N

N

How to characterize the language of ground normal
forms

Jean-Luc Rémy, Hubert Comon

» To cite this version:

Jean-Luc Rémy, Hubert Comon. How to characterize the language of ground normal forms. [Research
Report] RR-0676, INRIA. 1987. inria-00075877

HAL Id: inria-00075877
https://inria.hal.science/inria-00075877
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075877
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 676

HOW TO CHARACTERIZE THE
LANGUAGE
OF GROUND NORMAL FORMS

Jean-Luc REMY
Hubert COMON

JUIN 1987

HOW TO CHARACTERIZE THE LANGUAGE : e

OF GROUND NORMAL FORMS

COMMENT CARACTERISER LE LANGAGE DES

FORMES NORMALES SANS VARIABLE

PAR

JEAN-LUC REMY
ET

HUBERT COMON

H! !D PAPIER RECUPERE ET RECYCLE

Résumé : Les systemes de réécriture de termes fournissent aux
informaticiens un langage pour exprimer des définitions fonctionnelles sur
des domaines complexes. Dans un tel contexte, nous sommes confrontés au
probléme de caractériser les formes normales closes, ou sans variable,
puisqu'elles représentent les résultats des calculs. Faire cela permet de
tester la complétude d'une définition fonctionnelle (dans ce cas, les
formes normales closes sont constituées uniquement par des
constructeurs) ou de tester I'équivalence de deux définitions
fonctionnelles différentes (il est alors possibble d'établir une
correspondance biunivoque entre les formes normales closes).

Nous présentons ici une caractérisation des formes normales closes en
termes de grammaire, et un algorithme pour dériver celle-ci a partir des
membres gauches des régles de réécriture. Quand ces derniers sont
linéaires, la forme de la grammaire est particulierement simple
puisqu'elle est indépendante du contexte (a condition de considérer les
termes comme -des mots, écrits par exemple en forme préfixe). Donc nous
obtenons une procédure de décision pour la finitude de l'ensemble des
formes normales closes et nous sommes également capables de déterminer
les formes normales qui sont des instances, d'un terme linéaire donné. Les
idées qui se trouvent derriére les algorithmes sont trés simples et nous
les illustrons par plusieurs exemples.

Abstract : Term rewriting systems provide the computer scientists with
a language to express functional definitions on complex domains. in such
an area, we face the problem to characterize the ground normal forms
(whithout any variables) as they are the results of computations. Doing
that allows one to check the completeness of a functional defination (then*
the ground normal forms are built only with constructors) or to check the
equivalence of two different functional definitions (it is possible to
establish a ont-to-one correspondence between the ground normal forms).
We present here a characterization of the ground normal forms in terms of
grammar, and an algorithm to derive it from the form of the left-hand
sides of the rewrite rule. When the left-hand sides are linear, the form of
the grammar is especially simple as it is context-free when we consider
the terms as words, written for instance in prefix form. Therefore we get
a decision procedure for the finiteness of the set of ground normal forms
and we are also able to compute the normal forms which are the instances
of a given linear term. The ideas behind the algorithms we present are very
simple and we illustrate them by several examples.

How to characterize the language

of ground normal forms
by

H.Comon
LIFIA, BP 68,
38402 Saint Martin d'Héres cedex
~ France
Tel (33) 76514600 ext 5165

UUCP ...!mcvax!inriallifialcomon
and

JL. Rémy
CRIN, BP 239,
54506 Vandoeuvre-lés-Nancy cedex
France
- Tel (33) 83912128
UUCP ...!mcvax!inria!crin!remy
TELEX : NANCYUN 960646F

ABSTRACT

Term rewriting systems provide the computer scientists with a language to express
functional definitions on complex domains. In such an area, we face the problem to
characterize the ground normal forms (without any variables) as they are the results
of computations. Doing that allows one to check the completeness of a functional
definition (then the ground normal forms are built only with constructors) or to
check the equivalence of two different functional definitions (it is possible to

establish a one-to-one correspondence between the ground normal forms). ‘
We present here a characterization of the ground normal forms in terms of
grammar, and an algorithm to derive it from the form of the left-hand sides of the
rewrite rules. When the left-hand sides are linear, the form of the grammar is
especially simple as it is context-free when we consider the terms as words, written
for instance in prefix form. Therefore we get a decision procedure for the finiteness
of the set of ground normal forms and we are also able to compute the normal forms
which are the instances of a given linear term.The ideas behind the algorithms w

present are very simple and we illustrate them by several examples. ‘

L Introduction

In this paper, we are speaking in terms of algebraic specifications, since it
corresponds to our culture, but the reader can easily translate that in the functional
programming vocabulary.

