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Abstract

Distributed systems are built from objects and controllers. Con-
trollers manage the access to the objects in order to keep invariant
relations between different parts of the environment. We present two
different approaches (extreme each other) to the distribution of objects
and their associated controllers. In the first one, the object is repli-
cated on each site of the system. In the second approach, the object
is partitioned over the sites (in this latter case, a particular object: a
queue of sites serves as illustration). Methods and tools in respect of
the distributed control are discussed using an analytical and teaching
view. We focus our attention on basic concepts (i.e. general mecha-
nisms and their underlying assumptions), providing an unified view of
the problem of object distribution in a distributed system.

Résumé

Nous présentons deux approches différentes (extrémes Pune de Pautre)
de la distribution d’objets dans les systémes répartis. Dans la premidre,
Pobjet est répliqué sur chacun des sites. Dans la seconde approche,
Pobjet est partitionné sur Pensemble des sites et un objet particulier,
une file de sites sert d’illustration. Des méthodes et outils relatifs au
contrdle distribué sont discutés de fagon didactique, en donnant une
vision unifiée du problime de la distribution d’objets dans un systéme
réparti.
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1 Introduction

Two different kinds of systems are usually considered, according to their
purpose. The first class consists of systems which process input data in
order to produce a definite result. Termination of their computations and
availability of a result characterize such systems called “transformational
systems”. Systems of the second class aim at reacting to their environment;
this is no case to produce a result (i.e. to compute a function) but to
maintain relations between different parts of their environment. They are
called “reactive systems” [HP 85).

Operating systems, which support invariants, fall into the second cate-
gory. A reactive system includes several controllers. Each controller must
keep invariant a given relation. They are usually implemented by an au-
tomaton (a finite state machine) which reacts to the interactions produced
by the environment, possibly initiating output interactions to this environ-
ment.

This may be exemplified by a mutual exclusion controller, which man-
ages the access to a critical section. It guarantees the following invariant:
at each time, the number of requests (initiated by processes of its environ-
ment) enabled to access the section is less or equal to one. To achieve that,
the controller must observe the request and release input interactions and
produce a list of authorizations according to the rules defining its behavior.

From an internal point of view, systems are also composéd with objects:
objects implement the system functions. In this paper, we are concerned
with the distribution of objects and of their access control (i.e. the state
machine controller).

Two different approaches (extreme each other) can be considered for the
distribution problem. The first kind of solution is to replicate the object
on each site of the system. Synchronization is then needed to avoid inco-
herent evolutions of the distributed object. There exist general methods as
explained in section 2. The other extreme approach is to partition the object
over the sites. Since the structure of the object must be encoded into the
controllers, general methods are difficult to get. Deriving controllers from
an object to be partitioned is still an open problem. A particular object,
a queue of sites serves as illustration for this latter approach in section 3.
Obviously, this allows for a simpler (i.e. of lesser complexity) algorithm. .
In both sections, we take great care to precise the assumptions about the
communication environment.

Methods and tools in respect of the distributed control are discussed
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using an analytical and teaching view. We focus our attention on basic
concepts (i.e. general mechanisms and their underlying assumptions), pro-
viding an unified and original view of the problem of object distribution in
a distributed system.

2 Replicate to distribute

2.1 Distributed objects

What we call a distributed system is a finite set of n sites, for which exchange
of messages is the only mean to communicate. Communication is supported
by two-way channels. We consider each site at the execution place of one
process (processes and sites will be referred as synonymous in the following).

An object is defined by the set of its access operators and by the rules
which order their occurrences during any execution [LZ 75, Gutt 77]. As
already said, these rules can be implemented by an automaton. The access
operators are called by processes.

An object instance may be implemented on one or several sites. This
section deals with the case where the instance is replicated on each site.
What problems put such a duplication? What solutions are available?

2.2 Principles
2.2.1 Object coherence

We consider the control activity itself distributed. There is no privileged
process which might control the distributed activity: such a structure does
not take advantage in general of the system distribution. We choose to
duplicate the object and its associated controller on each site of the system.

The main theoretical (and practical) limit about distributed systems
under distributed control is the non-observability of the instantaneous state
of the system: no global clock with enough accuracy is available, the only
mean to acquire knowledge is to exchange messages [CL 85]. In other words,
if a process P; does not know the occurrence of an event a when it produces
the event B, there is no mean to know which event is the first: @ and 8 are
said “concurrent”. The ordering of concurrent events is not significant: «
occurs then 8, or B then a or both simultaneously. This problem implies
that some requirements in which a particular order on concurrent events is
specified cannot be distributed. For example, the mutual exclusion problem
where the authorizations of access to a critical section must always be in



the same order than the coresponding requests, is impossible to distribute:
as already said, the order of the requests is not always observable.

