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Regularization procedures of mixed finite element
approximations of the Stokes Problem

Meéthodes de régularisation d’éléments mixtes
pour ’approximation du Probléme de Stokes*

Roger PIERRE

Département de Mathématiques
Université Laval
Québec
G1K 7P4,Canada.

Résumé

Nous proposons un cadre theorlque pour ’étude de la régularisation du probléme
de Stokes. Dans ce cadre, nous faisons une analyse d’erreur que nous appliquons &
des schémas connus ainsi qu’a un nouveau schéma associé a 1’élément P1-P1. Dans
ce méme cas, nous utilisons la théorie pour obtenir un résultat de convergence pour
les éléments obtenus par addition de fonctions bulles, ceci sans avoir recours i la
machinerie des éléments mixtes.

(*): Ce travail a été réalisé au cours d’une année sabbatique durant laquelle ’auteur
a séjourné au centre de Sophia-Antipolis invité par le projet Sinus.

...

PAPIER RECUPERE ET RECYCLE



Summary

We propose a theoretical framework for the study of regularization of the Stokes
problem. This enables us to perform a general error analysis and to apply it to
known schemes as well as to a new one pertaining to the use of the P1-P1 element.
Finally we show that in the P1-case the theory can also be used to get convergence
results for elements obtained by addition of bubble functions, without using the
usual mixed finite element machinery.



1. Introduction

The approximation of the Stokes problem by Finite Element Methods has motivated
a lot of research in the recent past. For the standard velocity- pressure formulation
it was very early recognized that the approximation of the velocity field and of the
pressure could not be chosen independently if one wanted to get a stable scheme. In
particular equal-order C°-interpolations are prohibited because they do not satisfy
the classical inf-sup condition of Brezzi and Babiiska. On the other hand, since they
are very attractive from the computational standpoint various approaches have been
tried to modify the approximation setting in a way that would allow their use.

In [3], Brezzi and Pitkiranta studied two such approaches. The first one con-
sists in the addition of the so called "bubble functions” to the discrete velocity
space. The second amounts to modifying the discrete equations by the addition of
a penalty-like term. This was generalized by Hughes and al. in [6]. There, they pro-
posed a scheme very similar to the one of Pitkiranta but which is consistent. This
idea of consistency appears to present both theoretical and practical advantages.
The practical point of view was studied in [6] and [8], and the theoretical one, al-
ready considered in the aforementioned articles, will be developped here.

The purpose of this paper is twofold. First, we want to present the error analy-
sis of a general regularizing scheme, showing, in particular, that, when consistency
is preserved, it can lead to optimal LZ-rate of convergence. Next, we want to de-
velop the relation observed in [8] between the use of regularization and of bubble
functions for the P1-P1 element.

An outline of the remainder of the paper follows: In section 2, we review the
fundamental facts about the continuous problem. In section 3, we present the dis-
cretization that we want to study together with the necessary hypotheses on the
mesh and the approximation spaces. The general error analysis is performed in sec-
tion 4 and examples of consistent formulations are studied in section 5. In section 6,
we look at the use of bubble functions and, in section 7, we draw the conclusions.

2. Formulation of the continuous problem

Several Sobolev spaces will be used in the sequel. For their definition and the study
of their various properties, see for example [7] or [5]. As usual, for a given space
H?(D), the corresponding norm will be denoted by || . |l,,p and the semi-norm by
| . |s,p (in a clear context, we will drop the domain index).

We will also need the following : let

Hy(D) = {g € H*(D) | /Dg dx = 0
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(for s=0 we use the standard notation H%, (D) = L3(D)), if we equip Hj(D) with
the norm || . ||, p it is isometric to the quotient space H*(D)/IR equipped with the

usual quotient norm. In particular, on HJ,(D), the norms || . ||, , and |. |, ;, are
equivalent.

Let 2 be an open bounded set of RN, N = 2,3 with a regular boundary I'. It
will be practical for us to write the classical Stokes system in the general form:

—vAu+Vp=f in ],
Vu=g i, (1)
ulr=0.

From now on, we wil'l, without loss of generality, set » = 1 and select a fixed integer
m > 0. We recall the following fundamental result,the proof of which can be found
in [9].