In the initial algebra semantics [GTW78,Ber79] , the algebraic specification (S,X,E)
of an Abstract Data Type denotes the quotient algebra Ty g of the set of "ground
terms" Ty by the congruence relation =; generated by E. Working on or with this
quotient algebra makes necessary to have a "usable" definition of it. First, it must be
possible to decide of the equality of two terms. Usually, this is performed by
orientating the equations of E. If the resulting rules may be completed into a
canonical Term Rewriting System, then the equality of two terms is equivalent to
the syntactical equality of their normal forms. Unfortunately the canonicity of the
TRS is not sufficient for working on Ty g since the particular fact that Ty is an
initial model is not exploited. For example, the decision of the protecting property
[MGB86] and of the full definition property [Com86b] as well as the automatisation
of inductive proofs [HH82,HKi84,Pau84,LLT86,JK86,for example] and the proof
of the equivalence of two specifications [RV82] use the particular fact that we are in
an initial model. More simply, it is not obvious to answer to the question: is Typ
finite ? :
In this paper, we will assume that the TRS associated with the specification is
canonical (actually only finite termination will be needed). The set of ground
normal forms will be denoted by NF. In this way, the map which associates each
element of NF to its class is a bijective map from NF into Ty g - The problem is thus
to describe NF. We show first that NF is the solution of a fixed point equation and
thus may be viewed as a formal language. Actually, there are two ways to consider it
as a language : tree language (since terms are trees) and word language (if we look ,
for instance, at the prefix forms of the terms). Using then "inequations"[Com86a] ,
we transform the fixed point equation and get a "usable" definition of NF.

This definition may be viewed as a "compilation” of the definition of NF. Indeed, it
is then easier to check whether a term is in the language as well as to decide whether
a set of ground terms, described by a term with variables, contains (or not) an
element of the language.This last check is the " inductive-reducibility” property in
[JK86]. Then, though the decision of “inductive reducibility” spends exponential -
time in the general case ([KNZ86]), the expensive computation may probably be
done only once (computation of the grammar) . Then every new check of inductive
reducibility uses the grammar and may probably be done more rapidly.

Moreover, when the lhs are linear, the description of NF produced by our

page 2

algorithm is a context-free grammar. This is the main result in this paper (theorem
4.1). It is then easy to decide whether the language generated by a non-terminal is
empty as well as its finiteness.

Other results about the language of ground normal forms can be found, for
instance, in [G&B8S5] ; however, at our knowledge, no explicit way of computing
the grammar of the language was given until now.

In section 2 we give the relation satisfied by NF and which is the starting point of
our work. In section 3 we recall some results on inequation solving. In section 4 we
use this result for transforming the equation satisfied by NF and deriving the main
- result of the paper. Finally, in section 5 we give an algorithm for the reduction of
the grammar, an algorithm for the decision of the finiteness of NF and an algorithm
for the computation of the irreducible ground instances of a term t, when t as well as
every lhs of a rule is linear.

2. g;haragfgrizing the set of ground terms in normal form by a

fixed point equation

Suppose X isa given signature. Let T(X) denote the set of terms constructed on this
signature and the set of variables X. We write T instead of T(D). If te T(X), then
- root(t) denotes the operator at the root of t and Sub(t) denotes

- the empty set if t is a constant or a variable

- {tpen Sty if =11y, ... t). ‘
We assume in the following that "—" is a reduction relation associated with a
finitely terminating Term Rewriting System. Then NF will denote the set of ground
normal forms i.e. the terms of T which cannot be reduced using the reduction
relation "—".

Then a ground term t belongs to NF iff
(i) t cannot be matched to any lhs of a rule
(i1) every term in Sub(t) is in NF

When fe Z, let f(NF) denote the set {te T, root(t) = f, Vue Sub(t), ue NF}. Then the
above characterisation may be written: :
NF = Complement(LHS) N (U =f(NF))

Complement(LHS) denotes the set of ground terms which cannot be matched to any
lhs of a rule. Obviously, this set must be defined by another way. This is what is
done in section 3.

If tis a term, NF, will denote the set of all irreducible ground instances of t. Often,
when t is linear, the variables will be omitted when writing t. We will write for

instance NFy instead of NFf(xl, ..., XN
, page 3

Definition 2.1 (JK86)
A term t is inductively reducible iff, for every substitution o from T(X) into T, olt)
is not in hormal form. '

Note that NF; = & iff t is inductively-reducible.
The above equation may be rewritten, using these notations:

NF = U sNF; and NF; = Complement(LHS)~f(NF)

We show now how to express Complement(LHS) in such a way that the
computation with it will be easy.

Normal forms and in ion

In this section we show how to express the “complement” of the left hand sides of the
rules in terms of "inequations”. The concept of such inequations was introduced in
[Com86a). We recall the basic definitions.

Definition 3.1 ,
Let D be a subset of X, F a subset of T(X), a substitution ois a D-solution in F of
the inequation t#¢t' jff
-Dom(oc)c D
-oD)cF
- t and ot’) are not unifiable.
Such a solution is D-linear iff , for every linear term t in T(D), o(t) is linear.

Note that this definition of inequations is quite different, for example, from the
definition of inequations in PROLOG II [Col82] since t and o(t") must be not
unifiable (and not only different).

Definition 3.2
A substitution & is a D-solution in F of the system { t#u,1<i<n}iff

-Dom(c) cD -o(D)cF -for everyindexi, t; and o(u;) are not unifiable.

