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NUMERICAL SIMULATION OF 3-D FLOWS WITH
A FINITE ELEMENT METHOD

SIMULATION NUMERIQUE D’ ECOULEMENTS 3-D PAR
UNE METHODE D’ELEMENTS FINIS

Vittorio SELMIN

. INRIA Sophia-Antipolis
Avenue Emile Hughes
(Anc. Route des Lucioles)
Sophia Antipolis
06565 VALBONNE

Abstract

In this paper, we present 3-D Euler calculations by finite elements over unstruc-
tured meshes. The schemes which are used to perform the calculations are formu-
lated within the framework of the Taylor-Galerkin finite element method. We have
tested an artificial viscosity method and a TVD method to damp the oscillations
which appear near the discontinuities. We also introduce a local mesh refinement
technique. Finally, results of the numerical computation of transonic and supersonic
flows are presented.

Résumé

Dans ce rapport, des calculs d’ écoulements tridimensionnels régis par les équations
d’ Euler sont présentés dans le cadre d’ une méthode d’ éléments finis non-structurés.
Les schémas utilisés pour effectuer les calculs sont construits un utilisant la méthode
Taylor-Galerkin des éléments finis. On a testé des méthodes de viscosités artificielles
et des méthodes TVD pour réduire I’ amplitude des oscillations apparaissant prés
des discontinuités. On présente aussi un méthode de raffinement local du maillage.
Finalement, des exemples numériques concernant la résolution d’ écoulements tran-
soniques et supersoniques sont présentés.
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I. Introduction

The numerical solution of compressible flow problems has received much atten-
tion over the past few years due, to a large extent, to the interests of the aerospace
industry. The solutions of such problems are characterized by the appearance of
discontinuities, such as shock waves, in the flow field and a major topic of attention
has been the development of numerical techniques which are able to adequately re-
solve such phenomena. Nevertheless, there is an ongoing interest in the application
of unstructured grid finite element methods to the solution of this problems. In fact,
this methods can take into account arbitrary geometries, including in particular the
singular characteristics of an aircraft or a space shuttle.

In the following, we report on a finite element method for the solution of 3-D
compressible flows. This method intends to combine the advantages of a first-order
scheme, which produces no ripples near discontinuities, with those of a second-order
one. These two schemes are formulated within the framework of the Taylor-Galerkin
finite element method|[1]. The difference between the two schemes is a discretization
of a Laplacian operator which uses the dissipative effect of the well-known mass
matrix operator of the finite element formulation. As shown previously in (2], using
tetrahedral elements, the dissipative operator constructed on an element can be
distributed over its sides which will be subsequently named segments. Thus, we can
replace the element contributions to the discretization of the dissipative operator
by segment contributions. The interest of the segments relies in the fact that being
one-dimensional they can be use to generalize one dimensional methods (such as
TVD methods for example).

An outline of the report follows. In Section II, we present the Euler equations
and a very brief description of the finite element spatial discretization; then, in
Section IIT, we discuss the first- and second-order schemes. In Section IV, we describe
an artificial viscosity method and a flux limiter TVD method. In Section V, a local
mesh refinement method is introduced. Finally, in Section VI, numerical results of
the computation of transonic and supersonic flows are presented.
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II. Mathematical modelling

1. Governing equations

The conservative law form of the Euler equations in the three-dimensional space

is given by :
oU  OF(U) A oG(U) @8H(U)
- + + +

=0 1
ot oz . dy dz (1)
in which
P pu pv pw
puU pu,2 +p puv puw
U=| pv , F = puv ,G=1| pv2+p H= pvw
pw puw pvw pw2 +p
e u(e + p) v(e + p) w(e + p)

‘where p is the density, V= (u,v,w) is the velocity vector, e is the total energy per
unit volume and p is the pressure. We assume that the fluid satisfies the perfect gas
law : . ) .
v+ vt w

p=(-1(e~p ——)
where + is the ratio of specific heats (y = 1.4 for air).
Let 4, B and C denote the Jacobian matrices F(U)/8U, 8G(U)/dU and
0H(U)/dU, respectively, Eq.(1) can be written in the non conservative form :

oUu oU aUu oUu
N +A(U)—a—$- + B(U)— +C(U)5; =

dy 0

2. Finite element approximation

In order to discretize the continuous problem, the flow region is imbedded in a
bounded polygonal domain 2 whose boundary is denoted by I'. A tetrahedrization T
with charateristic mesh spacing % is introduced on 1. The vertices of the tetrahedra
define a set of computational nodes, S , where the numerical solution of (1) is to be

