence and uniqueness of an invariant measure for our

process we will rely on the theory of ¢-irreducible Markov chains (see [R]).

A natural measure that will appear in the sequel is ¢(dn,dr) defined as fol-

lows; for F a bounded measurable fuﬁction on M, xR 4,
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JF(n, r)g(dmdr)i= 33 E( F(33 8x, Xpu) (s, <1<5,.9)

n>1 =0

n
with §, =31 X,
i=1

which is the measure giving the distribution of (n, R) starting with an empty

bin, immediately after time O.

We will work with the discrete time Markov chain (the skeleton of our con-
tinuous time Markov process) obtained by considering the state of the process at
each departure time. Its successive states will be denoted by (7,,R,),. Its transi-

tion probability P((n,R), (dn,dr)) satisfies the following easy estimate:

Set A,"={ v€M, /<1, v> <gand<p,y> <n} and A=A,% If <1, n>=k

then there exits a constant a(k,q,n,m,R) such that

P5*((n, R), (dv,dr)) > ag(d~, dr) (3.1)
on A ".

This result follows from observing that the probability that all the k+1 ele-
ments of (n,R) are processed before any new item might be processed is bounded

away from 0.

The former inequality ensures ¢-irreducibility which we recall means that for
any set A such that ¢(A)>0, for any (n,R) there exists a n such that
P*((n,R), A)>0. We will now prove one result on existence and uniqueness

under the hypothesis that the items leave the bin with a minimum rate:

Theorem 3.1

11



‘If the function p(z) is bounded below by ¢ >0 then there exists a unique invariant
probability measure m(dn, dr) for the continuous time process . Moreover the

process is ergodic and for any bounded measurable function F, we have P a.s.

T ‘
. 1 .
Tl—lfl-:oo—T 0_]'F(na, R, )ds=[F (n, r)m(d n,dr)

Proof

Because of the ¢- irreducibility, the Markov chain is either transient or

recurrent.
If it were transient there would exist an increasing sequence of measurable

+o0
subsets F,, such that M, xR = |_J F, and for all (n, R) we would have:

n=1

G(n,R; Fy)= 53 P*((n, R), Fy)<+oo

n=1

Now given any A, ", there exists a k such that F MA,"= A satisfies

G(n,R; A)<+o00 and ¢(A)>0.

But this implies that for all p we have

+00>G (n,R; A)>G(n, R; Aploy p b(4)

since in the particular case where p is bounded below the bound « in (3.1)
becomes uniform on A,. Hence any A, is visited only a finite number of times.
Theréfore, since on A, the total rate <p, n> is larger than qxc , we must have

that almost surely

12



lim <p, n,>=+0c0
n—+oo0

But this clearly implies that for our continuous time process the mean

throughput is a.s. infinite'which is a contradiction with proposition 2.3.

Therefore our Markov chain is recurrent and there exists a unique invariant

measure m (up to a multiplicative constant) for the discrete time skeleton .

We now want to exclude the case of null recurrence that is, when m has an
infinite mass. If this were the case, one would have as above a set A such that
ACA,, and 0<m(A)<+oo. By irreducibility we also have #(A)>0. Hence for all

k

+oo>m(A)=mP"(A) > m(Ag) ey, $(A4)>0
Therefore by Jain-Jamison’s theorem [R] P"((n,R); Ay) tends to zero as
n—-+o00. But in this case

1 N k
lim — P*((n,R); A;)=0
N-L+oo N nz=31 ((77 ) iL=J1 l)

k
so that for any k the proportion of time spent by 7, in U A; tends to 0. This

i=1

also implies that the throughput is infinite.

Thus the discrete time skeleton has a unique invariant probability measure
v(dn,dr) and the (unique) invariant measure for our process is then proportional

to

13




This measure has a finite mass since <p, n> >e¢ if nEM,. The last asser-

tion of the theorem is an application of the ergodic theorem for recurrent Markov

chains (cf [R]). []

Corollary3.2

Under the assumptions of theorem 3.1, for any bounded borel function f on [0,1],

1
J<f > m(dn) = p, [ piaa)
o p(z)
Proof
For aﬁy t>0,

t

1 1 1

7f<f My >ds =3 F(Xp) Toliu 41asty + T2uf (Xa)(t-To)l(y, <t <U.+T.)
0 n n )

It is easily seen that the last term converges a.s. to 0 as t goes to +o0, the equal-
ity is then a consequence of theorem 3.1 for the R.H.S. and of the law of large

numbers and the definition of p, for the L.H.S. []

In particular the mean occupied length of the unit in steady state is

Pu Of;'(z—)#(dz)-

4. An explicit formula for the constant rate

14



For the remaining paragraphs we will assume that the processing rate p(x) is

constant (say one). We have the following result:

Theorem 4.1

The invariant probability measure m for the process ( ny,R, ) is given by the for-

mula, for any bounded measurable F function on Mp xR,

+o0 1 "
F(n, y)m(dn,dy)= T EF (XN bx, Xnpn) 1 o
JE imldndi=e) 35 5 PP 6, X 10

where ¢ (1) 1s a normalizing constant .
Proof

Recalling the form of the generator, it is enough to prove that m.0 =0 j.e.