When F is omitted, it must be understood that F=T(X).

Proposition 3.3
- page 4

Let LHS = {1,,...l } denote the (finite) set of the left hand sides of the rules. Lett
be any linear term of depth 1 (i.e. t is a linear term of the form flxp..x,).

Thenu € NF, iff it exists a substitution & such that

(Du= o)
(ii) o'is a solution in NF of the system {li#1,1<i<mj.

Indeed, -ifu € NF,, then u=o(t) for some ¢ and, u being in normal form, it is unifiable
with no lhs of a rule.
- if u=0(t) and o is a solution in NF of the system {l; #t, 1<i<m]}, then u is not
unifiable with any lhs of a rule, thus no rule may be applied at the root of u.

Moreover, every subterm of u different from the root is in Im(o) since depth(t) = 1,
therefore every subterm of u different from the root is in normal form.

This proposition gives exactly the translation of the fixed point equation:
NF = Ute s (f{(NF) n Complement(LHS))

or, more precisely, translates the equation:
NF;=f(NF) N Complement(LHS)

Proposition 3.4
Lett = f(1},...,t,) be a linear term. Then, u € NF ; Hf it exists a substitution 0 s.1.

(1) u=0@) (ii) 8 is a solution in T of the system {l.#1t,1<i<m}

(iii) Vi, 6(t,) is in normal form.
This extends the proposition 3.3 to the case of linear terms.

The resolution of such inequation systems is performed by an "anti-unification"
algorithm [Com86a].
A normalized set of constraints is an ordered set of constraints {(x,# u), 1<i<m}
such that: Vie {1,...,m}, V I>i, x;€ X and x.¢ V(u).
We recall the main result:
Theorem3.5 _
Let C = {1, # ', I<Si< Kk} be an inequation system such that:
(YgaV)) N (v gqVity)) =D
- Vi, ¢'; is linear
Let D be the set of variables occuring in a right hand side of an inequation.Then,

there exists an algorithm which computes a set A of paifs (o,c) where o is a D-linear
substitution and c is a normalized set of constraints with, for every (x,u) inc,

page S5

V(u)cIm(c) and such that:

(1) Completeness: if 0 is a solution in T(X) of the system and 9 is linear, then
Joc)e A, Jwe 2, 06=wo0cand, Vi, o(x;) # a(uy),

(ii) Soundness: V8 € £, (Vi, O;) # 0(w;)) = 6o cisa solution in T(X) of the
system.

Such constraints arise only when the inequation system has non-linear lhs.

For a single inequation, the algorithm may be sketched as follows:
We solve inequations on sequences of terms; given two terms t and t'the solutions of t#t' are
the solutions of the multi-inequation <t> # <t'>: '
1- Replace U and V in U # V by the sequences U' and V' where the common parts are
removed. (SIMPLIFICATION). If a clash occurs, then return the identity.
2- If x is a variable which occurs only once in U remove it from U and remove the
corresponding term in V.
3- If some term in U is not a variable, then replace the correspc;nding variable in V by
all the possible constructions (SPLIT) and apply recursively the algorithm to each new
multi-inequation.
4- Every term in U is a variable which occurs at least twice. Assume that the first terms in U
are equal variables: ul = u2. Then apply recursively the algorithm to U-{ul }#V-{v1} and to
U-{u2}#V-{v2}. Add moreover the solutions of v1##v2.

We say that ¢ is a solution of v1##v2 iff 6(v1) and 6(v2) are not unifiable. (The two
definitions of inequations solutions could be put together into only one definition by precising
the set of variables D to include or not the variables of vl).
Vv1##v2 is solved using the following algorithm which supposes that v1 and v2 are linear terms
which do not share any variable (this is the case here):

5- If both sides are variables then return the constraint v1#v2.

6- If one side is a variable (v1 for example) and not the other side, then replace v1 by

all the possible constructions (SPLIT) and apply recursively the algorithm.

7-If v1 and v2 are both non-variable terms and if they have not the same root, then

return the identity (CLASH).

8- If v1 = v2 then return an empty set.

9-If vl =f(ul,...,um) and v2 = f(w1,...,wm) then solve each ui##wi.

Now, we want to use this new formulation, as well as the anti-unification
algorithm in order to get another expression of NF which could be used for the
decision of the inductive-reducibility property.

page 6

4. Transformation of the fixed point equation
Let us show how the algorithm works on a very simple example. Let X = {0, p, s}
and the rules be:

s(p(x)) = x; pGkx)) — x.
This is a specification of the integers. The TRS is canonical.

We start from the equation:
NF = ({0} n Complement (LHS)) U (p(NF) n Complement (LHS)) U (s(NF) n
Complement (LHS)).

Each intersection is computed by solving an inequation system:
- { p(s(x)) #0; s(p(x)) #0) for the first one |
- {p(s(x)) #p(y); s(p(x)) # p(y) } for the second one
- {p(s(x)) #s(y) ; s(p(x)) #s(y) } for the last one.
Each inequation must be solved in NF. The first inequation system has the identity
as a solution (NFO = {0}).
The second systeni is equivalent to the inequation p(s(x)) # p(y) which has 2

solutions: y <~ 0 and y « p(z), with the condition : y is replaced by a term of NF.

