N

N
N

HAL

open science

Lazy pattern matching in the ML language
A. Laville

» To cite this version:

‘ A. Laville. Lazy pattern matching in the ML language. RR-0664, INRITA. 1987. inria-00075889

HAL Id: inria-00075889
https://inria.hal.science/inria-00075889
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075889
https://hal.archives-ouvertes.fr

Sr

apports de Recherche

YR G

AN TSR N AT AT e

=

Y R N T ISR NT:

LAZY PATTERN MATCHING
IN THE ML LANGUAGE

v

¥
K
i
B

Alain LAVILLE

Lazy pattern matching in the ML language

Filtrage paresseux dans le langage ML

Alain Laville

IN.R.IA. (Projet FORMEL) !

and Université de Reims?®

1g.P. 105 78150 Le Chesnay CEDEX France
2B.P. 347 51062 Reims CEDEX France

H! !D PAPIER RECUPERE ET RECYCLE

Abstract :

This report deals with functions defined by patterns in a lazy ML system. Such a def-
inition leads to the question of finding a lazy pattern matching algorithm. We introduce
the new notion of minimally eztended pattern, from which we derive a procedure to decide
whether such an algorithm may be associated with an ordered list of patterns. More-

over this procedure gives us the means of effectively building the lazy pattern matching
algorithm.

Résumé :

Ce rapport concerne la définition par filtrage des fonctions dans un systéme ML pa-
resseux. Cela conduit & se poser la question de trouver un algorithme de filtrage paresseux.
On introduit pour cela une nouvelle notion : celle de motif étendu de fagon minimale, 3
partir de laquelle on déduit une procédure qui détermine si un tel algorithme peut étre
associé a une liste ordonnée de motifs. De plus cette procédure donne une construction
effective de 1’algorithme de filtrage paresseux.

Lazy pattern matching in the ML language

Alain Laville
I.N.R.I.A. (Projet FORMEL) *
and Université de Reims!

1 Introduction

Several of the recently developped programming languages include features that need
some pattern matching mechanism. An important case of this use is the following : The
language handles structured values and some function calls result in evaluating an expres-
sion which is determined by the way the argument (a structured value) has been built.
The definition of such a function consists of couples whose first element is a structured
value which may contain variables and the second one is an expression which may use
‘the variables appearing in the first one. The meaning of such a definition is that, if the
argument may be obtained by replacing the variables in the first element of a couple by
suited values, then one has to evaluate the corresponding expression after doing the same
replacement on the variables it contains. The first part of the couples are often called pat-
terns and the pattern matching process determines which expression has to be evaluated.
Such a mechanism may be found in languages which implement Term Rewriting Systems
(such as HOPE, see [3]) but also in languages implementing Lambda Calculus (as is in
particular the case of ML, see [10], or MIRANDA, see [13]).

In order to get deterministic calculations one may demand that every value can match
" at most one pattern in each function definition. This leads to tedious work to write such
definitions and consequently this constraint is often relaxed, and, in order to maintain
determinism, some rules are added which decide what expression has to be chosen when
the argument matches more than one pattern. The rule used in ML is the following : the
pairs (pattern, expression) are ordered and if the argument matches several patterns one
uses the first of them for this ordering. Some other rules are used in different languages,
for example choosing the “most defined” of the patterns,that the argument matches (this -
implies some constraints on the set of patterns). We shall only deal in this paper with the
case of the ML language. - '

Another important feature which is more and more implemented in programming lan-
guages is lazyness (also called call by need or normal order evaluation, see [11]). This -
means that a value is effectively computed only when it is needed to produce the result,

*B.P. 105 78150 Le Chesnay CEDEX France
tB.P. 347 51062 Reims CEDEX France

and, for a structured value, that only the needed parts are evaluated. This ensures that
the language is safe, i.e. if computation fails there was no way to avoid this failure. This
moreover gives to the language the ability of handling infinite data structures as long as
only finite parts of them are used in calculations. MIRANDA and at least two implemen-
tations of ML include this feature : Lazy CAML at INRIA (see (8] or [9]) and LML the
‘implementation of Géteborg (see.[1]).

However there are problems when using pattern matching in a lazy language. One
wants that the process of finding which pattern the argument matches does not force the
evaluation of parts of the argument that are not needed. As far as we know this has not
yet been done. For example in his paper “A Compiler for Lazy ML” [1] L. Augustsson
writes :

This rather explicit top-down, left-right ordering is perhaps unfortunate, but
some ordering must be imposed to avoid the necessity of parallel evaluation of
the subparts of the expression that is to be matched.