II. Mathematical modelling 2



computed. For each node S;, a piecewise linear basis function Ni(z,y, 2) of support
£}; is introduced where ; is the union of all the elements Tf for which the node S;
is a common vertex. It is a first degree polynomial on each element T} of T which
takes the value 0 at all the nodes except S; where N;(zi,y;,2;) = 1.

Any scalar function u(z,y,2) on N can be approximated by :

wh(2,9,2) = Y Nilz,y,2) u(zs, v1, 23)
t

where the sum is over all the nodes of S. In practice, for a given (z,y, 2), the sum
involves only four terms :

4
uh(xay) = ZN{(:C, Y, Z) u(zi’yiazi) ’
=1

namely those corresponding to the basis functions N; associated with the vertices
of the tetrahedron containing (z,y, 2).

Fig.1: Boundary of the computational domain

3. Boundary conditions

In the sequel, we consider domains of computation related to external flows
around bodies ; in Fig. 1 the body is represented by an airfoil which limits the do-
Mmaii of computation by its wall I's and a second(artificial) boundary is introduced

I1. Mathematical modelling 3



to represent the farfield boundary denoted by To..
We assume the flow to be uniform at infinity and we prescribe :

cosa cosf3
—_— . 1
Poo =10 Vo = sinf Poo = ————M2
sina cosf 7Moo

where a is the angle of attack, 8 is the yaw angle and M, denotes the free-stream
mach number.
Finally, on the wall ', we use the following slip conditions :

V.®=0

where 7 indicates the outward unit vector normal to the boundary I' =T, UTp.

II. Mathematiccl modelllrg 4



II1. First- and second-order finite element schemes

1. Second-order scheme

Eq.(1) is discretized using a finite element version of the Richtmyer scheme(3].
For this scheme, we replace the following Taylor series expansion in the time incre-

ment At : sUn o
1, ., n
ot + zAt otz ’

Urtl =p» + At (2)

by the two-step algorithm_ :

urtd —gn g 1ar OY
2 ot
Un+1 — Un+ At 5

where supefscript n is the time level so that t® = nAt and U™ = Uz, y, z,t"). Note
that the expansion (2) is basic to the classical Lax-Wendroff scheme.
Now, replacing the time derivative from Eq.(1), a Richtmyer two-step generalization
of the Lax-Wendroff time differencing is obtained
1 oF™ 9G™ OQH"
Unts = U™+ ZAt

’ + 2 ( Oz + dy + 0z )
OF"+3 oGr+i OH™t 3

dz + dy t dz )

in which F* = F(U"), G* = G(U™) and H" = H(U"™). Egs.(4) are subsequently
discretized in space as follows : '

(4)

Urtl = un 4+ At (

1.1. The first step : predictor

For each tetrahedron T of 2, we compute

~ 1
Unts(T) = —— /U"dﬂ—/ F"&, + G™ky + H"k,) d 5
0 = s . (P4 Gy B do) (9)
The result U"+3 of the predictor phase is a constant function by tetrahedron (finite
e.ement o or finite volume). The notation (kzy Ky, k2) indicates the outward unit
vector nermai to 7.

II1. First- and second-order finite eiement schemes 5



1.2. The second step : corrector

The second step of Eq.(4) is recast in a weak form according to the weighted
residual formulation and the spatial approximation is performed using the standard
Galerkin finite element method in which the weighting function is chosen to be the
basis function N;(z,y, 2).

The equation obtained in this way can be written in the form

/ N; U™ldn = / N; U"dQ + RH} (6)
Q Q
in which
=1y ON; ~ 1. ON; ~ o1, ON;
no__ nt+ 3 L4 n+3 t nt3) 0%
RH +At/ﬂ{F(U )Gy + GO S+ m@m+ )2 yan

(7)
_ At / { F(U)n, + G(U)ny + H(U)n, }dT

where the boundary terms contain the physical boundary conditions (see section on
the numerical examples). Since the left-hand side of Eq.(6) involves values of the
variables for all the nodes lying in 1, the resulting system is, by nature, implicit.