This may be written: NFp = {p(0)} U p(NFp). In the same way we find that NF, =

{s(0)} U s(NF).

Finally NF is described by the three relations:
NF = {0} UNF, U NFp,
NF, = {p(0)} U p(NE,)
NF, = {s(0)} U s(NF).

To be strict, we consider this grammar as a grammar on words. Parentheses should
be omitted and are only present for sake of readiness.

4.1 The case of linear lhs: computation of a context-free grammar,

- In the general case, we need a more complicated form for the description of the
language. Indeed, in the above example we have a regular grammar, if viewed as a
grammar on words, but, in general, the grammar may be only context-free (when
every lhs of a rule is linear) or even context-sensitive in the general case.

_page 7

However let us first show how the algorithm works when every LHS of a rule is
linear. :

We compute a set P of productions t — u, I ... | u, where tu,,...,u e T(X).

Such a production will sometimes be written as an equality between the generated
languages: if t = f(t,,...,t,) and, for every index 1<j<m, u=f(uy j,...,u,), then we
may write NF, = U, f(NF,, ;,...,NF) instead of t—u,! ... lu,.In other
words, we will consider the term t as a non-terminal of the grammar, making the
confusion with NF;.

Q is a queue such that, for each term t € Q, the productions having t as their left hand side are to be
defined. Initially, Q = { f(x*), fe X}, where x* is a sequence of k fresh variables, where k is the
arity of f.
Initially, P = { X — u, ue Q} . This means that every ground normal form begins with a symbol
of Z. V= {X}. Vy will correspond to the non-terminal vocabular.
While Q is not empty repeat: .
1- Take the first element in the queue: t; remove t from Q.
2- Solve the inequation system {li#t, 1<i<n } (where LHS = {lj,1<i<n)}),
let S be the set given by the anti-unification algorithm. S is a set of substitutions
since every LHS of a rule is linear.
3-Letfbetherootoft: t= f(t,....t).
LetS = {0,,...,0,,} and, Vie {1,...,n}, Vje {1,...,m}, u; = oj(ti).
Add t— f(ul_l,...,un'l) ...l f(ul'm,... u) toP andaddtto Vi

’“n,m
4- For each U 1<i<n, 1<j<m,
if it exists a renaming of variable 6 such that 6(ui_j)e (VyUuQ
then replace u;; by G(Ui,j)
else add u;; to Q.

Letnow Vi= X (or, more precisely, the functional symbols of).

Theorem 4.1 (main theorem of the section)

Assume that every lhs of a rule is linear. Then, the above algorithm computes a set P
of productions , a set Vy, of non-terminals , a set Vrof terminal symbols and an
axiom X such that NF is the language generated by the grammar (V,,V P X).
Moreover, viewed as a grammar on words, this grammar is context-free.

Proof:

This is a particular case of theorem 4.2.

LetG = (V\,V,PX). Gisa grammar by construction (this corresponds to the points (i), (ii) and
~ (iii) of theorem 4.2.). Moreover, the language L(G) generated by G satisfies:

page 8

- L(G) € NF. This is indeed the soundness property of theorem 4.2 and is a consequence of the
proposition 3.4 and the soundness property of theorem 3.5 (see the proof of theorem 4.2 for more
details)

- NF ¢ L(G) . This is the completeness property of theorem 4.2. This is a consequence of the
proposition 3.4 and the completeness property of the theorem 3.5.

Finally, the algorithm stops (see the proof of theorem 4.2)

Example:

We shall use in this example the notations of languages instead of the notations of grammars in
order to avoid the confusion between the rules of the TRS and the rules of the productions in the
grammar. |
We take as an example the lists (of elements of sort s) with three operators: nil: —list(s) ; unit :
s—list(s) ; append : list(s) x list(s) — list(s).
These operators will be also denoted by nil,u,a respectively.
The rules are:
- a(nilx)) - x;
a(u(y,),nil) - u(y,)
a(a(uly,).x)).xy) = a(u(y,),a(x,,x,))

We write first NF = NF,;, W NF, U NF,

Initially, Q = { nil; u(y); a(x;,x,)}

Since the systems {1 # nil, 1 lhs of a rule} and {1 # u(y), 1 lhs of a rule} have no solution, the two
terms nil and u(y) are removed from Q and A becomes:

{ NF ;= {nil}; NF, =u(NF1) } (NF1 is the set of ground terms of sort s)

The variables in a(x,,x,) are renamed into x3 and x, respectively. Then, the resolution of the
system { a(nil,x,) # a(x3,X4); a(u(y,),nil) # a(X4,X4) ; a@u(y,),x,),x,) # a(x4,X,) } gives the
solutions:

(X3 = u(yy); x4 = u(ys;)); (X3 = u(y,); X4 ¢ alXs,Xg)); (X3¢ a(nil,xg)) ;

(X5 a(a(Xs,Xg),X7)) ;

After this step, Q = { a(nil,xs) ; a(a(xs,xg),x;) }. Indeed the four first terms are already left hand
sides of pairs of A (up to renaming). And the following equation is added to A:

NF, = a(NF,NF)) U a(NF ,NF,) U a(NFa(nil.xs),NF) U a(NFa(a(x5'x6)_x7),NF).