It is well known that, even in very simple cases, it is not always possible to find a lazy
pattern matching process. Classical examples of this fact are the “PARALLEL OR” or
Berry’s example (see section 3.2.2 below). This is the problem we address in this paper
and we give a (effectively computable) characterisation of the sets of patterns for which
such a lazy pattern matching is possible. Moreover this characterisation yields an effective
algorithm to realize the pattern matching. This solution was known in the cases where
the patterns are not ambiguous (i.e. no value may match two of them), we extend it to
- the general case of ML patterns (ambiguous ordered list of patterns with the priority rule
induced by this ordering). Moreover, the method we give here could be modified to handle
other priority rules. '

In order to achieve this goal, we introduce the new notion of minimally eztended pattern
(see definition 11). It will give us the key tool to check the lazyness of the pattern matching
process (see section 5). It allows us to replace the set of patterns with priority by a new
set in which the priority rule is captured by the syntax of the patterns. This makes the
priority rule much easier to handle mechanically.

Remark 1 Along this paper, when reference to an implementation of ML is done, it is to
CAML the version of ML currently implemented at INRIA (see [9] or [12]).

Ed

2 Definitions and Notations

z.1 Patterns

Definition 1 A pattern is a term built from the pairing operator, some constructors of
(already defined) concrete data types, variables and the special symbol “_”. The meaning
of “_” is that one doesn’t care about what may appear at the place where it is used. CAML
(as other ML implementations up to date) restricts patterns to be iinear : no variable is
allowed to appear twice in the same pattern. ' '

Definition 2 A value of CAML is said to be an instance of a pattern if it can be obtained
from the pattern by replacing all the variables and “_” by any values {compatible with
the type discipline of ML but this will always be ensured by the type-chetker, so that we
don’t care about typing). As usual, if o is a function which maps variables into terms, we
~call substitution the extension of o to terms. Thus, if a term is an instance of a pattern,
and if one replaces all “_” by new distinct variables, then there exists a substitution o
which yields the term as image of the pattern (that is here the classical definition of
instanciation). With a list of patterns [py,...,pn |, we shall say that a value v of CAML
matches the pattern p; if p; is the first pattern in the list, of which v is an instance.

Definition 3 We shall say that a function is defined by pattern if

1. Its definition consists of an ordered list of pairs (pattern, expression)

2. Its value when applied to an argument v is obtained in the following wé,y : first find
the first pattern, say p, in the list such that v is an instance of p by a substitution o
and then evaluate the result of applying o to the corresponding expression.

2.2 Partial Terms and Occurrences

In this paper we shall only deal with the process of finding which pattern is matched
by a given value (and not of the evaluation of the corresponding expression). As patterns
are linear, this implies that we don’t care about the subterms corresponding to variables.
Moreover, in a lazy version of CAML, at a given time a term is only partially evaluated.
It will thus be convenient to define a notion corresponding to terms of which only a part
is known. _

We assume given the definition by pattern of a function :

fun py — exp,
I = l D2 — €ITP:

| pn = ezp,

where the p;’s are the patterns to be matched against the value to which one applies the
function. ' _ v

One defines a signature X containing all the constructors that appear in the patterns
D1,...,Pn and another symbol) which will denote the “unknown” or “undefined”. As we
want to extend methods of Terms Rewriting Systems theory which consider patterns as
terms represented by trees, we shall sometimes have to use this representation. In such
cases we need a symbol to be placed at the root of the tree (it will denote the ML function
which is to apply). So we add to T a new symbol 7 which when necessary denotes this
function. We assume given a set of variables V containing all the variables that appear in
the patterns p,...,p,. If one replaces the “_” of the p;’s by fresh distinct variables taken
from V, then all the #(p;) are terms of the algebra built over TU V.

Definition 4 We shall call partial term every term built over £. We shall only use termto
denote a partial term in which there is no symbol 2 (but we do not forbid to use “partial
term” even in this case).

Partial terms provides us with a formalism suited as well for patterns (which are par-
tially undefined terms) and for lazy values (which may be thought of as partially unknown
since they are not completely evaluated). To avoid introducing new notation, we shall
denote from now on by p; the partial term obtained from F(p;) by replacing all variables
and “_” by 2’s. We shall denote by II in the following the ordered sequence : [py,...,p,]
(they are the p;’s we just defined). _ _ '

We define a partial ordering (denoted by <) over the set of all partial terms as follows :

® For each partial term M : <M
o F(My,...,M,) < F(Ny,...,N,) if and onlyif M; < N; (1<:< n)

We shall use the notation M T N when M and N have a common upper bound (and we
- shall say that M and N are compatible), and the notation M §N if they don’t have one
(and we shall say that M and N are incompatible).

The ordering < is a kind of prefix ordering with the meaning that a partial term is less
than another if it is less defined (or less known).

Remark 2 Assume that a partial term M (representing here a lazy value of CAML) given
as argument to 7 is sufficiently defined to decide which of the right hand side expressions
defining ¥, say ezp;,, has to be evaluated after instantiation to return the desired value of
the application. Then it is clear that the following must hold : Pi, < M. The converse is
true if and only if for each pair (p;, p;) of patterns one has pi # p;. The if part is obvious.
For the only if part, assume Pi T pj with ¢ < 7 and let M be a common upper bound of p;
and p; then, although P; < M, exp, is not the expression to evaluate.