for any function F, to prove the identity

to0o 1 n +oo- n+p
— E[F( 3 s+ X 6x,» Xnyp+1)X
n=1" i{=1 p=o i#i 1<j<n j=n+1
1 n n4l ntp nto41 ]
{E X,<1< 2 X, P X+ 3 X, <1< 2 X}
i=1 i=1 I#4,1€5<n i=n+1 i=n+1
3 BIF (33 b5, Xo)
= F X" +1 1 n a1
=1 1=1 " {2_31 X, <1< "‘;1 X}

n
with the convention > =0.
n+1

Since our variables are i.i.d. we can rewrite the left hand side of our identity to

be proved as :

15




+00 +00

n-1+p )
2 X E[F( 30 6xy Xnip) 1 (8,.4Xe<1<So+Xo, Sappasl<Sapp})
n=1p=0 i=1

or changing variables in n and p:

+00 n n
3 E[F (3 bxy Xn41) 1 (s.<1<8,0% (2 1 (8,4Xe<1<S10txo) |-
i=o

n=1 1=1

Our identity is proved, the last factor being identically 1 on the subset

{S,<1<S8, 4} [

Since ¢(u) is a normalizing constant it can be easily computed by taking
F=1 and we obtain
a4 tx 1
cW?=% L P(S,<1<8,,)
n=1 n
Taking F(n,y)=<1,n>=N which is the departure rate (also the number of
items in the bin), thus

p(r)=c(u)
hence the

Corollary 4.2 (formula for the maximal throughput)

p(r)=—2 1 - 1 1
E%P(SHS1<SH+1) E;ﬁP(Sn>1) E(Til_) (4.1)

where N= sup {k/ S <1 } is the time spent by the random walk (Shn)np1 below

If p is the uniform distribution on [0,1] , it is well known that the density of S,

16



n-1

thus p(u)=~—1—- which is & 1.392 . Using theorem

4
(n-1)! e-2

z—
4.1 it is easy to get the density h of the occupied length of the bin, h(x)=-(£—1)-.

(e-2)

restricted to [0,1] is

Remark
If p, is the total processing rate when n items are present in the unit, the

method can be extended to give the formula

1
p(p)= pac N |
32— P(8,51<8, )
n=1 n

In particular if at most k items can be processed at the same time we obtain,

1
LA | 1
E " P(S,<1<8,,) + X P(Sy41<1)

p(u) =

The drawback of the formulas (4.1) is that the estimation of its components
related to the random walk (S, ), 5, is almost always impossible. In the next sec-
tion we will derive some bounds on the throughput using only simple functionals
of the distribution u. We finish with a simple but important proposition which
will be used in section 7, it will permit to compute numerically the throughput in

most of the cases.

Proposition 4.3

If p has no atom and j(y f ey (dz) denotes the Fourier-Laplace transform

of u then,
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p(p)'=e* lim fZRe 1___(__1211 log(1-p(y+ia))e™ ) d~

t—+400 0 +'a

with Re(z) real part of z and a>0.

Proof
®1 . . .
If we set f(x) = 33 - P(S,<x<8,,;), then f is a continuous function
) n=1

bounded by 1, thus F(z)=f(z)e™®* 1 _(x) is square integrable. Now if we
remark that the Fourier transform of f is —(1_—:"511)- log(1-£()) and that f(1) is

p(u) , Fourier inversion theorem applied to F finishes the proof. 0]

5. Some bounds on the maximal throughput

An immediate consequence of Corollary 3.2 is

Proposition 5.1

E(X,)
(f zu(dz)) ‘

We now proceed to proving lower bounds on the throughput. For this we

introduce the relativized measure

=2 (@) ¢ u(dz)

where Z (e) is the normalizing factor —

(fe**p(dz))
1s



Proposition 5.2

The family of E L satisfies the tnequality :
Bo N

B, L )<E ,,a( )+(q-1) fE N "’h%)—dh

Jor all 4> s=inf{a / P(X>a)=0 }.

Proof

We start from the formula
E“a(easN+l 7 (a)N+1)=1
which follows from the fact that N+1 is a regular stopping time for the exponen-
tial martingale (e®S= z ()" )as1

Multiplying both sides by Z’(e)Z(a)2e " and integrating, we obtain the iden-

tity

X +00
‘E('y—):’l- = [ e E(X,e**)do
0
+00 _
= [ E(e*>™ Z () 2'(a)e")d a
0

. +o0 S
=—E(%)—- fE[—(—N;Il“_'Y) e(Sner) g (@)Nld a

If we notice that Sy_; > 1 a.s. then,
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X +o00 1 . '
B(R)SECRH0AD) [ By ()™ B (e da @

Now taking u, instead of u, we have the same formula and

Z (a+ap)

aXyy_
B = (a)

HBoy

This bound can be used iteratively starting from any a priori bound.An easy
a priori estimate is p(u)>k if the measure u is supported by the interval [0,%])

In particular we obtain

Corollary 5.3

The mazimum throughput satisfies the inequality

p(n)>sup{ 11 /4>1}

6. Some properties of the throughput, analysis of examples

1) Continuity properties of Py

The space of distributions on [0,1] will be endowed with the weak topology,

that is p,—u iff [f(z)p,(dz)— [f(z)u(dz) for any continuous function f on

0,1].