Now, since there is no solution to the inequation system { | # a(nil,xs), 1 1hs of a rule}, the term
a(nil,xs) is removed from Q. The equation NFa(nﬂ'xs):@ is added to A.

At the next step, the system {1 # a(a(xs,Xg),X7), 1 Ihs of a rule} is solved. This gives the solutions: -
(x5 ¢ nil) and (x5¢ a(xg,Xq)). This leads to add the new equation to A:

NF,axs.x6)x7) = ANFy it 16)NF) U a(NF g 10 6),NF).

Then no term is added to Q since a(nil,x¢) and a(a(xg,Xq),Xs) are both already a left hand side of A
(up to renaming). The result is thus the grammar:

page 9

NF ::= NF; INF, | NF,

NF,; ::=nil

NF, ::=u NF1

NF, ::=a NF NF, i a NF,NF, | gNFa(nﬂ.xS)NF | aNFyyx5.x6)x7)NF-
NFnitx5y= 9

NFa(a(xS.x6),x7) = aNFa(nil.x6)NF I aNFa(a(xS.)(9).x6)NF‘

It is then reduced (see the section 5.1); only the productions from which can be derived a terminal
word are kept . We obtain thus the result:

NF ::= NF_; |NF, I NF,

NF ; ::= nil

NF, :=u NFl

NF, ::=a NF NF Il a NF NF,

Obviously, this result is parameterized by the set NF1 of ground normal forms of sort s.

4,2 L

Let us now return to the general case.

The idea is thus to describe NF by a set of pairs (t,NFR¢). The set of such terms t may
be viewed as the non-terminals of the grammar. NFR; is then composed by
substitutions on t (possibly together with constraints). These substitutions give all the
"profiles” of instances of t which may be in normal form. Again the subterms of o(t)
must be in normal form and are thus lhs in the description of NF (point (i) below).
The terminal symbols are the symbols of the signature (the variables are not
terminal symbols) and the axiom may be viewed as a free variable. However, it is
still unclear how to use this kind of descriptions in the general case.

Theorem 4.2
There exists an algorithm which computes a description of-the set NF of ground
normal forms. This description consists of a finite set R of pairs {(t, NFR,)} where:
- tis a linear term
- NFR, is a set of pairs {(0, c)} where 0 is a substitution such that
Dom(c) c V(t) and c is a normalized set of constraints laying on Im(o).

A simpler version of this theorem is given by the proposition 4.1., when every lhs of
a rule is linear. ‘

The algorithm may be sketched as follows:

Q is a queue such that, for each term t € Q, the set NF, is to be defined. Initially,

Q = { f(x*), fe X}, where x* is a sequence of k fresh variables, where k is the arity of f.

page 10

A is the set to be computed. Initially, R = @.

While Q is not empty repeat: A
1- Take the first element in the queue: t; removet from Q.
2- Solve the inequation system { L #t, 1<i<n) (where LHS = { l;, 1€i<n}),

let S be the set given by the anti-unification algorithm.
3- Add (t,S)to R.

4- For each (o,c)e S, and for each ue Sub(o (1)), if
DHue X
(ii) V6 a renaming of variables, 8(u) is not yet a lhs of an element of R

(iii) V0 a renaming of variables, 8(u) ¢ Q,
then add uto Q

Note that u is always linear and we may thus use the anti-unification algorithm.

" Proof of the Theorem :
Proof of correctness : :
We prove that the description satisfies the following properties :
1) Syntactical part :
(i) The subterms of a term in normal form are again in normal form:
V (t.NFR)eR, V(0,c)eNFR, ,Vue Sub(t), (0(u),NFR,,)€R
(it) The description contains all the basic constructions:
\?feE, (f(x;, ... x,), NFRf)eR
(iii) The description contains only terms proceeding from the two cases above:
YV (t.NFR)eR,
(VueSub(t), uis a variable) or (3 (t'NFR,)eR,3(0,c)eNFR,, JueSub(t’), o(u)=t)
2)Soundness part :
(iv) VOng, V(t.NFR)eR, V(o,c)eNFR,,
Vixw)ec, 6(x) #6w))
) = 0(o@t)) e NF
VYue Sub(t), 6(c))eNF)
3)Completeness part :
(v) if ue NF » then 7 (o;c)eNFRf, 7 GE.Qg, such that:
- u=0(c(fix, ... X)),
- Vixwiec, 6x)=06w)
- Vie{l,...n}, 8(o(x;)) € NF.

The proof of the points (i) to (iii) are left to the reader.
(iv) The soundness property is an invariant of the algorithm: when (t,S) is added to A,
Voe Qg, V(o,c)eS, (V(x,u)ec, 6(x) #6(u)) = 0o 0o is a solution in T(X) of the
: * inequation system {1, # t}.
~ page 11 ‘

This follows from the soundness property in theorem 3.5.