Consequently, the objective must be limited to provide a “coherent”
evolution of the distributed object. Coherence is achieved when all the
copies of the object change in a same way [TGGL 82] This can be done by
the following rules [SL 85]:

o all the controllers start with the same initial state,

e they observe the same set of interactions initiated by processes (access
operator calls),

e these interactions are observed in the same order.

It is clear that if all the state machines are identical, starting in the same
initial state, and consuming the same sequence of inputs, they will present
the same behavior. Thus all the copies of the object will have the same
evolution.

2.2.2 Broadcasting

In order to observe the same operator calls, each process has to broadcast
(using messages) its own calls to all the other sites. Such broadcast services
can be easily implemented on a common bus, a complete graph a ring ...; for
arbitrary networks, there exist simple algorithms [Seg 83, Ray 87] (they are
all based on the construction of a spanning tree for the distributed system
modelled by a graph G ={processes,channels}).

2.2.3 Total ordering

In order to observe the operator calls in the same order, we have to introduce
a device allowing to define a total order on the set of calls of the whole
system. This may be achieved in two steps. The first one is to implement
an abstract virtual clock to order non-concurrent events. The second is to
order the concurrent events.

We require the following properties about the virtual clock:

e time progresses on all the sites and with enough accuracy,

e this progression is coherent, meaning that if a process P; initiates a
call to y (event B) after having received the knowledge of a call to z

(event ) from P;, then the date of 8 is more recent than the date of
a -



The Lamport’s logical clocks [Lam 78] are a correct implementation of
the virtual clock defined above. Each site P; is endowed with a natural
variable h;, initially set to 0 and increasing continuously. When P; initiates
an access call, it stamps and broadcast the message with the actual value
of h;. Between two successive calls, the controller associated to P; increases
h; executing the statement h; := h; + 1. Upon the receipt of a message
stamped with k, the controller adjusts its variable h; executing the statement
h; := maz(h;,k) + 1. The first update defines a total order between the
local calls. The second guarantees the coherence implied by communication
(i.e. causality between send and receive actions).

To order concurrent calls (see section 2.2.1), the sites must use a common
arbitrary rule of ordering. To define such a rule, we consider that all the
sites have different and total ordered identities. The unique name of the site
is added to any message initiated by the site. A call is then characterized
by the time-stamp (h,¢) where h and ¢ are respectively its logical date and
the name of the initiator. The Lamport’s rule is the following:

Let « and B be two events stamped by (h,¢) and (k, j)
(a<p)e (h<k)or(h=kandi<j)

Until now, the implicit assumptions on the behavior of the channels are
that every message is delivered within a finite delay after emission, and is
never lost or altered.

2.2.4 Progressing

At this point, each controller observes the same calls to operators and knows
the same total ordering of these calls based on their time-stamps. The
problem now, is to consume the messages according to this ordering. How
the controller C; can conclude it has received the oldest message?

Let § be the oldest message received by C; stamped with (k, 5). Let us
consider that messages cannot pass each other on a channel (ie. channels
are FIFO queues). In that case, C; can conclude that all the messages it
will receive later from P; will have their time-stamps greater than k. It is
not the case for non-FIFO channels (for which we might conclude knowing
the maximum transit delay of messages)[Lam 84].

Moreover, if C; knows (at less) one call from each of the sites, it is allowed
to execute the oldest message 8 since those it will receive later from any site
will be subsequent. The call relative to 8 is then said stable [SL 85]: no
older call can be delivered to C;. The converse is not true. If C; does not



know one call from each of the sites, the call 8 is not stable, and C; may
receive an other call older than 8 from a site from which it does not have
any call to execute.

In the case where all the calls of P; have been consumed, the controller
C; is not able to conclude and may block. To avoid such a blocking, C; must
execute a progression protocol which insures that no older message is on an
incoming channel.

The protocol is the following. Before consuming a call, C; sends to C;
(from which it has no pending calls) a control message named prog(h;, 1);
let us remember that h; is greater than all the time-stamps received by C;
(see section 2.2.3). When receiving such a message, C; updates its clock h;
and answers to the site ¢ by an acknowledgment ack(h;, 7). Channels being
FIFO, all the messages (if any) sent from P; before the receipt of prog will
be received before ack. Hence, C; will be able to conclude in finite time and
consume the oldest call, at worst upon the receipt of such ack messages.