Proposition 6.1

20



, +oo _
The function p—p(u) s continuous at every point py such that ( 33 we"){1}=0,

n=1
i.e. if the renewal measure associated with py has no atom at 1 (with u,® denoting

the n-th power of convolution of u).

Proof

The assumption x,"{1}=0 ensures that u—P ,(S,>1) is continuous at u,
according to a classical theorem. Then the second formula of Corollary 4.2 and

Lebesgue ’s theorem are applied to conclude. ]

2) Behavior when u converges to 6,

This is of interest because the size of the items is in general small compared
to the size of the storage unit. As in 1) it is easy to prove that the throughput

converges to +oo when p—6,. And if the distributions are shrunk then p(r)

. 1
tends to infinity proportionally to ————:
E(X,)

If (X,)nxo are i.i.d. random variables on [0,1] with distribution p , z € ]0,1] and

p, denotes the throughput associated with the sequence (2X,) n>o then

limzE (X,)p,=1.

z—0

According to corollary 5.3 and proposition 5.1,

using Lebesgue ’s theorem we get that zE(X)p,—1 as z—0.

21




" 3) The case of the uniform distribution on an interval [a,b]

Using Fourier inversion formula of proposition 4.3, numerical results are

given at the end for various a and b.

Let (X,)n>0 2 sequence of ii.d. random variables uniformly distributed on
[0,1], then (2a(X,~a+1/2)),>o are uniformly distributed on I,=[1/2-a,1/2+a].

If p, is the throughput associated with this sequence, then we have

Proposition 6.2

The mapping a —p, s non decreasing on [0,1/2] with

1 .
rp=T and lim p,=4/3.

a—0

Proof

Using again corollary 3.2 we have,

+
8

1

1= - 3 a(Xi—a-
iy P(X 2 (ima-1/2)>D),

pa""

\g|

(X

n=

+00 — _
1 P(Sn>1 n(1/2 a!)
n=a n(n-1) 2a

We deduce that a—p, is non decreasing. For a=1/2 we have the uniform

distribution on [0,1] which we have already seen and

. . too
lim p,'=1/4+ 3" —=3/4
a=0 k=3

=3 n(n-1)

3

22



In fact 4/3 is the worst throughput for symmetrical distributions:

Corollary 6.3

If 1 is a symmetrical measure around 1/2 then 4/3 <p(u)< 2 and the bounds are

the best possible.

Proof

Because of the symmetry around 1/2, P(S 9>1)<1/2, thus

p)1=% —2 P(s, >yt R — 1y
nee n(n-1) R nes n(n-1)

Therefore the infimum of the throughput on the symmetrical distributions is
4/3. Finally 2 is an upper bound according to proposition 5.1 and it is achieved

for u=6/,. ]

Remark
If we consider all the distributions with expectation 1/2 then 1 is the infimum of

the throughput (consider un=(1——::)6(1 W1 +l6 1 as n—+o00).

2 2n n2n

7. Numerical results

a)Throughput for uniform distribution on [0, a] O<a<].
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a throughput | bound (5.3) | bound (5.1)
0.05 39.51 38.66 40.00
0.10 19.40 18.65 20.00
0.15 12.69 11.98 13.33
0.20 9.34 8.64 10.00
0.25 7.32 6.63 8.00
0.30 5.98 5.29 6.66
0.35 5.01 4.33 5.71
0.40 4.28 3.60 5.00
0.45 3.71 3.04 4.44
0.50 3.29 2.58 4.00
0.55 2.90 2.21 3.63
0.60 2.54 1.89 3.33
0.65 2.26 1.62 3.07
0.70 2.04 1.38 2.85
0.75 1.87 1.17 2.66
0.80 1.73 1.00 2.50
0.85 1.62 1.00 2.35
0.90 1.53 1.00 2.22
0.95 1.45 1.00 2.10
1.00 1.39 1.00 2.00
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"b) Throughput for the distribution concentrated on 1 /4, 1/2, 3/4 with parameter

r the weight of 3/4 and mean size a.

-12
ri+(-16a-2)r3+966%r2+(-256a3+96a%-4) r +256a*-256a3-+96a2-320 +2

pla,r)=

a=0.5
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4.0
0.3

0.8
0.

0.6
0.5

c¢) Mean occupation of the bin for uniform distribution on [x-1/10, x+1/10],

1/10<x<19/20.

— : ; : Y A A i A A 3 jl?
0Af 0.74 0.23 9.26 0.3  0.3% 0.63S 0.525
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