Definition 5 When seeing partial terms as trees, we shall say that M; is the 5** son of
the partial term F(My,... »M,). We call occurrence an integer list which designates a
subterm of a given partial term, For example, the occurrence [2; 3] points to the third
son of the second son of the full partial term. The prefix ordering of occurrences will be
denoted by <. For a given partial term M, we shall denote O (M) the set of all occurrences
in M, O(M) the set of occurrences in M where the symbol is not 2 and On(M) the set
of occurrences in M where the symbol is 2. The symbol in M at occurrence u will be’
denoted by M(u).

2.3 Matching Predicates

We shall now define some predicates over the set of partial terms (i.e. functions with
values in the set {tt, ff} of the truth values).

Definition 6 For each ; € {1,...,n}, the predicate match; is defined by match;(M) = tt
if and only if the following two conditions hold :

L <M
2.V5<i pf M

Remark 3 We recall that the patterns are ordered, and that matching searches for the
first suitable pattern in the list (see definition 2). The meaning of the preceding definition
is that match;(M) = tt iff M is sufficiently defined to decide that if M is the argument of
7 then one has to evaluate (after suitable instantiation) the expression number i.

Definition 7 We now define the predicate matchy by matchy(M) = tt if and only if
match;(M) = tt for some 1 € {1,...,n}. '

Remark 4 The meaning is of course that M is sufficiently defined to decide which right
hand side has to be evaluated to get the value of ¥(M).

3 Properties of the Match Predicates

3.1 Monotonicity
The following lemma groups some useful characterizations and properties related with

the ordering of partial terms. '
Lemma 1 ‘ :
a) M § N if and only if there exists an occurrence v in O (M) N O (N) such that M(u) #
~b) M < N if and only if for each u € O (M) either M(u) = or M(u) = N (u).
c) M 1 N if and only if the two following hold :

o Vu € O (M) either M(u) = N(u) or v < u such that N(v) = Q

o VYu € O(N) either N(u) = M(u) or 3v < u such that M(v) =
d) The ordering < over the partial terms is well founded (i.e. there exists no infinite

strictly decreasing sequence).

e) If match;(M) = tt then for all j # ¢ match;(M) = fI.
Proof : a), b), ¢) and d) are straightforward. To get €) one simply remarks that if 7 < ¢
then M § p;, and if § > 7 then one can not have M { p;, in both cases match;(M) is false.
- ‘ |
Definition 8 We order the set of truth values by defining ff < tt. Using the ordering on
partial terms this allows to define sncreasing predicates.

Proposition 1 The predicates match; and the predicate matchy are all increasing.

Proof : Assume that match;(M) = tt and let N > M. By definition of match; one has
M > p; and hence N > p;. From the same definition we know that M { p, for each 5 < 1.
Thus (lemma 1 a) Vj < i 3u; € O (M) such that

M(u;) # 0, pi(u;) # @ and p;(u;) # M(u;)
Since, from part b) of lemma 1, N(u;) = M(u,), the result follows obviously for each
predicate match,;. ‘
It is now straightforward, from the definition, to reduce the case of matchy to the
preceding one. ™

3.2 Sequentiality .
3.2.1 Definition

We define here a formal property of increasing predicates, called sequentiality and due
to G. Kahn and G. Plotkin (see [7]), and also to G. Berry and P.L. Curien (see [5]) which
is strongly connected with the problem we address as will be shown later.

Definition 9 Definition is given in three steps as follows :

1. For a given partial term M and an increasing predicate P, we shall say that an
occurrence u in M is an tndez of P in M if the three following conditions hold :

a) M(u) =Q
b) P(M) =f
c) YN > M if P(N) = tt then N(u) # 0
2. For a given partial term M and an increasing predicate P, we shall say that P is

sequential at M if and only if the two conditions P(M) = ff and there exists N > M
such that P(N) = tt imply together that P has an index in M.

3. Finally we shall say that an increasing predicate P is sequential if it is sequential at
every partial term.

3.2.2 Examples

We shall give examples, with the predicates matchy associated with various lists of
patterns (the algebra ¥ is built each time according to section 2.2).

1. With IT = [¥(a,a); F(a,b); F(b,a); F(b,b)], if matchn(M) = ff and there exists
N > M such that matchn(N) = tt, then M must belong to the set {Q2, 7(0,0),
F(Q,a), F(Q,b), F(a,02), F(b,0)}. It is easy to check that all the occurrences where
() appears are indexes for matchy, and thus that this predicate is sequential.

2. With IT = [#(a,0); 7(Q,b)], if matchn(M) = ff and there exists N > M such that
matchn(N) = tt, then M must belong to the set {{1, 7(12,R), 7(b,N2), 7(0,b)}. The
fourth element of this set may look rather surprising since it is one of the patterns
but it is an example of the fact that match;(p;) may be false.