2.3 Algorithm of a controller C;

The work of a controller is made of three parts:

e take into account calls of operators z, y, ..., initiated by the site P;
itself;

e treat messages sent by the others controllers C;; these messages are of
the following types:

— operation(z, (k, 7)) which indicates a call to the operator z, initi-
ated by P; at the logical date h;

— prog(h,j) and ack(h,j) which realize the progression protocol
discussed in section 2.2.4.

e modify the object according to the calls to operators requested by the
sites.

This last part acts as an interpreter consuming the sequence of modifi-
cations; the sequence is the same on each controller (if necessary, it can be
made visible to the processes P;).

Each controller C; is endowed with two variables: the local clock h;
and an array of fifo queues queue;[1..n]. The variable queue;[5] records the
sequence of calls to operators initiated by P; and perceived by C; after
broadcasting. Each call is recorded with its time-stamp (a similar algorithm
has been proposed in [HV 79] to manage duplicated files).

6 .



Figure 1: Text of the algorithm

upon a call to z from P;
hi:=hi+1;
insert ((z, (h;, 1)), queue[s]) :
broadcast operation(z, (h;, 1)).

upon the receipt of operation(y, (h, 7))
h; := maz(h;, h) + 1 ;
insert ((y, (h,7)), queue;(5]).

upon the receipt of prog(,5)
h; :== maz(hi,h) + 1 ;
send (ack(h;, 1)) to P;.

upon the receipt of ack(h, )
h; := maz(h;, h) + 1 :
insert ((ack, (h,7)), queue;[5]).

interpreter part
while 35/ queue;[s] # 0
do
1. let 7 = {sitesj/queue;[s] = B} Vj € 7. send prog(h;,3) to P; ;
2. wait (V5 € 1..n: queue;5] # 0) :
3. let 7 the oldest call from queue;[5],5 € 1..n, (v is stable),
execute 7y ; suppress 4y
od
Remark: ack is used as a ghost operator for which the action is skip.



3 Divide to distribute

3.1 Partitioned objects

As claimed in the introduction, duplication over sites is not the only way to
distribute an object. Partitioning constitutes a very interesting approach:
each site owns a different part of the object. In real situations, when some
kind of redundancy is required, distribution of objects relies on the both
techniques.

Unfortunately, there is no general method providing for the partitioning
and associated managing of objects in a distributed system. So we use
some kind of heuristics [FF 84]. We propose to consider the properties
of the object to be distributed as such an heuristic. Every object being
characterized by a specific set of properties, we limit our presentation of the
partitioning technique to a case study: a queue of sites. This is motivated
by the fact that queues are widely used in systems and applications and
possess well defined properties.

3.2 Partitioning a queue
3.2.1 A queue of sites

A queue of sites can contain between 0 and n sites, according to a fifo
discipline. From a site P;, the queue can be accessed by three operators:

o enqueue which allows P; to enter at the rear of the queue,
e amlfirst? which allows P; to know if it is at the front of the queue,

o dequeue which removes P; from the queue if it has reached ultimately
the front position.

Such a queue can be used to solve many problems in which sites have
to wait. The mutual exclusion problem is an example: only the site at the
front of the queue being authorized to enter the critical section.

As explained in section 2.2.1, a strictly fifo discipline cannot be imple-
mented in a distributed way. We consider here only the order on the arrivals
of requests at the rear of the queue (remember that the rear location changes
according to the requests).
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3.2.2 Principle of the solution

The queue can be easily implemented by a list: a local pointer indicating
the next site in the queue if any. Such an implementation is characterized
by two noteworthy elements: the front and the rear of the queue.

To be at the front of the queue may be materialized by the possession
of a particular unique message (unique messages are usually called tokens).
When a site leaves the front of the queue, it has only to pass the token to
the next site (addressed by its pointer). |

The last item of the queue is also unique, but unlike the front, each
site must know it. Moreover, at any time a site can enter the queue and
consequently must update the rear of the queue (which is a non-local infor-
mation). Such a control property can be caught by a dynamically evolving
spanning tree. The root of the tree is associated to the rear of the queue.
Any site entering the queue can notify the root that it is no longer the root
if there exists an ascending routing towards the root. A new spanning tree
is then defined according to the new root.