Theorem A. Let @ be an open set of IRN of class C™,r = maz(m + 2,2), and
let fe (H™(Q))?, g € HR*'(0) be given. Then (1) has a unique solution (u,p) in
(H"“”(Q))2 x Hp*t1(R). Moreover it satisfies

8 sz + 112 llngs € Clma {I £ lln + 1 9 lmgr}- (2)

It is also shown in [9], that (u, p) can be characterized as the unique solution of the
following variational problem: Find (u,p) € (H} (ﬂ))2 x L2() such that,

/Vg:ngac—/pV-gd:_wff-y dx Vv e (H (),
Q Q Q

| [vaadc=[gqix vaerza)
Q 9]

Hereafter, we will refer to problem (3) as the continuous problem.

3. Formulation of the discrete problem

In this section we present a general approximation of (3), based on the idea of reg-
ularization as introduced in [3]. We limit ourselves to the case where Q1 is polygonal
and bounded in IR?, but, in most cases, the results readily extend to 2 C IR3.

3.1. Triangulation of 2. Properties of the discrete spaces

Let {Ta}, be a family of regular triangulations of 2 such that 1 = |J K. We
€

suppose that the elements are ejther trian
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them is affine equivalent to a reference element denoted by K. We denote the
diameter of K by hx and set

h =maz{hgk | K € Ts}.

Apart from regularity, we make the following classical hypothesis: There exists a
constant ¢; , such that

Vi VKeT h<eci hx. (4)

For each h, we associate to the triangulation T, two finite dimensional subspaces
Vi C (Hs(R) N CO(0))%,
P, C Hp(O)N co(fn), -
and we assume that there exists two integers k,, k, and two operators,

,: (H' ()2 — V3,
I'I,,: H;z(ﬂ) e Ph,

such that:

V1< k< ke, Vve (H*1(Q))?, and YO < I < ky, Vp € H'L(Q),
|y =T (v) lo + Al vy~ T(v) |, + A% D_ | v~ T,(v) |, < CREHY|y et (5)
KeT,

| p~Tp(p) lo+ &l p = Ty(p) |, < CR™* B lpyy- (6)

We will also suppose that the following inverse inequalities are true (see [4]).

WrEVE YK €T, |v* |,k < eoehY vh |1,k (7)
Vet € Qn VK € Th, | ¢* 1,00, < c3.'rh_N/2| ¢ |1, % (8)
Finally we will have use of a last notation. Forve [] (H?(K))? we write
' ' KeT,
1
2 |7 .
IYIj,h={ZIY'j,K'} » J=1,2.

KeT,



3.2. Regularized discretization procedures

From now on, we will make the following hypotheses.
(H1): There exists a family of weight functions {wk }keT, with the following prop-

erties:
wg >0 on K,

wkg € CO(K) and ” WK “oo,K S clv"’hz’

VK € T, .
qu" € Qn / (Ve*.VeM)wk dx > cawh?| " |; &
K

(9)

where ¢y, and cz,,, are strictly positive constants.

(H2): There exists a bilinear form L;(v,¢") defined on [] (H?(K))? x Q4 and

KeTh
which satisfies
ILa(v, @) < 1" | (es,Lhl ¥ |y b + €2,Lh?] ¥ |5 4), (10)
where the ¢;,1, are non-negative constants.
Using (7), we infer from (10) that, for each v, € Vj,
| La(v™ ¢*) IS erh| ¢* || v* | (11)

where ¢, = maz(cy,L,¢2,r¢2,1). (Note that the case ¢z, = 0 is allowed).

In the rest of the paper, we will study the following approximations of the Stokes
problem :

Find (u*,p*) € V), x P;, such that V(v*,¢*) € V} x P,

/Vgh:V!" dz—/p"V-!" d>_t=/§-!" dx,
Q Q 1 9] .

/V-t_x"q" dx+ ) / ((Vo* - 0.V¢") wk dx — Li(u*,¢*) = /9 ¢* dx.
Q K Q

KeTh

| (12)

Remark 1
This form of regularization was suggested by the works of Brezzi and Pitkiranta
[3] and of Hughes and al. [6]. The practical aspects of the implementation of such
schemes have been considered in [8], where a relation between (12) and the use of
bubble functions was pointed out. It is in the purpose of clarifying this last point
that we introduced weight functions. It will be clear from the development below
that we could replace, in (12), the weighted L?(K)-inner product corresponding to
wg by a more general bilinear form. We had no use of such a generality. As to the

growth conditions imposed on wxg and L, their justification will come from the
error analysis.

LLLEC M



4. Error analysis

Before going to specific examples we present the error analysis of the general for- -
mulation (12).