The predicate matchy has trivially an index at 2. One easily sees that if matchn(N)
= tt then N = F(Ny, N;) with N; #). Hence matchy has an index at 7(0,) and
F(Q,b). If N > 7(b,N) then match,(N) = ff so that if matchy(N) = tt matchy(N)
= tt must hold. Hence N([2]) = b and (2] is an index of matchy at F(b,(1) (see
notations in definition 5) : matchy is sequential. '

3. With IT = [#(a,b); F(02,0)], if matchn(M) = ff and there exists N > M such that
matchn(N) = tt, then M must belong to the set {2, (22,0), F(a,1), 7(02,b)}. One
easily checks that matchy has an index at 1, ¥(a,?) and F(Q,b). It has not at
F(Q,0) since both F(b,N) and F(,a) verify match; and hence verify matchy too.

6

4. We give now a version of what is known as Berry’s example : Il = [7 (true,false,Q2);
7 (false,2,true); F(Q,truefalse)]. One sees that there is no index for matchy at
7(0,0,0) : since the patterns are incompatible, they all verify matchy and one can
find an) at every occurrence. '

3.2.3 Sequentiality and Lazyness

We address now the question of choosing the right hand side when one needs to evaluate
F(v) in a lazy version of ML, where v is any value (and hence may be only partially
evaluated). We want that this process does not force the evaluation of any part of v which
is not necessary to make the choice.

Definition 10 We call pattern matching algorithm any deterministic algorithm which
matches any partial term against II (see definition 2). As partial terms are trees and
a pattern is a prefix of any partial term that matches it, this process has to work in a
top-down way. ‘ ' '

We say that a pattern matching algorithm is lazy if it satisfies the preceding condition.
We may express this constraint in the following way : Let U be the set of all occurrences
in v where the symbol was evaluated during the pattern matching process. Denote vg the
partial term which coincides with v along U and is completed with {’s according to the
arities of the symbols used. Then we ask vq to be less than or equal to (for the ordering of
partial terms) every prefix of the full value v which is sufficient to choose the right hand
side.

This property of lazy pattern matching is connected with sequentiality, as shows the
following theorem. :

Theorem 1 Given a function defined by pattern, there exists an associated lazy pattern
matching algorithm if and only if the predicate matchy s sequential.

Proof : We shall only give a sketch of the proof.

Assume that the predicate matchy is sequential. Then it suffices at each step of the
pattern matching process, to look in v at an occurrence that is an index for matchy in the
prefix of v that was already explored.

Conversely, assume match not to be sequential and let M be a partial term with no
index. Let run the pattern matching algorithm from 1, getting the symbol at v in M as
long as it looks at an occurrence u € O(M). Let ug the first occurrence in Oq (M) which
the algorithm will look at. Since there is no index in M one can find a partial term N
such that N(uo) = @ and matchy(N) = tt. For this N the algorithm makes useless work,
or in other words it may fail to recognize a matching by failing during the evaluation of a
not needed part of the argument. =

4 Equivalent Matching Predicate

4.1 Introduction

The sequentiality of the predicate matchy is not so easy to test. So we shall give an
equivalent definition of this predicate the sequentiality of which can be studied in a more
tractable way.

The idea is as follows : If match;(M) = tt, then M has to be incompatible with all
the patterns p; such that § < 2. Thus we shall try to replace the single pattern p; by
a set of patterns, each of them greater than p; and incompatible with all the preceding
patterns. Then we shall replace the initial list of patterns by the longer one that we get
from the replacement of each pattern by the set above. This new list may be constituted
of pairwise incompatible patterns, and the matching against it may be studied by already
known methods. The list may also contain two (or more) compatible patterns, and there
is no sequential pattern matching algorithm for the 1n1t1al definition (i.e. matchy is not
sequential) as will be proved later.

Of course we have to show that we did not change the function call when modifying the
set of patterns. Moreover, we have to take care that the new match predicates have the
same sequentiality properties as the old ones. The trouble is the following : Assume we
deal with the function AND over the booleans which may be defined by pattern matching
with two cases, namely

fun (true,true) — true
| (z,9) — false
One can see that there is no sequential pattern matching in this case using the same
argument as in the third example of 3.2.2. We could define the same function over the set
of boolean values with incompatible patterns, for example by

fun (true,true) — true
| (false,z) — false
| (true, false) — false

But although this is the same function over the booleans, we can easily see that it is not
equivalent to the first one in a lazy system. Assume we give it as argument a pair the first
part of which fails to evaluate and the second evaluates to false, then the first function
returns false and the last one fails. Expanding the pattern (z,y) to the set {(false,z);
(true, false)} introduced a precedence of the first part of the couple which was not in
the first definition (one may check that there exists in this case a lazy pattern matching
algorithm : look first at first occurrence).

4.2 Extended Patterns

In the following lemma,we use the notation OCCp to denote the set of occurrences
which may be useful to choose the pattern at least in one case, i.e.
0O — | l IR
gl \P‘
=1)

Lemma 2 If matchn(M) = tt, there ezists a prefizr M' of M such that :

1. matchn(M') =
2. O(M') C OCCx

Proof : If u is an occurrence in M not belonging to OCCp, there exists a maximal
prefix of u, say v, in OCCp. In order to get M' we cut M at every such occurrence
v and complete with ’s according to the arities of remaining symbols. We easily get
the property matchn(M') = tt, since, by lemma 1, we express it using only symbols at

occurrences member of OCCy; and these symbols are the same in M and M'. = '

Definition 11 We shall call minimally extended pattern (associated with II) any partial
term ¢ verifying the following two properties :

1. matchyp(t) = tt
2. V' < t, matchp(t') = ff

We shall denote the set of all minimél extended patterns by MEPy.