2. First-order scheme

If the consistent mass matrix is diagonalized(or lumped), i.e. if one introduces
the approximation

/N,- U"+1dn—+/ N; Urtlda
Q Q

in the left-hand side of Eq.(4) (but not in the right-hand side), the following first-
order accurate scheme is obtained

v as

/ N; UMldn = / N; U"dQ + RH? (8)
JQ o

where Ul = U(z;, i, 2i,nAt) .
This scheme can be interpreted as a second-order approximation of a parabolic
equation of the form

.
U OF 3G  0H  h?

I
A AT A A SN
ot "5z "oy T a5 " eas AU
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where A is a laplacian operator.
The first-order scheme can also be implemented by means of a splitting-up proce-
dure. In fact, Eq.(7) is equivalent to the following two-step scheme :

{ JaN:i U*dQ = [, N; U"dQ + RH?

9
JaN: UM dQ = [ N; U*dQ )

Notice that the diffusion step introduces only a real multiplicative coefficient into
the amplification factor with respect to that associated to Eq.(4) and do not disturb
the phases.

3. Structure of the dissipative effect of the first-order scheme

3.1. FElement contribution

The dissipative operator of the first-order scheme at node S; can be written as
DiU; = / N; (U - U)dn (10)
Q;

This term is composed , in fact, of the contribution of all the elements Til for which
the node S; is a common vertex :

D;U; = Z Df- U; (11)
1
where D} U; = [ N;(U — U;)dQ.
T! ’

3.2. Segment contribution

As shown previously in [2], the contribution of the element can be distributed
over the segments joining two adjacent nodes. Denoting by Sk1, Sk and Sks the
three other nodes of the element T}, D! U; can be written as :

D; Us = Kja(Ukr = U3) + Ky (Usz — Us) + Ky (Uks — U5)
where Kfj = : N;N;dQ.
Using this dec:fﬁposition, Eq.(10) becomes :
DU; = Ki(Ux — Uy) (12)
k

where the sum is over all the nodes surrounding the node S; and K;j, = Z KL .
!

IIX. Firet- and secomd-order fnite eloament schemes ‘ 7



4. First-order scheme with modulated dissipation

The dissipation term (12) of the first-order scheme can be modulated by intro-
ducing a parameter d, 0 < d < 1. Two different schemes are obtained depending on
whether the one-step or two-step form of the monotone scheme is started from .

4.1. One-step scheme with modulated dissipation

/ N; Uin-Hdﬂ = / N; U'dQY+ RH! + ZdikKik(Ul? —-U) (13)
Q Q .
In the case d;x = 0, we obtain a Richtmyer type scheme[3].

4.2. Two-step scheme with modulated dissipation

fQ N; U*dl = fn N; U™dQ + RH!
Jo N UPTHdQ = [o N; UpdQ + Y dae K (U — U?) (14)
k
In the case d;x = 0, scheme (6) is obtained.

For the latter two schemes, it can be useful to introduce the artificial viscosity
operator

AD; U; =) Dy U; (15)
k

where
D; U; = di Kix (U — Us) (16)

IIT. First- and second-order finlte element schemes 8



IV. Numerical methods

1. Artificial viscosity method

The solution obtained with second-order schemes suffers from dispersive ”rip-
ples” particularly near discontinuities whereas the first-order scheme produces no
ripples but suffer from excessive numerical diffusion. The concept of artificial viscos-
ity consists in modulating the effect of this dissipation by means of the parameter
d. This coefficient may be O(1) near discontinuities and O(h®) in the regions where
the flow is "regular” to preserve the accuracy of the second-order scheme. Hence, at
the discontinuities, the scheme is essentially the non oscillatory first-order scheme.
Of course, the parameter d must be a function of a sensor which recognizes discon-
tinuities in the flow.