4.1. Ezistence and unicity of the discrete solution

As expected, to obtain a general existence result, we have to impose conditions on
the size of the operators appearing in (12). For this, set

Vy,ue (B3(@)’, a(v,u) = / Vy: Vu dx.
Q
We recall the inequality

a(v,u) 2 call u fl, Vu e (H3(Q))". (13)

This leads us to

Theorem 1. Assume that, for a given m > 0, the regularity conditions of Theorem
A are fullfilled. If (H1) and (H2) are satisfied and if

c2,wtn > ci’ (14)

is true, problem (12) has a unique solution in V), x P;.

Proof: We set W) = V), x P, and equip that space with the norm

2 2 2
™ a*) llw, =1 ¥™ I+ 22 ¢ )

Next we define on W), a bilinear form Aj, and a linear form F}, by

An((vh, 2", (5", 74) = alvh, w) — [ .t dx
Q

+/V.yhrh dx + Z {/ (Va".Vr*wg dx} — Ly (v*, %),
a Ken, “K

Fr((v*, ¢*) = /_f.\_rh dx + Z L@.th)wx d)_(+/‘;g g* dx.

Q KeTs

Clearly (12) can be rewritten as: Find (u*, p*) € W}, such that
An((u*, "), (v, a%) = Fa((v*, ¢*) V(v*,¢") € Wi

5



Since continuity is obvious, it follows from the Lax-Milgram lemma that the proof
will be complete if we show that the form A, is Wj-elliptic.
For this, we use (9),(11) and (13) to obtain

2 2
A ), (P, 6") eall Iy + Y {ea,wh®l 6® |y i} — ekl v* Il ¢ 1y
KeT

We deduce from the above that
2
cq 2 ¢ 2
An((vh ), (¥ 6%) 2 (P P Il + ez — )R 6" g
cq
Taking (14) into account, this readily leads to

An((1h,g), (v, %) 2 T Czm)y (b gy (15)

which is is the desired result.

4.2. Error estimates in the H'-norm

Looking at (12), it is easy to guess that the precision will depend both on the
properties of wx and on the quality of the approximation of the laplacian term by
L. To make this more precise, we introduce the following

Definition 1. Let w* be in Vj, the consistency error on w" is defined by

h _h
Ec(wh)= sup Iﬁ("y_hL)l., A (16)
p\oy ld* ],

where the consistency term ec(vgh, q") is given by

ec(wh g*) = ) [f (Au.V¢")wk dx] — La(w", "),
kKeT, " K

For a given w", e.(w",.) is a linear operator on Py, the norm of which is E, (wh).

Moreover it satisfies,
th’ V!h € Vh,.

e.(wh+ 1%, %) = e (wh, ") — La(c*, ¢%). (17)

£ a4lind —ndla
I viiav 1iOviOIi.



Lemma 1. Assume that the regularity conditions of Theorem A are fullfilled with
m 2 0 and that (H1),(H2) and the existence condition (14) are satisfied. Let (u,p)
be the solution of the continuous problem and (u*,p*) be that of (12), we have:
YheV,, Vet ep,:

a(u - uh,vh) - / (p-p*)V.y* dx =0,
Q

/QV.(g ~ut)ghax+ )

KeT,

(15
L1900 )9 dx= (s, oP).

Proof: In view of Theorem A, it directly follows from (1) and (H1) that (u, p) sat-
isfies: '
Vv & (B§(n))*, Ve € L3()

/Vg:ng:_c—/pV-sz_c=ff~! dx,
Q Q - 0

(19)
/V-iqd:_c+ > / (mAu+Vp - 1).Vo)wx d).c=/qun_c-
Q KeT K Q2

The result now readily follows by substracting (12) from (19).

This places us in position to state and prove the main result of this section.

Theorem 2. Let1<k<k,and0<I[< k, be given. Under the hypotheses of
Lemma 1, we have

lu—o*lly + Al p—p* |y S (k¥ ullpyy + B 2 |l + AT Ee(TL)}.  (20)

Proof. In (18), we replace u — u® by u — wh 4+ wh— uk and p—p* by p—rk +#h — P

where (vy",r") € Vi X P, is arbitrary. Next, we replace v* by wh — ut and ¢* by -

t* — p*. Upon summing both equations side by side and using (17), we are lead to

a(w' - ut,wh —uh)+ D] [/ (V" - p").V(* - p*))wk dx =

a(w" — u,wh — ut) - fn(r" - p)V.(w* - uh)dx + /Q(f" - p")V.(w* - u)dx

+ ) / V(r* = p).V(r* — p*)wrdx + e (wh,r* — p*) — Ly (u® — wh, r* — ph).
KeT, K



We integrate the third term on the right by parts and use (13),(9),(16) and (11) to
get
call w* = u* |I{ + cawh?| P = p* [T <lla || w* — wll ]l w* —u* |,
+ | —ploll wh—ut I+l wh ol PP =Pty
+erwh® Pt = p |yl r* - Pt |+ E(w?) et - P,
+ el u® —wh il Pt -ty