Proposition 2 The set MEPy is a finite set. Furthermorc :t is possible to effectively busld
this set from the initial list of patterns.

Proof : From the second part of the definition, for each minimally extended pattern ¢, one
has O(t) C OCCy. Since we deal with (partial) terms over a finite signature, the results
follow (all the calculations involved are finite). m

4.3 Examples :

1. In the case of the AND function used above (see section 4.1), the set MEPy contains
the couple (true,true) coming from the first pattern, and the two couples (false,(2) and
(01,false) coming from the second pattern. One sees here a case where two elements
of MEPy are compatible. As we said above, this is a case where no sequential pattern
matching is possible. When we used this function (in the introduction above) the
trouble with the sequentiality came from the following : we replaced then the second
pattern by the set {(false,); (true,false)}. In this set the second element is not a
minimally extended pattern : it asks for too much information about the value.

2. If one wants to use the classical PARALLEL OR, and tries to define it as :

fun (true,z) — true
| (z,true) — true
| (z,y) — false

the set MEPy will be {(true,2);(false,true);(false,false)}. This set contains only
pairwise incompatible patterns, which correspond one to one to the initials ones.
We shall discuss the meaning of that fact after giving the procedure to study the
existence of a lazy pattern matching algorithm.

9

3. In the case of Berry’s example (see 3.2.2), since the three patterns are pairwise
incompatible, the set MEPy simply contains them.

4. We give now some abstract examples, using a signature ¥ consisting of ¥, 1 and
three symbols (denoted a, b and c) each of arity zero. We shall not discuss here the
question of sequentiality. We shall do after giving the procedure to decide it.

With initial patterns p; = #(a,00,Q), p2 = F(2,b,Q2) and ps = F(Q,0,), p1
remains unmodified ; p, has to be replaced by {¥(b,b,?), F(c,b,N7)} meaning
that it can be recognized only after excluding a symbol “a” in first place ;
similarly ps is replaced by the set {F(b,c,c), F(c,c,c), F(b,ac), F(c,a,c)} since
one has to exclude at the same time “a” in first place and “b” in second place.

With the list of patterns [7(a,02,0); ¥(b,Q,02); F(0,0,c)], the first two are not
modified, and the third is replaced by {F(c,2,c)}.

With the list of patterns [7(2,02,0); F(a,b,Q); F(02,Q,c)], the first one remains,
the second is discarded (replaced by the empty set) and the third is replaced
by {¥(c,0,c), F(b,Osc)}

With the list of patterns [¥(a,b,02); F(2,2,Q); F(Q,0,c); F(0,0,01)] the first two
remain, the third is replaced by the set {F(,c,c), F(b,b,c), F(c,b,c)}, and the
last one by the set {F(Q,c,a), F(Q,¢c,b), F(b,b,a), F(b,b,b), F(c,b,a), F(c,b,b)}.

We slightly change the list of patterns (only modifying the first symbol in the
second pattern) getting the list [(a,b,Q2); #(a,2,2); F(0,0,c); F(0,02,0)]. Now
the first two remain, the third is replaced by {F(f,c,c), F(b,2,c), F(c,8¢)}
and the last one by the set {F(Q,c,a), F(Qc,b), 7(b,0,2), F(b,N,b), F(c,0,a),
F(c,02,b)}.

4.4 New Definition of Matching Predicate

Definition 12 We call match}; the predicate defined over the set of partial terms by
matchl;(M) = tt if and only if there exists an element ¢t of MEPy such that t < M.

Proposition 3 The two predicates matchly and matchy are the same predicate over the
set of all partial terms.

Proof : Assume matchj;(M) = tt,and let t € MEPy be such that t < M. From the defini-
tion of M E Py, one has matchy(t) = tt. Since this predicate is increasing (proposition 1)
we get matchn(M) = tt.

Conversely, the result is straightforward since the ordering on partial terms is well
founded (lemma 1 d). We may remark that nothing here ensures that for each partial
term M verifying matchn(M) = tt, there exists a unique t € MEPy such that ¢t < M. In
many cases this result will not hold. m

Corollary 1 The predicate matchy is sequential if and only if matchy is.

10

5 Deciding Sequentiality

5.1 Incompatible Minimally Extended Patterns

When all the minimally extended patterns are pairwise incompatible, the sequentiality
of matchy is easily decided using already known methods. One only has to check if this
predicate is sequential at every partial term which is a prefix of an element of MEPy.
Moreover, one can exhibit a lazy pattern matching algorithm when the checking succeeds.
These two goals are achieved by trying to build a “matching tree” (see for details Huet
and Lévy (6] where this method is introduced). A matching tree is a tree of which each
node contains a partial term M with an index u of mateh); in M, and the branches issued
from a node are labelled with the symbols that may be placed at v in M in order to get
a match. Leaves correspond to elements of MEP which mean a success in the matching
process. The root of the tree contains the partial term Q with the trivial index of match’
at this partial term.