An effective sensor of the presence of the shock wave can be constructed by
taking the second derivative of the pressure. Letting the nodes S; and Sk be the
endpoints of the segment {tk}, we introduce the quantity

_ Pk — 2pi + pix

= 17
" ok + 200 + pis (17)

- where .
[—
Pis =pk—2Vp;- 7 (18)

is the pressure extrapolated in the direction 7" = (zk — z5; 9k — Yi; 25 — 2;) from the

"node S; and Vpi is the gradient of the pressure calculated at this node. Similarly,
we define 9y +
Pk« — 4Pk T Di
di = 19
Pk*+2pk+Pi| (19)

where
- —
Pex =Pi +2V pi - 7 (20)

Note that d; and dx appear to be evaluations, at nodes S; and Sk , of a non
dimensional second order derivative of the pressure in the direction .
Finally, the coefficient of artificial viscosity d; is expressed as

dir = x max(d;,dk) ~(21)

IV. Numerical methods 9



where x is an adjustable parameter. Here the quantity d;x is maximum on both
sides of a shock but vanishes inside.

The disadvantage of the artificial viscosity methods lies in that they introduce an
adjustable parameter whose value is not always simple to determine. In the next
section, a parameter-free method will be presented.

2. Flux limiter symmetric TVD method

We can obtain second-order TVD scheme (without any adjustable parameter)
using the following strategy :

i) Locate the place where the second-order accurate scheme produces oscillations
ii) Insert there the maximum dissipation(— monotone scheme)
iii) Reduce or (compensate) the dissipation in the other parts of the flow .

In the one-dimensional case, the coefficient of artificial viscosity d. ( related to
an element) was evaluated using the variations of a sensor ¢ over three contiguous
elements. In the multidimensional case, we work with the segments and , using the
extrapolated points {s+} and {k*} , we construct the following variations :

BDiv g = ¢Gi—Gin 5 Aik ¢ = qk—Gqi; Dke § = Qrs — Gk

where ¢;+ and g are determined by equations similar to Eq.(17) and Eq.(19) .
Denoting by r* and r— the ratios :

+_ Ak g - _Aixg
o= A

Aikg '’ T A g
we define
0 if r* <0 or r~ <0 (extremum)
di =
tk { 1-B(rf,r;) otherwise (22)
where )
o = min(|Ak g, | Ak gl)
° maz(|Aik ql,|Akx q])
o = manllAi gl |As gf

s =

)
maz(|Ais g, |Aik ¢])

and B(rf,r;) = min|B(r}), B(r7))].
The function B(r) is a limiter function that takes values into the interval [0,1].
Some examples are

iy 1) (wvan Leer) (23)

IV. Numerical methods 10



B(r) = min(2r,1) ( Roe's superbee ) (24)

Our own numerical experience indicates, that if the conservative variables are chosen
as sensor, the solution presents oscillations in the non-conservative variables such
as the pressure. A better choice is to take an unique sensor for the whole system
of equations, so that the dissipation coefficient is the same for all the equations. In

—
w .y .
the examples illustrated later, the sensor is the Mach number(M = u) which is

a variable very sensitive to oscillations.

IV. Numerical methods 11



V. Local mesh refinement

The use of a local mesh refinement technique is interesting for the following
reasons:
- At present, simulations utilizing the Euler equations model are still onerous in
terms of CPU time per degree of freedom and in terms of memory storage. It can
be of crucial importance to optimize the locations as well as the total number of
mesh points. :
- The truly interesting results are located on a relatively small part of the compu-
tational domain: basically on the airfoil of an airplane wing.
- The flow contains local singularities such as: shocks, stagnation points, slip surfaces
or wakes. Local mesh refinement techniques for the solution of the two-dimensional
Euler equations and using triangular elements have been proposed among others
in [7]. We describe shortly in the following how to apply such a technique in a
three-dimensional context with tetrahedra.

1. Local mesh refinement procedure

- We intend to introduce in an initial tetrahedrization a preferably small number
of additional mesh points. The introduction of the new mesh points is decided
automatically by performing a test on every element that relies on one of the criteria
defined further. We proceed in the following way.

1.1. First sub-gridding

A pointer indicates for every tetrahedron whether it needs to be subdivided into 8
sub-tetrahedra, according to the criterion employed. It remains to construct a finite
element tetrahedrization containing:

1 - The sub-tetrahedra coming from the tetrahedra divided into 8.

2 - Triangles identical to those of the initial mesh.

