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ANALYTIC MODELS FOR
TREE COMMUNICATION PROTOCOLS

Philippe Flajolet and Philippe Jacquet

Abstract:! The tree protocol for local area networks, together with a number of its variants, can be ezactly
analysed under a Poisson arrival model. This note surveys some of the evaluations that have been obtained
for characteristic parameters including delay, session length or probability of immediate access to the channel.
The mathematical techniques involved are: functional equations and Mellin transforms.

MODELES ANALYTIQUES
POUR LES PROTOCOLES DE COMMUNICATION EN ARBRE

Philippe Flajolet et Philippe Jacquet

Résumé: Le protocole en arbre pour réseaux locaux, ainsi que nombre de ses variantes, peut étre exactement
analysé sous un modéle d’arrivées Poissoniennes. Cette note présente une synthése d’évaluations obtenues
pour les parametres caractéristiques tels: le délai, la longueur de session ou les probabilités d’accés immédiat

au canal. Les techniques mathématiques en jeu comprennent les équations fonctionnelles et la transformation
de Mellin.

t Invited lecture at the NATO Advanced Study Institute on “Flow Control of Congested Networks”, Capri
(Oct. 1986); Proceedings published by Springer, New-York (1987)
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ANALYTIC MODELS FOR
- TREE COMMUNICATION PROTOCOLS

Philippe Flajolet and Philippe Jacquel
INRIA, Rocquencourt
78150 Le Chesnay (France)

Abstract: The tree protocol for local area networks, together with a number of its variants,
can be exactly analysed under a Poisson arrival model. This note surveys some of the eval-

uations that have been obtained for characteristic parameters including delay, session length * -

or probability of immediate access to the channel. The mathematical techniques involved are:
“functional equations and Mellin transforms.

1. Introduction

Protocols for regulating access to a channel shared by several stations were first de-
signed in the sixties, and started with the ALOHA concept: Each station transmits
as soon as it has a message to send; the message is broadcast, and picked up by
its intended receiver unless two (or more) stations collide; in that case, every sta-
tion detects the collision, and senders schedule a later retransmission. The rule for
retransmitting is precisely the commaunication protocol.
~ Stations’ “feedback” from the channel is thus limited to a ternary information:
ACK (acknowledgement, i.e. successful transmission); LACK (lack of transmission,
i.e. silence); NACK (no ACK, i.e. collision). Since stations are not distinguishable
from each other in general, a key idea to resolve collisions is to let a random component
enter their retransmission policy. If the protocol is suitably designed, one may hope for
the best, namely expect the channel to succesfully transmit messages with reasonable
delays as long as the traffic load is not too high.

In this paper, we consider the case of a slotied time channel where transmissions
start at discrete instants 0,1,2,... and messages are calibrated so that their duration
does not exceed one slot. Basically, the ALOHA protocol is the following simple rule:

A. In case of a collision, wait a random amount of time (i.e. slots) uniformly dis-
tributed over the interval [1..80] before attempting a retransmission. Parameter
6o is a design parameter whose value is fixed and common to all stations, its
value being chosen based on the network configuration.

It was soon realised (Fayolle et al.; Kleinrock et al.) that the ALOHA protocol is

unstable: If messages arrive according to a Poisson process with intensity A > 0,

then with probability 1, the “backlog” (messages awaiting retransmission because of

previous collisions) tends to infinity. Intuitively, the protocol maintains a virtual time

window of a fixed size that, sooner or later, is doomed to become saturated.

-1 -



The next idea, which gave rise to the Ethernet protocol, was to use a “sliding”
parameter § whose value changes dynamically with stations and time, and whose
control is meant to have the protocol adjust to traffic variations. The simple idea is
for a station to retransmit randomly in the interval [1..5] where:

E. Initially, upon a message arrival, § is 1. After each collision experienced by its
message, the station doubles it own value of §. -

It took some time and effort (Aldous) to realise that Ethernet is itself unstable: in
practice, this may mean fairly suboptimal channel utilisation, delay inefficiencies or
poor response to bursts of traffic. Meanwhile, the tree protocol was invented circa
1977 by Capetanakis, based on the following elegant idea:
T. If a group G of stations collide (|G| > 2), that group is split by coin flippings
into. two subgroups Go and G;. The stations in Gy first recursively resolve their
collisions. Then the group G resolve their collisions independently.
The interest of this protocol is to use a dichotomy to separate colliders, and an
execution is simply described by a tree. It is not immediately clear however that
it can be implemented without having the stations communicate some extraneous
informations about their coin flippings. A decentralised formulation (providing a
practical implementation) of that protocol was arrived at independently by Tsybakov
et al. and there, each station manages a stack.

Partial stability regions were characterised in the initial papers, and we now know
that, under the Poisson model, the protocol is stable until an arrival rate of about
35%. Actually, going to details, there are two ways of implementing the protocol:

— Free Access: The immediate access rule (in the style of ALOHA) is enforced.
Thus the resolution of collisions by a group may involve newly arrived messages;
the system operates in a somewhat last-in first-out fashion.