Given the matching tree, the lazy pattern matching algorithm is as follows : start at the
root of the tree and when reaching a node look in the value at the occurrence contained
in the node ; follow the branch of which the label is the symbol found in the value if
there is one (if there is no such branch the matching process fails) ; when reaching a leave
one ensures that the value is greater than one of the elements of MEPy, say p, the one
corresponding to the leave. Hence the value matches the unique initial pattern p; such
that match;(p) = tt.

5.2 Compatible Minimally Extended Patterns

We deal now with the case where there exists two (or more) compatible extended
minimal patterns.

Lemma 3 Let s and t be two compatible minimally extended patterns. By definition both
verify the predicate matchy. Hence there exists © and j such that match;(s) = tt and
match;(t) = tt. Theni = j. '

Proof : Let M be a partial term such that s < M and ¢t < M (M exists since s and
t are compatible). As all the predicates match; are increasing (proposition 1) one has
match;(M) = tt and match;j(M) = tt. Since, for a given partial term, only one of the
match, may be true (lemma 1e) weget i = 5. =

Examples :
It is easy to see from the examples above (section 4.3), that one effectively can get
compatible patterns and that the preceding proposition holds in these cases.

Proposition 4 If MEPy contains two (or more) compatible patterns then the predicate
matchy 15 not sequential. Hence there is no lazy pattern matching algorithm for the instial
list of patterns.

11

Proof : Assume that there exists two compatible minimally extended patterns s and t. As
they are both minimal they are not comparable for the ordering over partial terms. Hence
their greatest lower bound M (which always exists) is strictly less than both s and ¢t. Hence
one must have matchn(M) = ff (from the definition of minimally extended pattern).

We shall prove that there exists no index for matchy in M. Let u be an occurrence of
2 in M and look at s(u) and t(u). There are two cases to consider :

e If s and ¢t have the same symbol at occurrence u, this symbol must be 0. Otherwise
replacing the 2 at v in M by the same symbol as in s and ¢ (extended with 0’s
according with its arity) would give us a partial term less than s and ¢ and strictly
greater than M. This would contradict the assumption that M is the greatest lower
bound of s and t.

o If s and t have distinct symbols at occurrence u, one of them has to be Q. This is a
consequence of the caracterisation of compatible partial terms given in lemma 1.

In all cases we get a partial term greater than M, for which the predicate matchy returns
tt, and having a symbol 2 at occurrence u. Hence this occurrence is not an index of

matchy in M. As this is true for every occurrence of N in M matchy is not sequential at
M =

Theorem 2 The existence of a lazy pattern matching algorithm for a given list of patterns
ts decidable. Moreover we are able to effectively build such an algor:thm if there exists one.

Proof : Using the preceding results, the procedure is as follows : Build MEPq and check
for compatible patterns in this set. If one can find such patterns, there is no lazy pattern
matching algorithm. If such patterns do not exist one only has to try to build a matching
tree. If this building succeeds it gives a lazy pattern matching algorithm, if it fails the
predicate matchy is not sequential (the only failure may come from the lack of an index in
one of the partial terms that are placed in the tree) and hence there exists no lazy pattern
matching algorithm. m

5.3 Examples

We shall look now at the examples of section 4.3 from the point of view of lazy pattern
matching.

o The set MEPy associated with the AND function contains two compatible patterns
(both coming from the second rule, see section 4.3), hence there is no lazy pattern
matching algorithm. In fact this is the obviously correct result, since the meaning
of the function is : If either of the two arguments is “false” then the result is false.
In an abstract sense this is exactly the PARALLEL OR (exchanging false and true)
for which we expect no sequentiality to hold.

12

e We tried to define a PARALLEL OR by

fun (true,z) — true
| (z,true) — true
| (zy) — false
and got { F(true,N1); 7 (false,true); 7 (false,false)} as MEPy. In order to determine if
a lazy pattérn matching algorithm exists one has to build a matching tree. Starting
from 7 (1,), one has to look at its first argument. We can find here two symbols :
getting true we match the first rule, getting false we have to look to the second
argument; getting here true we match the second rule, getting false we match the
third one. This means that there is here a sequential pattern matching algorithm.
This is because the function we defined is not a parallel OR. In fact, due to the
priority rule of ML when choosing which pattern the value matches, the function is
OR(x,y) = if x then true else y. '

e In Berry’s example, although the initial patterns were pairwise incompatible (and
hence the set MEPy too), one cannot find a lazy pattern matching algorithm since
there is no index for matchy in ¥(0,2,0). In fact, whatever the first place to look
at would be, one can build a term M such that M matches one of the patterns and
the value in M at that place is irrelevant.