Thus, 8 0 G is not unifiable with any 1;, and no rule may be applied at the root of 8(a(t)).

If, moreover, Vue Sub(t), 6(c(u))e NF, then no rule may be applied to 6(o(t)). And,

finally, ©(o(t))e NF.
(v) In the same way, the completeness is a consequence of the proposition 3.4 and the completeness
property in theorem 3.5. The details are left to the reader

Let d = 21 <j<m(depth(]y)). It is sufficient to prove that every term added to Q during the
computation has a depth smaller than d. Then the termination is insured since there is only a finite
set of terms having a depth smaller than d, up to renaming,

It is easy to prove by induction that every term added to Q has a depth smaller than d:

- this is true initially

- when solving an inequation t #t', for every solution 6, 6(t) has a depth smaller than
1+max(depth(t),depth(t’)). When solving an inequation system t; # t', for every solution o, o(t")
has a depth smaller than 1 + max(depth(t"),)] <i<m(depth(t;))). ('see [Com87] for more details)
Thus,

depth(t) d = for every solution ¢ of the system { I; #1, 1<i<m), depth(o(t)) < 14d.

And, Vue Sub(t), depth(o(u)) < d.

Practically, the number of elements in A is much smaller than.the theoretical
maximum. We show in the appendix how works the algorithm on a more
complicated example, including non-linear and deep Ihs.

The difficulty is now to reduce the description of NF. When every lhs of a rule is
linear, this means exactly to reduce the corresponding grammar. Moreover, it is
interesting to erase productions which can never be applied. In our case, to erase -
from A the pairs (t NFRy) such that NF, is empty. This is the aim of the next section.

S. Applications
ST | Ihs of a rule is I

Let G be the grammar computed by the algorithm of section 4.1.

G being context-free, we may reduce the grammar, i.e. remove every production
A—a such that the language generated by A is empty For example, it is possible to
apply the following procedure :

Initially, Py = { Ao e P,ae V'), Vo= {AeVyIA-ae Po) and i =0.

Repeat

page 12

P, := (A-a eP, ae (V,UV)');
1:=1i+1
Until P, =P,

The grammar (V;, Vo, P, X) is then equivalent to G and is reduced. Such a result is
well known in language theory.

In other words: every term t which belongs to Vi and do not belong to V, s
inductively reducible. Every term of V, is not inductively reducible.

In the same way, we may decide whether NF is finite or not . Let G=(Vy, V1, P, X)
be a reduced context-free grammar such that L(G) = NF. For example, we may use
the procedure:
Initially, By = @ and i =0.
Repeat

B, == {te Vy, Vtoae P, oe (VUB)");

i:=i+l
Until B;= B, ,.
Then NF is finite iff B, = V.
Proof:
The proposition " for every term tin B;, the language generated by t is finite" is an invariant of the
algorithm. Moreover, this proposition is true initially. Thus, if B, = Vy when the algorithm stops,
then NF is finite.
Conversely, assume that the algorithm stops and that Vy # B,. Now, we define a sequence of
non-terminals ¢, by induction: Let t; € Vy - B,.
Then, assuming that t_ is defined for some n>0 and that t, € Vy-B,, 3, —>a, P,
o€ (VHUB)*, let thent ., be a non-terminal of o, which do not belong to B,
Since V is finite, there exist at least two integers p and q such that t, = tg- This may be written:
tp=>+ Btpy where 3 or yis not the empty string. The grammar being reduced, it exists some words
dand M in V" such that B =" & and y =" . Moreover, the language L(t,) is not empty. Let { be
in L(tp). Then, the regular set 8*{n* is included in L(tp). This implies in particular that L(txs) is

infinite and thus NF is infinite.
We may summarize these results:
Proposition 5.1

When every lhs of a rule is linear, we may decide the finiteness and the emptyness of
NF.

page 13

52.C ing NF; wt isli

t being a term of T(X), we are interested in this section in the problem of finding a
description of NF,. The problem of finding a description of NF is a particular case
of the latter since it is sufficient to take a variable for t. However, we do not want
only to generalize the algorithm of section 4.2 since the generalisation would have
probably a large complexity. At the opposite, we shall use the result of the section 4
and get a quick procedure for computing NF,. In this sense, the computation of the
section 4 is a "compilation" of the TRS for ground terms. Let R be the set of the
theorem 4.2, The following algorithm computes NF, by "unification" with the
elements of R.

Q(t) is a queue like in the algorithm of the section 4. Initially, Q(t)={t}). R(t) is the set to be
computed. Initially, R(t) is empty.
While Q(t) is not empty repeat:
1- Take the first element in the queue : u; remove u from Q(t).
2- Let f be the root of u and (f(xl,...,xn),NFRf)e R.
Let Be=((o(f(x1,...,xn)),c), (o,0)e NFR¢}.Let B, the set obtained by unifying u with the
elements of By and normalizing the constraints:
Bu= e m.g.u of u and an element of Bf Normalize(e’e(c))‘
(see [Com86a,b,c] for the normalisation procedure)
3- Add (u, B,) to R(1).
The next steps are the same as in the section 4.