3 - Triangles cut in 2, 4 or 8, permitting to patch tetrahedra of type 1 to tetrahedra
of type 2.

1.2.  Projection of the new boundary points

The points along the body are positioned using the equation of the body.

Y. Locgl meskh refinement 12



1.3. Reorganization

At the end of the preceding step, the flow variables at each new point are set equal
to the mean of the corresponding flow variables at the end-points of the segments.
Then the complete topological definition of the mesh is reorganized.

2. Criteria applied for mesh refinement

2.1. Geometrical test

We can add nodes in regions of the computational domain using geometrical criteria
which do not depend of the numerical solution. For example, we can decide to
‘introduce nodes near a body using the criteria that all the tetrahedra which possess
at least one vertex on the skin of the body are systematically dividing into 8. In an
other way, for supersonic flows, we can know a priori the regions where the initial
flow is not perturbed and we can thus refine the other regions.

2.2.  Test on the numerical entropy production

We now search for a criterion that would diminish the error in the numerical solution
of the Euler equations and avoid to introduce unnecessary points. A measure of the
discretization error can consist in evaluating how closely the equation:

w2402 42 o (25)

in which s = _p; is a function of the entropy, is satisfied. Note that (25) is only true

when the flow is smooth, so that the quantity

is expected not to be small either if the approximation is not accurate enough or
near a singularity. In both cases, it is advantageous to locally refine the mesh. This
leads us to define a test for dividing the tetrahedra in which in the mean:

ds ds ds ds ds ds
> —_— —_— —_—
|u-—_+v—-+w— COEF Iua +'va 'i‘wazlmaz (26)

where
0s Os

ds
U=+ Vv — + W—|maz = maz|u£+v—+w——|.

. dz dy oz Ay 0z
The value of the parameter COEF is obviously problem-dependent.

V. Local mesh refpement 13



VI. Numerical experiments

1. Boundary conditions
As described in section (IL1.2), the boundary terms of Eq.(6)
At / (F(0)nz + G(0)ny + H(T)ns)}dT (27)
r

contain the physical boundary conditions. They are taken into account through the
vector U which is calculated partly from quantities depending of the “interior” value
U™ and also partly from quantities specified by the physical boundary conditions.
We precise now this procedure for the different families of boundary conditions
present in the solution of the Euler equations.

- For the wall condition : The vector U must satisfy the slip condition :

Ping + pinyg + pon, = 0 . . (28)

It is easy to see that only the pressure 5 corresponding to U is neccessary to evaluate
the flux vectors F(U), G(U) and H(U). Using the condition (28), Eq.(27) reduces
to the following expression :

0
png
~At / pny | dr (29)
r I—) N :
0

We choose the pressure § equal to the internal pressure :

p=p(U")

- For inflow and outflow conditions, including the conditions at infinity : We use
a flux sphttmg inspired by an upwind scheme[4]. This way, in Eq. (25) , the vector

111u‘..,i‘7 RN

K= 5)5, +G(U)ny + H{O)n,

VI. Numer.cal expc?!’men“.rf 14



is approximated in each node S; of the boundary by a vector K (¢) which is con-
structed in terms of the value of U at node S; and of conditions at infinity using
the flux splitting. For example,

K({) =ELU: + E_Uc

where
Ew = A(Uso)nz + B(Ug)ny + C(Uso)n 2

2. Numerical experiments

a) Shock tube problem : To illustrate the accuracy of the different schemes for tran-
sient problems, we present numerical results for the shock tube problem introduced
by Sod[5]. In this problem, an initial discontinuity in the thermodynamical state of
the gas breaks into a shock wave followed by a contact discontinuity and a rarefac-
tion wave. A finite element mesh of 909 (101 x 3 x 3) nodes is used and the initial
condition at ¢ = 0 is specified by the data

p=1.000; u=0.00; v=000; w=000; p=100 0<z<l
p=0.125; u=0.00; v=0.00; w=0.00; p=0.10 %<z§1
The profiles of density, velocity, pressure and temperature are compared with the

analytical solution at ¢ = 0.16.