For each of the products appearing in the right-hand side, we use the arithmetic-
geometric inequality to obtain,

2

1]

| all A w2, 1oon
-u + —|lw" —-u
Pl ¥ - 0t I+ ool vt -

2 2
enl| WP —uP ||y + 2 uh®| P - PP | <

1 2 1 2 1 2 1 2
+ slual = plo+ —ll w* —u* )+ Slus| 7" = 2" [; + — w"* —ulo]
2 723 2 K3
¢1.wh? 2 1 2 1 1 2
+ 2 —(pal P = p =t = ]+ Sl B (W) + — -t ]
2 o 2 733
1 2 h3c? 2
+ ‘2‘[°0|| ‘.!h - V.!'h “1 + —L'| rh - Ph |1],
cn
where the p; are to be determined. If we take (14) into account, and set
¢ = min(cq,c2,u),

the choice

cq 4 c2,uh? 6c1,w 6

= e——— = e— = = nd = —
K1 4"“"’ B2 Cn’ K3 6 s M4 C2 and us Cz,whz’

leads to

i 2 5y 2l 2, 2 :
R i R e B e e I

3¢} ,h?

3 2
+—I!w —ullp+

h 2 3 h
|7t = p I3+ B2 (w*).
Now the necessity of the various growth conditions is clear.

To complete the proof, we first choose w* = II,(u) and r* = II,(p), then we use
the triangle inequality to obtain

u—u lly + Rl p— o’ ly SC{A7 Al Myu — ully + || Mou — u ||]
+(|Mop—plo+ Al Mpp~p |||+ A7 E(M,0)},

from which, taking (5) and (6) into account, the desired result follows.

In the application of Theorem 2, the crucial point will, in general, be the estima-
tion of the last term in (20). As one may guess, this will require futher hypotheses.

tha cnankl, ~£ T2 4iemnbne
Before going to specific examples, we consider the problem of L%-estimates.
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4.3. Estimates in the L2-norm

Our approach is based on the classical Aubin-Nitsche argument and follows the lines
of a similar proof given in [2].

Theorem 8. Under the hypotheses of Theorem 2, we have
lu—u*llo+ 4l p=p" o < e{h* | u llyyy + 242 2 lliyy + Ee(Mow)}.  (21)

Proof: We first treat the case of the velocity. For this, consider the following auxiliary
problem:

Find (n, ¢) € (H}(R))? x L2(Q), such that
a) — Mndx = u—ut).e x @ 3 2,
o)~ [ Vadx= [ @-vhadr vac(m0)

(22)
/v.n ¢dx=0 V¢e Li(n)
a2

Since m > 0, it follows from Theorem A that problem (22) has a unique solution
which verifies

Noll, +1 &1, <elu—ut|. » (23)

Let us set @ = u — u* in the first equation of (22). We obtain

Ju—u*|) = a(n,u-u) - /ﬂfV-(y — u*) dx,

which we rewrite

lu—u* |5 =a(n—1n"u- u*) + a(n*,u — uh)

- [ V.- wax— [V -uhix e
Ja a

where lh = Ily(n) and ¢h = I, (€). We estimate the four terms of the right-hand
side one by one. First,

a(n 1" u-u*)<|lafllln—n* |l flu-u*],. (25)

Next, using Lemma 1 and the second equation in (22), we get

by — oy = — MY — ) dx
a(n*;u - u*) /n"’ P)V.(n" — 1) dx,

9



which, upon integrating by parts, leads to
|a(n* u—u*) S| p=p* il n— 2™, (26)
For the third term, we directly have

| /n (€= EM)V.(u~ub) dx |< | € - € [oll = u* |- (27)

The fourth term is the more troublesome. We use (18) to write it under the form

/OV-(! ~ut)eh dx=- ) {/K[V(P— P*).VeMwk dx} + ec(u, €").