Note that we have only changed the step 2 in the algorithm of section 4. This was
done in a simplification (of the complexity) sake: we wanted to use the set already
computed. '
Moreover, it is clear in this algorithm that the generalization to the case of
non-linear terms t lays only on the generalization of the normalization procedure.
Finally, it could be simplified when every lhs of a rule is linear. Indeed, the
normalisations are, in this case, unnecessary. In this case, the algorithm will lead
once more to a context-free grammar (for which, in particular, the emptyness is
decidable).

6. Conclusion

We have presented a method for the computation of a description of the set of
ground terms in normal form. Such a computation seems to have a lot of interesting

page 14

applications. For right now, the interesting applications are shown in the case where
every lhs of a rule is linear(i.e. with at most one occurrence of each variable). Even
$0, it is a very interesting result. The generalisation of the grammar reductions to
the case of our general grammars is the subject of an ongoing research.

Moreover, we would like to show that the complexity of the decision of inductive
reducibility (for example) is polynomial, when the grammar is already computed.
Finally,we conjecture that NF is an LL-language (if viewed as a grammar on
words). Then, the equality of two ground sets of normal forms would be decided
like the equivalence of two grammars. This has some interesting applications. For
example, assume that the TRS is canonical and that, adding the rules ly—>ry,.. -,
the TRS remains canonical. Then Ly=r,....1,=r, are inductive theorems iff the two
sets of ground normal forms are equal.

- References
[AU72] A.V.Aho & J.D. Ullmann The theory of parsing, translation and compiling. Voll:

Parsing,Prentice hall series in automatic computation, 1972,
(Ber79] D. Bert. La programmation générique. These, 1979

[Col82] A. Colmerauer. PROLOG II, Manuel de référence et modele théorique. Research Report,
GIA, Luminy, 1982. :

[Com86a] H. Comon. Sufficient Completeness, Term Rewriting System and Anti-unification.
Proc. 8th. Conference on Automated Deduction, Oxford, 1986,

[Com86b] H. Comon. Anti-unification and proofs by induction. RR LIFIA 51, IMAG 619.
(July 1986).

[Com87] H. Comon. Abour inequations simplification. To appear as a LIFIA research report.

(G&B85S] J.H. Gallier & R.V. Book. Reductions in tree replacement systems Theoretical
Computer Science 37 (1985) pp 123-150.

[GTW78] J.A. Goguen, J.W. Thatcher & E.G. Wagner. An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types. Current Trends in
Programming Methodology, vol. 4., pp 80-149, Prentice Hall (1978).

[HH82] G. Huet & J.M. Hullot. Proofs by Induction in Equational Theories with Constructors.
Journal of Computer and Systetn Science 25-2 (1982).

[HKi84] H. Kirchner A general inductive completion algorithm and application 1o abstract data
types. Proc. 7th Conference on Automated Deduction, Napa, 1984 (LNCS 170)

[JK86] JP. Jouannaud & E. Kounalis, Proofs by Induction in Equational Theories without
Constructors. Proc. IEEE Symposium on Logic in Computer Science, Cambridge, Mass.
(1986).

[KM86] D. Kapur & D. Musser Inductive reasoning with incomplete specifications. Proc.IEEE
Symposium on Logic in Computer Science, Cambridge, Mass. (1986)

[KNZ85] D. Kapur, P. Narendran & H. Zhang. On sufficient completeness and related properties
. of Term Rewriting Systems. General Electric Company, Preprint October 1985.

page 15

[KNZ86] D. Kapur, P. Narendran & H. Zhang. Complexity of Sufficient Completeness. To appear
in TCS.

[LLT86] A. Lazrek , P. Lescanne & JJ. Thiel. Proving inductive equalin‘es. Algorithms and
implementation. RR CRIN, Nancy, 1986.

[MG86] J. Meseguer & J.A. Goguen. Initiality, Induction and Computability. in "Application of
Algebra to Language Definition and Compilation", M. Nivat & J. Reynolds eds.
Cambridge U.P. (1986)

[Pau84] E. Paul Proof by induction in equational theories with relations between constructors.
Proc. 9th. Colloquium on trees in Algebra and Programming, Bordeaux, 1984.

[Pla85] D. Plaisted Semantic Confluence Tests and Completion Methods. in Information and
Control 65 (1985) pp 182-215.

[RV82] J.L. Rémy & P.A.S. Veloso Comparing Data Type Specifications via Their Normal
Forms International Journal of Computer and Information Sciences 11, N2 3 (1982) pp
141-153.

[Thi84] JJ. Thiel. Stob Ioos'ing sleep over incomplete data type specifications. Proc. ACM
Conference on Principles of Programming Languages, Salt Lake City, 1984.