In the numerical simulations illustrated in Fig. 2, the artificial viscosity method
is the least dissipative. Notice that, for this method, the oscillations are rapidly
damped using the two-step scheme (13) which generally gives a better overall ac-
curacy than the one-step scheme (12). Nevertheless, we note that the amplitude of
the oscillations is reduced, for the scheme (12), when the CFL number and con-
sequently the time step increases (The CFL number is a non dimensional number
defined by the following relation : CFL = AAt/h , where h is a characteristic mesh
spacing of the elements and X is an eigenvalue associated to the Jacobian matrices
A, B and C). This situation can perhaps be explained by the fact that the disper-
sion error decreases when the CF' L number increases in the case of linear problems.
The TVD method gives monotonic results at the shock but is more dissipative in
the regular regions of the flow.

b) Steady transonic and supersonic flows in a bumped channel : We now consider
the extension in 3-D of 3 probiem which has been proposed for the GAMM Work-
shop{8]. A channel of lengh 5, of depth 2 and of width 1 contains an obstacle of

VI."Numerical experiments 15



chordlength 1, whith the shape of a 4.2% thick circular arc. We use a triangular
finite element mesh from which a cut along the y-axis is similar of the 2-D mesh
proposed by the GAMM. The tetrahedrisation contains 4599 nodes and 17280 tetra-
hedra (Fig. 3). The behaviours of the different schemes are compared for M., = 0.85
(transonic flow) and for Mo, = 1.5 (supersonic flow). All the calculations are car-
ried out with a CFL number equal to 0.8 for the supersonic case and with a CFL
number equal to 0.6 for the transonic case. A local timestepping technique is used
to improve the convergence towards the steady-state solution. We present plots of
the following non dimensional numbers :
the pressure coefficient : Cp, = 2P =P the Mach number : M = @]

Pool| W oo |? ¢
and the entropy deviation : £ = (p/poo)/(p/p00)” — 1.

g

In the transonic case, the initial subsonic flow is accelerated on the body. A
supersonic region is shaped and a shock appears. There is a production of entropy
corresponding to the shock, which propagates to the infinity. Note that the solutions
illustrated in Fig. 4 have not completely reached the steady-state.

For the supersonic flow(see Fig. 5), two oblique shocks are formed at the edges
of the obstacle. There is two productions of entropy corresponding to the oblique
shocks. The sum of this productions propagates to the infinity.

In the case of the artificial viscosity method, the shocks spread out over two or
three elements, approximatively. The TVD method is more dissipative, not neces-
sarely near the discontinuities, but in the smooth regions of the flow.

c) Steady supersonic flow around a wing body : The last problem considered is the
steady-state solution of a supersonic flow (Moo=1.5) around a model of wing. Con-
trary to the previous problems, this one requires the solution of a true 3-D flow.
The equation of the skin of the wing is defined as follows:
0<z<1,0<y<1,z<y

z2=(1-z)[-a+ \/r2 - (f —0.5)?
where a = 2.95519, r = 2.99719 and f= % The maximal height of the wing is
0.042.

This problem is chosen to illustrate the local mesh refinement
example, we can refine the initial mesh (Fig. 6) near the wing using the criteria that
all the tetrahedra which possess at least one vertex on the skin of the wing are
systematically dividing into 8, as illustrated in Fig. 7. In another way, since the flow
is supersonic, the initial conditions are not perturbed behind the wing body. We
thus have divided into 8 all the tetrahedra from which the gravity center (z,,y,, 2g)
satisfics the following inequalities: )

Yg> 0.2, z,<02+y,

ko T
culiliyue., rofr
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This mesh is illustrated in Fig. 8 and is used to perform the computation of the
problem. The solution calculated with the artificial viscosity method is illustrated
in Fig. 9, after 500 timesteps. Two oblique shocks are formed at the edges of the
wing. The two shocks interact at the tip of the body to produce a third shock and a
slip surface. The numerical solution is thus used to refine again the mesh according
to criteria (26) with COEF = 0.1. The new nodes are principally introduced over
the skin of the wing and, particularly, at the shock’s location(see Fig. 10). Using
this refined mesh, we recalculate a new solution illustrated in Fig. 11 after 500
new timesteps. We note that the discontinuities are better located. Finally, we
present a solution calculated with the TVD methbd on the last mesh and using
the interpolated solution, obtained with the artificial viscosity method, as initial
conditions(see Fig. 12).