KeT,

Using (9) and (16), we get as before

| [ 7a= M) dx < 1 € uferwh? o= 8 |y + Bulu))
hence
| AV-(E - ‘_lh)fh dx |< {cl.whzl - Ph |1 + Ec(‘lh)}(l fh k3 |1 +1¢ |1) (28)

Grouping all the terms and going back to (24), we obtain, using (5),(6) and (23),
that

2
lu—uh o <Clu—u | {h]lu—uP |, + A% p—p" |, + E.(u")}.  (29)

Notice that we are not yet done since it is the consistency error on Il,u which we
want on the right, not that on g". Before taking care of that we turn to the case of

the pressure. For this, change the dual problem to: Find (8, x) € (H2(0))* x L2(Q),
such that

e@.a)~ [xV0dx=0 vac (@@,
[ e)

l /ﬂ V¢ dx= /n (p - p")edx Ve e L3(0)

Remark that, since both p and p* where choosen in H}, the compatibility condition
is fullfilled whence problem (30) has a unique solution which verifies

(30)

”Q“z"‘!XleCIP‘PhH- (31)

As previously, taking Qh = II,0, we can write
2
-t lo= [-2V.@- ) ax+ [PV a3
: Jq

10



The first term is directly estimated after integration by parts

| fn(v? PM)V.0- 0" dx|< | p- P 1118~ 8" o
For the second term we go back to Lemma 1,

fn(p — p*)V4* dx = a(u - u*,0) - au - u* 8- 8").

Integrating the first term on the right by parts, which is correct since 8 is in H?,
we are lead to

JRR e PR N TR PR TR
Using the last two inequalities with (32) and applying (5),(6) and (31) to 8, we get
[p— oo <
Cih?lp—o* ) +1u—ut ol p—p"* [+ A u—u* Il p— 2" |1}
We split the last two terms on the right as usual and obtain .
lp-lh< CWlp—pt i+ lu— vt T +h 7wy}, (39)
Finally we combine (33) with (29),
lu—ut |o+hlp—p* o < Ch{llu—u* ||, +hlp—p" |, + A Ec(u™)}.  (34)
To complete the proof, we must consider Ec(\_xh). As noted before, we have
ec(u?, ¢*) = ec(Tou, ¢*) — La(u* - Mou, ¢*),
hence, we infer from (16) and (11) that

| Eo(u*) | <| E.(TLu) | +eph] o* — Tou |y
<| Eo(Tlyu) | +orhl u—Thou |, + ekl w =y ;.

Using this, we can rewrite (34) as

lu—u*|o+hlp—p" o <
C{hlju—uP ||, + A% p—p" |, + k| u - Thou |; + Ec(Il,u)}

and the result follows from Theorem 1 and (5).

11



5. Construction of consistent schemes

In this section, we study a first approach to the construction of regularized for-
mulations. In all the examples, we take the weight functions to be constant and
concentrate on the approximation of the laplacian term.

5.1. Definition and error estimate

Definition 2. A regularization scheme of the type under consxderat:on will be
called consistent if ,with u denoting the velocity solution,

Li(u,¢?) = Zj(Au V¢*)wi dx, Vg* € P;. (35)
KeTy

The interest of that notion is demonstrated by the following corollary.

Corollary 1. Let1< k< k, and0 <l < k, be given. Under the hypotheses of
Lemma 1, if the formulation (12) is consistent, we have the estimate

lu—u®lly +hlp—p* |, S CM u sy + 2 2 iy}
lu—u* o +hlp=p" |y < CLR* Y ullyyy + 22 2 [l1ys)

Proof: In view of (35), we have
ec(vu,¢") = La(u — Myu,¢*),
from which, using (10) and (5), we infer that

E.(Myu) < e1,Lhlu~ Moy |, + ez,0h?| u — M,u |2,h
< CRM M u |y

The result is now a direct consequence of Theorem 2 and 3.

- 5.2.  The consistent scheme of Hughes and al.
In [6], Hughes and al. proposed the following choice:

wg = ahd VK €T,

La(v,g*) = ) ok} /”M-Vq" dx.

KeT

12



where a is an ajustable positive parameter.. .

Quite obviously, the hypotheses (H1) and (H2) are satisfied and the correspond-
ing formulation is consistent. ‘

To check the validity of Corollary 1, the only thing that we must do is to de-
termine the choice of a for which the existence condition is fullfilled. For this note
that

a
¢2,w0 = 35— and cr = acy,s,
cl,‘r
thus (14) reads in this case
¢
&< o, (38)
cl,‘rc2,‘r

When this inequality is satisfied Corollary 1 is true, as was already proved in [6] for
the H! case and in [2] for the L? one.

Remark 2.

Although the above formulation is always consistent in the sense defined here ,
for low order elements such as the P1-P1 or even the Q1-Q1 on a rectangular mesh
the term Lj(v*,q") is identically zero, hence its introduction in (12) is somewhat
artificial. In (8], we have shown that this absence of a velocity regularizing term
had some consequences on the boundary behaviour of the discrete pressure and
proposed two alternate formulations as remedy.