e In the first abstract example, we have Il = [7(a,0,02); F(0,b,2); F(0,,c)] and
MEPp = {#(a,1,02), 7(b,b,2), F(c,b,02), F(bsc,c), Fle,cic), F(byac), Fle,ac)}. All
the patterns are pairwise incompatible. The matching tree is easily build : look at
the first occurrence, if you find “a” then rule 1, else look at occurrence 2, if you find
“b” then rule 2, else look at occurrence 3, if you find “c” then rule 3 else match fails.

o With IT = [F(2,2,0); F(b,Q,Q); F(Q,0,)] and MEP; = {F(2,0,9), F(b,2,0),
F(c,02,c)} the patterns are pairwise incompatible and the building of the matching
tree is straightforward.

e With IT = [#(a,2,Q); F(a,b,Q); F(2,0,)] and MEP; = {¥(a,0,0), F(b,0,),
F(c,N,c)} the patterns are pairwise incompatible and the building of the matching
tree is straightforward. ‘

o With IT = [F(a,b,Q); F(12,2,0); F(02,0,c); F(0,0,0)], the set MEPy will consist
of {F(a,b,0), F(0,a,0), F(Nec,c), F(b,b,c), F(c,bic), F(Nyc,a), F(Nye,b), F(b,b,a),
F(b,bb), F(c,b,a), F(c,b,b)}. One can easily check that the extended patterns are
pairwise incompatible and it remains to build the matching tree. In 7(,02,02) the
index is the second occurrence. If we find here the symbol “a” then we have to apply
the second rule. If we find a “b” we have to look at the first occurrence : if there is a
“a” apply the first rule, otherwise look at the third occurrence where a “c” leads to
rule three and “a” or “b” to rule four. If, when looking at the second occurrence, one
finds a “c” then one has to look at the third occurrence where a “c” leads to the third

13

Figure 1: Matching tree

rule and “a” or “b” to the fourth. (see the matching tree, with some modifications
in order to improve readability, in figure 1).

Since the building of the matching tree succeeds, we get a lazy pattern matching
algorithm. However this algorithm is not straightforward and some ingenuity would
be needed for a compiler to derive it directly from the initial list of patterns.

With I = [#(a,b,); F(a,a,0); 7(0,0,c); F(0,0,0)] the set MEP, will consist of
{#(a,b,02), #(a,a,02), F(c,N¢), F(b,Nyc), F(Qcc), F(b,0a), F(b,02,b), F(c,Na),
F(c,2,b), F(Nyc,a), F(Nye,b)}. In this case there are compatible minimally extended
patterns (for example ¥ (c,(),c) and F(c,c) in the set replacing the third initial pat-
tern) and we cannot find a lazy pattern matching algorithm. A trouble for example
comes from the fact that in order to recognize the third rule, one has to find a “c”

- at the third occurrence and to discard the first two rules. But this second condition

is achieved looking at the first occurrence in some terms and at the second in others
and the occurrence to look at can not be choosen before looking at its symbol.

The very important difference between the last two examples is due to a little change
in the set of initial patterns. It would be rather difficult to detect such differences

14

6

without a mechanical process such as the one we give here.

We end with a more realistic example. It is an ML function which simulates a piece
of the Categorical Abstract Machine (C.A.M.).

let rec Exec = fun
(pair(x,y), (car::CC), D) -> Exec (x, CC, D)
| (pair(x,y). (edr::cC), D) -> Exec (y, CC, D)
| (T, (Cons::CC), (val(T’)::D))
-> Exec (pair(T’,T), CC, D)
| (pair(closure(x,y).z), (app::CC), D)
-> Exec (pair(y.z), x, (adr(CC)::D))
| (T, (cur(x)::CC), D)
. -> Exec (closure(x,T), CC, D)
ber, 0, 0 ->Ts

One can see the first element of each pattern as the register of the machine, the
second one as the code (list of instructions) to be executed and the third one as
a stack (implemented as a list). The above function describes what is to do when
getting each instruction at first place in the code or when code is empty. Of course
in a real case there would be much more instructions and hence much more cases in
the function definition.

In this case, we see that all the patterns are pairwise incompatible : they are all
distinct in the code argument. However, what is interesting here is that the building
of the matching tree shows that one has to look first at the second argument and
if it is not the empty list to the first element of the list that one finds. This is
sufficient to select the only rule which may be applied (it remains to verify the other
conditions to apply it). All the already implemented pattern matching compilations
fail to recognize this fact and give a code that does useless work (for the algorithms
used see (1], [4] and [12]).

Conclusion

6.1 Implementation

In order to insert our method in a compiler for an ML system, one has to solve some

other problems : for example ML accepts infinite signatures to build the patterns, allowing
them to contain integers or strings. This may be solved since there is only a finite number
of integers or strings that effectively appear in the patterns ; one only has to group other
values as a single otherwise case. The same method is used to take into account that other
constructors may appear in the value to match, than those that one find in the patterns.
. Some trouble may come from the internal representation of ML structured values, of which
some parts are discarded for the sake of efficiency (see Suarez [12]) : this only leads to

15

some complications in the algorithm. We also have to give a compilation of the pattern
matching even in the cases where there is no lazy pattern matching algorithm : issuing
a warning, we pick an occurrence that is useful at least in one case, and continue the
building of a matching tree with this occurrence as if it was an index. This gives a pattern
matching algorithm but of course lazyness is lost.