VEi. Numerica} experiments 17



VII. Conclusion.

In this report, we have presented 3-D calculations using either an artificial
viscosity method or a flux limiter TVD method. These calculations have been per-
formed over unstructured meshes which have been constructed using a local mesh
refinement technique. The artificial viscosity method appears to be the least diffu-
sive but introduces a parameter which is problem dependent. On the other hand,
the TVD method has not this disadvantage but it often adds dissipation in the
smooth regions of the flow.

Numerous subsequent studies remain to be done. For example, we can study
other type of sensors for the artificial viscosity method. We can also introduce,
in the code, characteristic TVD methods already described for two-dimensional
calculations in [2] and which appear less dissipative than the present TVD method.
Finally, we could develop codes using upwind schemes instead of schemes based on
a Lax-Wendroff type scheme with artificial diffusion added.
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Fig. 2.a : Shock tube problem. Artificial viscosity method. Consistent mass
matrix , x = 3.0 , CFL=0.550.



o Masse Volumique ) &Vitesse Horizontale

(T

Max = 1.000 Min =0.125

~Pression

oTemperature

: 4
Max = 1.000 Min = 0.100 Max = 1.178 Min = 0.690

Fig. 2.b : Shock tube problem. Artificial viscosity method. Lumped mass matrix,
X = 3.0, CFL=0.550.
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Fig. 2.c : Shock tube problem. Artificial viscosity method. Lumped mass matrix,
x = 3.0 , CFL=0.800.
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Fig. 2.d : Shock tube problem. TVD method. Consistent mass matrix , CFL=0.550.
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Fig. 2.e : Shock tube pr;)blem. TVD method. Lumped mass matrix , CFL=0.800.



Fig. 3 : Bumped channel , mésh.




Artificial viscosity method
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.6 ; Xx=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.450 MAX=0.800 DLTA=0.050

MACH-LINES : MIN=0.650 MAX=1.300 DLTA=0.025

)

ENTROPY-LINES : MIN=0.000 MAX=0.013 DLTA=0.001

Fig. 4.a : Transonic flow in a bumped channel. Artificial viscosity method.




Artificial viscosity method
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.6 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting
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Fig. 4.a : Continued.



Flux limiter TVD method
Limiter : Roe ’s superbee
Lumped mass matrix ; CFL=0.6
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.400 MAX=0.750 DLTA=0.050

MACH-LINES : MIN=0.675 MAX=1.250 DLTA=0.025

ENTROPY-LINES : MIN=0.000 MAX=0.012 DLTA =0.001

Fig. 4.b : Transonic flow in a bumped channel. TVD method.



Flux limiter TVD method
Limiter : Roe ’s superbee
Lumped mass matrix ; CFL=0.6
Local time stepping ; b.c. : Vijaya. flux splitting
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Fig. 4.b : Continued.
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Artificial viscosity method
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.350 MAX=0.225 DLTA=0.025

MACH-LINES : MIN=1.200 MAX=1.800 DLTA=0.025

7

ENTROPY-LINES : MIN=0.000 MAX=0.025 DLTA=0.001

Fig. 5.a : Supersonic flow in a bumped channel. Artificial viscosity method.



w

Artificial viscosity method
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting
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Fig. 5.a : Continued.



Flux limiter TVD method
Limiter : Roe ’8 superbeee
Lumped mass matrix ; CFL=0.8
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.350 MAX=0.200 DLTA=0.025

MACH-LINES : MIN=1.200 MAX=1.775 DLTA=0.025

ENTROPY-LINES : MIN=0.000 MA X=0.026 DLTA=0.001

>

Fig. 5.b : Supersonic flow in a bumped channel. TVD method.



Flux limiter TVD method
Limiter : Roe ’s superbee
Lumped mass matrix ; CFL=0.8
Local time stepping ; b.c. : Vijaya. flux splitting
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Fig. 5.b : Continued.



/\ Logl0 (residual)

+1

llllllllllllll

500 1000 1500 2000 iterations

O illIIlllIIIIJI|1]lll!lll1[llllll!lIIIIIIIIL{>

VIS. ART.

TVD

lII|||IIIII]lllIllIlllllllllillllll]]lllllll]llllll

Fig. 5.c : Supersonic flow in a bumped channel. Residual curves.