5.3. Another approzimation of the laplacian

Let N=2. We recall the following relation which is valid for any H? function.

~Av = rot(rot u) - V(V.y), (39)
where,for u = (uy,u;),rotu = &2 8'; , whereas for any ¢,rot(¢) = (%5_, _%%)_

This suggests the choice

Lu(v,¢") = - ) ohk / rot(rot u).Vg" dx,
KeT, K

wig = ahd YK eTh.

Using (39) and the fact that V.u = 0, we see that this formulation is again consis-
tent. The other verifications are identical to those made above and, under condition
(38), Corollary 1 is valid.

As such, this idea is of no use in the P1-P1 case but for higher order elements
it provides a non vanishing velocity regularizing term.

13



5.4. Regularization through a boundary integral
To apply Hughes’s idea in the P1-P1 context, we look for an appropriate weak form
of (39). To this end, notice that

V¢* € Py, Vg* € H(rot, D).

Hence, under the regularity conditions of Theorem A the following integration by
parts is valid when u is the velocity solution.(see [5])

) / AuVe* dx = - / rot(rot u).Vg* dx
KeT, K o

= (rot(u), Vg*.7) b

where 7 denotes the unit tangent to I' and the bracket the duality between the
spaces H¥(T') and H~#(T). On the other hand, since ¢* € C*(K) VK € Tj,
Vgh.r is in fact in L?(T') and we have

Z / Au.Vghdx = /rot(l_x)th.r do
K r

KeT

= Z/ rot(u)Vgh.7 do.
KeT, dKnNr

This motivates the following choice which provides a non-zero velocity regularizing
term even for the P1-P1 element.

La(v,q*) = ah® ) / rot(v)Vg*.r do,
KeT aKnT
wg = ah?, VK € Ty.
Notice that, when v € H%(K), rot(v) |[r€ L*(0K NT). Thus the above definition

makes sense.

To verify the validity of Corollary 1 we need the following

Lemma 2. Let K € T, be arbitrary. For v € H'(K), we have,

-1 L
| v ||L=(ax) <C(h™7|v |o,x +h;| v |1,k), (40)

22 1 s LY 11
Is lnagepenueny o1 n ana n.
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Proof Let F: K — K be the affine transformation mapping K onto K , and B, its
Jacobian matrix. If, as usual, v = F o # the following inequality is easily checked

. [ rvrdesiBi[ jof
oK oK

On the other hand, if v € H'(K), § € H'(K) and
| & ”L?(a}?) < C(K)(| o Io,k +19 |1,I‘()-
Using the classical estimate (see [4]),
o . ] -1 .

| 91,2 SCUNIBI'(| detB [)75] v |; 4, 520,

we get © .
1 _1
o llzsory < COI B (1 detB) 2 (Jvlox+ I Bl | vlg)  (41)
Finally, in view of the regularity assumption on the mesh, we have
| B|I< Ch, and, |detB|< Ch?,

where the constants are independent of h. The conclusion now follows directly from
inequality (41).

The consistency of the scheme under consideration follows from the motivation given
above. The validity of (H1) is clear so we are left with the problem of checking (H2)
and that of translating the existence condition.

Concerning (H2), we first remark that Vv € H2(K), Vg* € P,

| rot(v)Vgh.r do |< || rot(u) ”L’(BK)“ V¢ ||L2(ax)- (42)
8KNT

The estimation of the first factor on the right is given by Lemma 2 whereas, for the
second one, we can use the inverse inequality (8), (we recall that N=2). Indeed we
have

1
| vg* ”L’(BK) < k3| g ll,oo,K

< s, rh7H] ¢ |y - (43)
Combining the inequalities (42),(43) and (40) with the definition of Lj, we get
| Za(v:6") 1< @@l " |y {R] ¥ |y 4 + B2 Y54}
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where C depends only on the regularity assumptions on the mesh. Hence (H2) is
verified with ¢, = ¢3,L = aC. '
Finally, since ¢2,4, = @, the existence condition (14) will be written

where ¢7, = é’maz(l,cz,,). Thus, if a satisfies the above inequality, Corollary 1 is
valid for the corresponding formulation (12).

Remark 3.

Q@

In the three cases that we have presented, the existence condition is giving an
upper bound for the parameter a. In practice, it was observed in [6] and (8] that,
when the formulation under consideration was used with unstable elements such as
the P1-P1 or the Q1-Ql, there was also a practical lower bound below which (12)
would produce a pressure field polluted with oscillations.