We are also led to address the point of efficiency in our compilation, and particularly
when searching for indexes and building the set MEPy. However experimental versions
of a pattern matching compiler produce CAM code from ML code using less than twice
the time that the present compiler uses. On the other hand these versions use simpler
internal representations of the patterns and one can expect some gain on the parsing time.
Moreover the CAM code seems to be more compact and may run faster. Another possible
improvement (that is still under test too) is the following : when our algorithm recognizes
the expression to evaluate, the set of occurrences it looked at in the argument is known ;
if we keep pointers at them the access to variables appearing in this expression may be
significantly improved.

All these facts lead us to try to implement such a pattern matching compilation not
only in the lazy version of the CAML system but also in the strict version. We expect
some efficiency gain in the two cases (we recall here the example of the function simulating
the C.A.M.). However some further experiment is needed to determine exactly what is
really useful among the possible improvements we listed above.

6.2 TFurther work

Apart from the implementation work in progress, we want to look at some extensions
of this paper.

The first one is to extend the theoretical results to other systems. This covers am-
biguous pattern matching with other priority rule than ML, but also investigating the
possibilities of extending them to Term Rewriting Systems with ambiguous left-hand-sides
and priority meta-rules to ensure determinism of computation (as is proposed for example
in [2]).

The second interesting extension of this work is strictness analysis. It has been intro-
duced as a way of improving lazy systems by determining at compile time that some parts
of the values are always needed and may be evaluated without “delaying” or “freezing”
mechanism. If we know that the lazy pattern matching algorithm needs to evaluate some
part of the argument of a function this gives us this kind of information. Moreover when
compiling the expression associated with a pattern we can use the fact that some parts of
the argument have been evaluated during the pattern matching process. '

. Strictness analysis has another connection with lazy pattern matching. In fact a lazy
language does not need a lazy pattern matching algorithm : it only needs that the appli-
cation of a function to its argument does not evaluate not needed part of the argument.

16

Now look at a function using Berry’s example :

fun (true, false,z) g
| (false,z,true) — =z
| (z,true, false) — =z

Since we did not modify the patterns there is no lazy pattern matching algorithm, but
- as the expression to evaluate in order to return the result is in each case that part of
the argument that the pattern matching algorithm does not need, we see that the whole
argument is always needed. Hence the function’s result may be lazyly evaluated using any
pattern matching algorithm. However there is no mean of deciding what part of a general
ML expression will always be evaluated. So there is here much work to gain efficiency from
the concept of strictness analysis, and finding a lazy pattern matching algorithm remains
the only systematic way to ensure that the function evaluation will always be lazy.

References

[1] L. Augustsson “A Compiler for Lazy ML”, A.C.M. Conference on Lisp and Functional
Programming, Austin 1984, pp 218-225

[2] J. Baeten J. Bergstra J. Klop “Priority Rewrite Systems”, Report CS-R8407, Center
for Mathematics and Computer Science, Amsterdam

[3] R. Burstall D. MacQueen D. Sannella “HOPE : An Experimental Applicative Lan-
guage”, A.C.M. Conference on Lisp and Functional Programming, Stanford 1980, pp
136-143 '

[4] L. Cardelli “Compiling a Functional Language”, A.C.M. Conference on Lisp and Func-
tional Programming, Austin 1984, pp 208-217 :

[5] P.L. Curien “Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming”, Research Notes in Theoretical Computer Science, Pitman Publishing
Ltd 1986 ~

[6] G. Huet J.J. Lévy “Call by Need Computations in Non Ambiguous Linear Term
Rewriting Systems”, Rapport IRIA Laboria 359, August 1979

[7] G. Kahn G. Plotkin “Domaines concrets”, Rapport IRIA Laboria 336, December 1978

[8] M. Mauny “Compilation des Langages Fonctionnels dans les Combinateurs
Catégoriques, Application au langage ML”, Theése de 3eme cycle, Université Paris
7, 1985 |

[9] M. Mauny A. Suarez “Implementing Functional Languages in the Categorical Abstract '
Machine”, A.C.M. Conference on Lisp and Functional Programming, Cambridge 1986,
pp 266-278

17

[10] R. Milner “A Proposal for Standard ML”, A.C.M. Conference on Lisp and Functional
Programming, Austin 1984, pp 184-197 '

[11] G. Plotkin “Call-by-need, Call-by-value and the Lambda Calculus”, T.C.S. Vol 1, pp
125-159, 1975

" [12] A. Suarez “Une Implémentation de ML en ML”, These, Université Paris 7, to appear

[13] D. Turner “Miranda a Non Strict Functional Language with Polymorphic Types”, in
- J.P. Jouannaud ed. Functional Programming Languages and Computer Architecture,
L.N.C.S. 201, Springer Verlag 1985

Imprimé en France

par
I'Institut National de Recherche en Informatique et en Automatique

Y

y
i
:
H

B