INITIAL MESH
NO MESH-REFINEMENT
NS=1056 ; NT= 4500

MESH : CUT CORRESPONDING TO x=0.0

MESH : CUT CORRESPONDING TO z=zmin

Fig. 6 : Supersonic flow past a wing. Initial mesh.



SECOND MESH
MESH-REFINEMENT ONLY NEAR THE BODY
NS=1305 ; NT= 5647

MESH : CUT CORRESPONDING TO x=0.0

MESH : CUT CORRESPONDING TO z=zmin

Fig. 7 : Supersonic flow past a win

: g- Refinement of the initial mesh using the first
geometrical criteria. '



THIRD MESH
MESH-REFINEMENT ONLY IN A PART OF THE INITIAL MESH
NS=3597 ;'NT= 17500

MESH : CUT CORRESPONDING TO x=0.0

= =

MESH : CUT CORRESPONDING TO z=zmin

rig. 8 : Supersonic flow p

ast a wing. Refinement of the initial mesh using the
second geometrical criteria.



Third mesh. Artificial viscosity method.

Sensor : second derivative of the pressure

Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.160 MAX=0.180 DLTA=0.020

/)

L

CP-LINES : MIN=-0.200 MAX=0.200 DLTA=0.020

v 2

Fig. 9 : Supersonic flow past a wing. Artificial viscosity method. Solution obtained
with the third mesh.




Third mesh. Artificial viscosity method.

Sensor : second derivative of the pressure

Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

MACH-LINES : MIN=1.340 MAX=1.720 DLTA=0.020

Yas/av.

MACH-LINES : MIN=1.300 MAX=1.740 DLTA=0.020

Fig. 9 : Continued.



MESH-REFINEMENT OF THE THIRD MESH
USE OF THE CRITERIA ; COEF=0.1
NS=5891 ; NT= 29857

MESH : CUT CORRESPONDING TO x=0.0

MESH : CUT CORRESPONDING TO z=zmin

#ig. 10 : Supersonic flow

ériteria (26) past a wing. Refinement of the third mesh using the



Third mesh with local refinement. Artificial viscosity method.
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.8 ; xy=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.220 MAX=0.200 DLTA=0.020

CP-LINES : MIN=-0.280 MAX=0.240 DLTA=0.020

Fig. 11 : Supersonic flow past a wmg Artificial

viscosity method. Solution obtained
after mcsh refinement.



Third mesh with local refinement. Artificial viscosity method.
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

MACH-LINES : MIN=1.300 MAX=1.760 DLTA=0.020

MACH-LINES : MIN=1.200 MAX=1.800 DLTA=0.020

W




Third mesh with local refinement. Artificial viscosity method.
Sensor : second derivative of the pressure
Lumped mass matrix ; CFL=0.8 ; x=4.0
Local time stepping ; b.c. : Vijaya. flux splitting

ENTROPY-LINES : MIN=0.000 MAX=0.015 DLTA=0.001

ENTROPY-LINES : MIN=0.000 MAX=0.023 DLTA=0.001




Third mesh with local refinement. TVD method.
Limiter : Roe’s superbee
Lumped massmatrix ; CFL=0.8
Local time stepping ; b.c. : Vijaya. flux splitting

CP-LINES : MIN=-0.180 MAX=0.160 DLTA=0.020

CP-LINES : MIN=-0.220 MAX=0.200 DL.TA=0.020




Third mesh with local refinement. TVD method.
Limiter : Roe’s superbee
Lumped massmatrix ; CFL=0.8
Local time stepping ; b.c. : Vijaya. flux splitting

MACH-LINES : MIN=1.320 MAX=1.660 DLTA=0.020

MACH-LINES : MIN=1.300 MAX=1.660 DLTA=0.020




Third mesh with local refinement. TVD method
Limiter : Roe’s superbee
Lumped mass matrix ; CFL=0.8
Local time stepping ; b.c. : Vijaya. flux splitting

ENTROPY-LINES : MIN=0.000 MAX=0.026 DLTA=0.001

ENTROPY-LINES : MIN=0.000 MAX=0.026 DLTA=0.001
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Fig. 13 : Supersonic flow past a wing. Residual curves.
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