6. Regularization by means of weight functions

We now want to consider the possibility of taking L, = 0 in (12). The practical
advantage of this choice is that the system is symmetric which means, in particular,
some memory saving.

6.1. General error estimate

The next Corollary is a direct consequence of Theorem 1 and 2

Corollary 2. Let 1 < k <k, and0 <! < k, be given. If L, = 0 in (12) and if
the hypotheses of Lemma 1 are satisfied, we have

lu—uh |l +2kp—p* |, S C{RY| ullypy + A 2y + Bl uly)
lu—uP o +hp—p" o < CLBF Y u gy + B2 2 lligy + 1% u s}

Remark 4

The simplest situation covered by Corollary 2 is the one studied by Brezzi and
Pitkdranta in (3], where

P 12 RN o
Wg = alty, « > 0.
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It appears that the use of the corresponding formulation with high order element is
not interesting since the consistency error would then be bigger than the interpola-
tion one. On the other hand, it was observed in [8] that,-in the P1-P1 and Q1-Q1
case, even if, with this choice of Ly, the existence condition (14) does not restrict the
value of & , the possibility of oscillations in the pressure field limits it from below
whereas a boundary layer effect limits it from above. In fact, in general, the choice
of the parameter is even more tricky here than in the case of consistent formulations.

6.2. Regularization versus using bubble functions

In this section we restrict our attention to the P1-P1 element. More precisely, we
suppose that T, consists of triangles and that V,, and P, are the corresponding C°,
Pl-finite element subspaces. We introduce a new hypothesis.

(HF8): There exists a family of functions {¢x }ker, C (H3() N C"(ﬁ))2 such that,

() VxeK ¢k(x)e€(o,1],

() Vxg K° ¢k(x) =0,

(##%) There exists stricly positive constants d;, 1= 1,4 independent of h,
such that VK € T;,

dl S l ¢K ,1,}( S d2a

dshy < mg = / K dx < dyh%.
K .

Hereafter, the functions ¢x will be called generalized bubble functions.
We claim that, to each such family, we can associate a family of weight func-
tions muc _
W = ————9dk, (44)
I Pk Il,K .
satisfying (H1). Indeed, the only problem would be to verify the third condition but
it easily follows from (iii) if we recall that the functions ¢* are linear.
To the family {¢x }cr, We associate the set

®, = {¢KY I vE HZZ, K e Th}.

It follows from (H3) that @, is a subspace of (H2 (1)) such that
wh eV, Vw,,w,cR?:

a(v*,¢kw;) =0 VK € Th.

: (45)
o(Pk, W1, Pk, W) =0 if Ky # K,
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When wg is given by (44), we denote by P, the problem:
Find (u*,p*) € Vi x Py such that V(v*,¢*) € V4 x Py,

a(uh,v*) - f p"V-\_r" = / fyh dx,
Q

/‘Vu"q'l dx + Z/ ((Vo* - ).Ve*)wk dx—/gq dx.

KeT,

Similarly, if 17;, = Vi © ®p, we denote by ﬁh the problem:
Find (@h,p") € Vi X Py, such that,

a(@*, ¥*) - / V.t dx = / £7* Vit e W,
Q Q

/V.tj"q" dx = / g ¢" dx V¢* € P;.
Q o}

The relation between P, and }3;. is illustrated in the following Lemma. Its proof
" can be obtained by combining the argument proposed in [8,section 3.4] with some
elementary algebraic manipulations.

Lemma 3. Let (u*,p*) € V;, and

= u, + Z Prug

KeT

where

Ug =

/ (- Vo*)ox dx, (46)

|¢K|1K

then, if (H3) is satisfied, (ub, p*) is a solution of P, if and only if (@*,p*) is a
solution of Py,. ‘

As shown by this Lemma, as far as one uses Pl-elements, stabilization through the
use of bubble functions is equivalent to a regularization of the type studied here.
In particular one can hope that, for the elements obtained by addition of those
generalized bubble functions, convergence results can be obtained from Corollary
2. This is confirmed by the next Theorem.