Appendix; a complete step by step development on a non-trivial example

In this example, which includes non-linear lhs, we shall use a presentation as friendly as possible,
in particular, we shall use the notations of languages when there is no constraints.
L={0: 5s; fisxs—>s; g:s—s)

Rules:
f(x,00 - 0
f(x,f(g(x),y)) = x
fix,g(x)) — x
£(0,£(0,x)) —» 0

The TRS is canonical : the finite termination is obvious and there is no critical pair . (The proof is
left to the reader ; actually, in what follows, we are not concerned with the right-hand sides of the
system). We use our algorithm (section 4.2) for computing a "description” of NF:

Initially: Qo= (0, g(x1), f(x1,x2)}, Ry = {};

{1 #0, 1<i<m) has the identity as a solution, thus, at the first step,
Q, = { g(x1), f(x1,x2)}, R; = { NF, = {0}}

{1, # g(x,), 1<i<m) has the identity as a solution, thus, at the second step,
Q, = { f(x1,x2)}, R,={ NF;= {0}; NF, = g(NF) }.

page 16

{1, # £f(x1,x2), 1<i<m) has 5 solutions given by the anti-unification algorithm: sl = (x2e-g(x3);
x34x1), s2 = (x1¢ g(x4); x2 «£(0,x3)), s3 = (x2¢ f(f(x3,x4),x5)), s4 =(x2 f(g(x3),x4);
x3#x1), s5 = (x1 ¢ f(x3,x4); x2¢ £(0,x5)).Thus, at the third step, -
Q; = { £(0,x3), f(f(x3,x4),x5), f(g(x3),x4)},
R; = { NF, = {0}; NF, = g(NF);
NF; = {f(t1,g(t3)), g(13) eNFg, tl1 eNF, t3 #11}
VU {f(g(t4),£(0,t3)), £f(0,t3)e NFf(O,x3)’ g(td)e NFg}
U {f(t1,f(f(t3,14),t5)), f(f(t3,14),t5)e NFf(f(x3'x4)_x5), tle NF}
U {f(t1,£(g(t3),14)), f(g(t3),t4)e NFf(g(x3).x4), tleNF, tl # t4)
W {f(f(t3,t4),£(0,15)), f(13,t4)e NFy, £(0,t5)e NFy 43}
}
{1; # £(0,x3), 1<i<m} leads to 3 solutions : s6 = (x3¢~g(x4); x4 = 0), s7 = (x3 f(f(x4,x5),x6)),
$8 = (x3¢ f(g(x4),x5); x5 # 0).Thus, at the fourth step,
Q, = (f(f(x3,x4),x5), f(g(x3).x4)}
R,=Ry U '
{NFf(O,x3)= { (0, g(t4)), g(td)e NFg, 40}
U {f(0,£(f(t4,15),16)), f(f(t4,t5),t6) € NFf(f(x3,x4)'x5)}
u{ﬂaﬂgmnﬁxRgﬂﬂﬁeNﬁQ@”Myﬁ¢O}}
{1; # £(f(x3,x4),x5), 1<i<m} leads to 4 solutions: $9 = (x5 « g(x6); x6 # f(x3,x4)), s10 = (x5 «
£(0,x6)), s11 = (x5 « f(f(x6,x7),x8)), s12 = (x5 « f(g(x6),x7); x6 # £(x3,x4)). Thus at the fifth
step,
Qs = {f(g(x3).x4))
Rs=R, U
{NFf(f(x3.x4).x5)= :
{(£(£(t3,14),g(16)), f(13,t4)e NF;, g(t6)e NFg, t6 # f(t3,t4)}
U {f(f(13,14),£(0,t6)), f(13,td)e NF;, £(0,16)e NF{(O,XB)}
O {£(£(t3,t4),f(£(16,17),8)), f(t3,t4)e NF,, f(f(16,t7),t8)e NFf(f(x3.x4),x5)}
U {f(f(t3,t4),f(g(t6),t7)), f(13,14)e NF;, f(g(16),t7)e NFf(g(x3)'x4), t6 = f(13,t4) }
{1; # f(g(x3),x4), 1<i<4} leads to 4 solutions: s13 = (x4 « g(x5); x5 74 g(x3)), sld4 = (x4 «
£(0,x5)), s15 = (x4 « f(f(x5,x6),x7)), s16 = (x5 f(g(x5),x6); x5 # g(x3)). Thus, at the last
step,
Qs =}
Rg=Rs5U
{NFf(g(x3),x4)=
{f(g(t3),8(15)), g(t3)e NFg, gtS)e NFg, t5 # g(t3)}
U {f(g(t3),£(0,t5)), g(t3)e NFg, f(0,t5)e NFf(O,x3)}
U {f(g(t3),f(f(t5,16),17)), g(t3)e NFg, f(£(t5,16),17)e NFf(f(x3,x4)'x5)}
U {f(g(t3),f(g(t4),t5)), g(t3)e NFg, f(g(t4),t5)e NFf(g(x3),x4), t5 = g(t3))

°

page 17

The algorithm stops since Qg is empty.

The reader may note that, even in this complicated example, only 6 steps are needed. Thus, it seems
that the complexity is not too large.

Imprimé en France

par
PInstitut National de Recherche en Informatique et en Automatique

=4