These two devices, token and spanning tree, have been introduced to
catch in a distributed context some basic properties of the partitioned object.
They have been extracted from a mutual exclusion algorithm based on such
mechanisms and proposed in [NT 87].

3.2.3 Management of the spanning tree

A spanning tree is initially defined. When a site P; requests to enter the
queue, it sends a control message enter(s) to its father defined by the as-
cending routing towards the root, and then becomes the new root.

Upon receiving such a message, a site P;, which is not the root, first -
forwards it and then updates its new father in the (new) spanning tree. Two
solutions are possible: the new father may be the sender of the message or
the new root P;. As we consider complete graphs (there exists a two-way
channel between any pair of sites), we choose to present the second solution.
This one produces in the average case, trees of a lesser hight. If the receiver
P; is the root, it notes it is no longer the root (by considering P; as its father)
and updates its list pointer to P;. [TN 87] claims that O(log(n)) messages
are necessary in the average case to enter a site into the queue, and proves
the correctness of the protocol in case of conflicting entering requests.

A last technical problem is to be solved to obtain the solution: the token
and the root existing at every time, how to notice the emptyness of the



Figure 2: Local context of the algorithm

var
father; : {1,..,n,nil} init nil for P, k for the others;
— This variable implements the local part of the routing spanning tree —
nezt; : {1,..,n,nil} init nil ;
— Implements the local part of the queue (list pointer) -
token _here; : boolean init true for Py, false for the others;
— Defines the front of the queue —
in_the_queue; : boolean init false :
— Takes the value true when P, is in the queue -

Remark:
(37/(token here; A (father; = nil) A —~in_the_queue;)) <> the queue is empty

queue? In that case, a site alone in the queue (owning the token and being
the root) must set a local flag n_the_queue; to false before leaving.

3.3 The algorithm

A reliable two-way channel (no loss, no alteration, no overtaking of messages)
is assumed between any pair of sites. Travelling times are finite.

Every site P;, 1 € 1..n, is endowed with some local context described in
figure 2. The text of the algorithm for a process P; is given in figure 3.

4 Conclusion

Some principles of object distribution in a distributed system have been
discussed in this paper. Two lessons can be drawn from this study.

Firstly, a general method exists to distribute an object using replication.
The method relies on three abstractions:

e broadcasting (of relevant events to controllers, each one managing a
copy of the object),

e total ordering (on these events),

10
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Figure 3: Text of the algorithm

upon a call to enqueue
in_the_queuve; := true ;
if father; # nil then
send enter(s) to father; ;
father; := nil
fi;

upon a call to amlfirst?
_result (in_the_queue; A token_here;) ;

upon a call to dequeue
tn_the_queue; := false ;
if nezt; # nil then
send token to nezt; ;
token _here; := false ;
nezt; := nil
fi:

upon receiving token
token_here; := true ;

upon receiving enter(y)
if father; = nil then
if in_the_queue;
then nezt; == j
else send token to P; :
token_here; := false
ﬁ *
else send enter(5) to father;
fi;
father; :=7 :

11



e progress protocol (to avoid blocking behaviors).

These abstractions can be defined as properties of the underlying sys-
tem on which the object is to be distributed. Such a design of distributed
applications in terms of useful control abstractions has been advocated by
Schneider [Sch 86] who uses it to improve fault-tolerance. The main features
of the three abstractions we have presented are essential parts of many dis-
tributed algorithms. So for example, they are mixed together in the Lam-
port’s mutual exclusion algorithm {Lam 78); a broadcasting abstraction is
needed to provide mutual exclusion in an arbitrary network [HPR 86|, and
[HJPR 87] provides another use of such an abstraction as an element to solve
the stable properties detection problem in a distributed system. Although
the idea to structure systems in terms of abstractions is not new, it is a
promising challenge to identify the useful ones for distributed applications.
Consequently, two research areas should be explored: their implementations
and their compositions; this latter point is a crucial one to design structured
distributed applications and master them.

The second lesson is that (at the present time and limited to our knowl-
edge) there is no general method to partition an object. In that case one
has to rely the partitioning on some heuristics [FF 84]. For a queue of sites,
it has been shown how the properties of a queue can lead to an interesting
solution. Two distributed structures have been exhibited according to these
properties: a token and a spanning tree respectively associated to its front
and rear elements.

Hence mastering of distributed systems requires the definition of some
paradigms which are useful control abstractions or mechanisms catching the
essential features of distributed data structures.
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