Theorem 4. Let m=0 in Theorem A. If (H3) is satisfied and if (@*, p*) is the
solution of P, then



Proof: The estimate for the pressure term follows directly from Corollary 2 and
Theorem A. For the velocity term, write

Y $xug (47)

KeTh 1

- 2
lu—@* | =|u—ut|]-2 Y au—ut, drug) +
KeTh

Because of (45), we can estimate the second term in the following way,

| 20 a(u—whdrug) IS |uly{ Y | dxug 124}

KeTy KeTy

from which we deduce, using (i), that

12 ) a(u—ut, dxug) |< Chl u|,{ Y llug I3}

KeT, KeT,

Similarly, using (ii) and (45), we see that

2 |
Do druk| = Y | éx P il g 5 < @20 | ux l1%s)-

KeT, 1, KeT KeT,

On the other hand, using (46) and (i), we get

. 1 ‘
vk e < (meas(K))*| £~ Vot | x>

2
l ¢k l1,K

whence, using Corollary 2 with k=1,1=0 and Theorem A,

(D lluk IRa)t < ChI£—-Vo* |,
KeTh

< Ch(lf'o“’f'lp—?h ly +12l)
< Ch(l‘.flo + ” g ”1)

Finally, combining these inequalities, we deduce from (47) and Corollary 2 that

lu= ", < Ch{{llully+ 1l 2 ]+ u 20 Elo+ L g D1 + (1 £lo + 11 9 11,)}

and the result follows from Theorem A.

It is easy to see that the corresponding LZ-estimate can be obtained through
the Aubin-Nitsche argument as in Theorem 2. We will not work out the details but
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rather give two examples to which the theory applies.

Exemple 1: The Mini element.

This example was the motivation of the preceeding development. Let A; k, ¢t = 1,3
denote the barycentric coordinates in the triangle K and let

bk (x) { 271,k (X)Ag K(X)As x(x) forxe K,
elsewhere

be the corresponding bubble function of degree 3.

Using a different approach, Arnold, Brezzi and Fortin showed in [1] that, with
this choice,the discretization P, was stable and that Theorem 4 was valid.

Let us look at this case from our point of view and check conditions (i)-(iii).

There is no problem for (i)-(ii). To check (iii), we recall that if ¢ 2 denote the
bubble function associated with the reference element and if B is the matrix of the
affine transformation mapping K onto K, we have

2 - 2
| éx 11,5 =| det(B) | | B-"Véz |o 2
After some computations, we get

( 81

W){(Bf,z +Bf,)+ (B}, +B3,) - (B2,1Bs,2+ B1,1B1,2)}.

2
| 6x |1,x =

If || . || denotes the Frobenius norm of a matrix, we deduce from the equivalence
of norms on L(IR?),

IBI® _ A IBI . B2 | B
Tae(B)] < O Tdergmy] < | 9% i < *Tde(B) ] = *Taer(B) |

and the desired inequality follows from the regularity assumptions on the mesh.
As to the condition on mg, it follows at once from the equality

mxc = (55) | det(B) | .

Remark 5

We have shown in (8 ] hat, even though this element was converging at optimal

PP ~f
rate;, the pressure solution was often polluted by oscillations. The persistence of
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these oscillations was associated with the size of the coefficient of wg in (40);

Exemple 2: Hat-functions.

For a given triangle K, we denote the vertices by b;, + = 1,3 and the barycenter
by by. We also denote by K;, ¢ = 1,3 the triangle obtained by joining by to the
two vertices by, 7 # 1.

With this, we define the following family of generalized bubble functions,

_ 3/\,',}(()5), if x € K;,
$x(x) = { 0, elsewhere

These functions are the familiar hat-functions. They certainly satisfy (i) and (ii).
On the other hand, condition (iii) can be verified as above.
Indeed similar computations give

1
mie = (5 | det(B) |)’
3

2 ——
| éx |k = (l—m-l'

Il B ||i~+ (B2,2B2,1 + B1,2B1,1)},

whence the above reasonning can be applied.

Remark 6

Apart from presenting a different point of view on the study of those elements,
the above theoretical approach provides us with a practical tool to predict their
behaviour with respect to oscillations. Indeed, using (44) and the definitions, it is
~ easy to deduce that

2
/ (Vp".th)wK dx = ( Mk z >/ Vph. Ve dx.
K meas(K)| ¢k |3,/ /x
In that form the pressure regularizing term is very similar to the one of Brezzi and
Pitkaranta. In particular, as noted above, it appears that the bigger the coefficient
of the right-hand side the better the smoothing. When we applied it to some regular
grids, this criteria was always favoring the hat-functions over the bubble-functions.
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7. Conclusion

We have proposed a rather general framework for the study of regularized dis-
cretization of the Stokes equations which is covering all the examples known to the
author. Within this framework, we have been able to get optimal error estimates
in the L2-norm for both the velocity and the pressure. In particular, this completes
the study of a consistent scheme for the P1-P1 element introduced in {8].

Finally we have showed that this point of view can also be used to obtain a
convergence result for the Mini element of Arnold, Brezzi and Fortin without re-
sorting to the theory of saddle point problems.
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