— Blocked Access: There collisions are resolved in sessions. Newly arrived stations
wait until a collision resolution “session” is over (in case any is taking place)
before they are allowed to enter the competition, and start a new session.

The purpose of this paper is to present the analytic methods involved in the evalu-
ations, putting into perspective some of our own results [FFHJ 1985], [FFH 1986],
[MF1985], [Jacquet 1987] and [JR 1986]. It is quite interesting that there is a fairly
rich mathematical structure behind the tree protocol, and many relevant parameters
can be exactly analysed. We shall try toillustrate the mathematical methods at stake
here.

Note: The reader can refer to the survey paper by Massey [Massey 1981] and to a
special issue of the IEEE Transactions [Massey 1985] for detailed references on the
subject that are not duplicated here.

2. Blocked Access: A Basic Analysis

Strangely enough, the basic tree protocol with blocked access had been analysed
before it was invented, by Knuth (1973). The reason is the generality of the recursive
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splitting process based on random choices that turns out to be the exact model for
the trie data structure, and for a variety of searching methods in computer science.
‘Below is a revised presentation of Knuth’s result.

Let Ly be the random variable (RV) denoting the time taken to resolve N col-
lisions using the tree method, assuming no further arrivals. If the group of size N is
split into subgroups of size K and N — K (N > 2) then:

Ly=14Lg+ Ly_xg with Lo=1L,=1. (1)

When a fair coin is used, the “splitting” probabilities that the RV K has value k is:

S 51,;(’;’) @)

so that, taking expectations of (1):

N

IN=E[LN)=1+) anp(e+ivoi),  (N22) (3a)
k=0

a relation that permits to compute inductively each of the {y. The form of (3a)
. 3 . . . N
suggests using exponential generating functions (egf’s). If {(2) = 3" y5oln %7, then
(3a) becomes: -
I(z) = e* —2— 22+ 2ez/21(§), (3b)

a difference equation. From there two routes are possible:

— Direct solution: Set A(z) = e~#I(2) and determine the relation satisfied by it. It
is of the form: A(z) = 2A(%) + a known function. Thus the coefficients of A can
be exactly recovered, whence by convolution with those of e, the coeflicients of
I(z). This provides a finite sum for ly, which involves exponential cancellations
and does not yield easily to asymptotic analysis (though the so-called “Rice
integrals” method from the calculus of finite differences can be used).

— Iterative solution: A functional equation like (3b) is of the form:

#(2) = a(2) + B(2)8(1(2))

with ¢ the unknown function, and it can be solved by iteration. If this is done
here, and the solution is expanded, one finds a well-conditioned sum:

: = 1 N 1

1N=1+222’=[1—(1—2—k)N—2—k(1—§;)N-1] (4)
k=0 .

an expansion that however reserves some surprises!

It is interesting per se to consider approximations of Iy, and it is not difficult to

conjecture that Iy =~ ]§1gv2' A good physical reason for interest in this asymptotic
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problem is that, if Iy ~ cN, then the constant ¢ is (asymptotically) an average service
time. Thus the protocol should be stable for arrival rates A such that ¢\ < 1, which
suggests a maximum admissible throughput for the tree protocol of A = log2/2 =
0.34657. : '

That conjecture is almost true, but not as simple as it looks. First, using in (4)
the approximation (1 — a)¥ ~ e~*N —which is easy to justify— we find:

Iy =2F(N)+O(VN) with F(z)=) 2[1-(1+ ;r)e"/?*]- (5)
k>0

That sum is a so-called harmonic sum and the best way to treat it is to determine its
Mellin transform defined as:

00.
F*(s) =/ F(z)z*"ldz. (6)
0 - . . ..
Here, we find:
F*(s) = (—31%12%8—) for s in the strip —2 < R(s) < —1. M

From there, using the Mellin inversion formula, and computing the integral by
residues, we get:

1 —3/2+ic0
F(z)= — F*(s)z™"ds~ > Res[F*(s)z™"], (8)

AT J_3/2-ic0 R(s)2~1

where the last sum has the character of an asymptotic expansion in non-increasing
powers of z. However (There is the rub!), F*(s) has poles with a non-zero imaginary
part, and since z** = e?*1°8%  these correspond to periodic fluctuations. Thus Iy is not
a “smooth” function of N, though the periodic fluctuations are of limited importance
since their amplitude is < 10~%. We have arrived at:

THEOREM 1: (i). [Knuth 1973) Quantity Iy satisfies asymptotically:

2
Iy = ogz Y + VP(logz ) + O(VN)

where P(.) is a periodic function with amplitude < 10~%.

(ii). The supremum Amayx of arrival rates A for which the tree protocol with blocked

access is stable satisfies: log 9
Amax — —‘%— <1075,

Therefore Amax = 0.34657.
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3. Free Access: A vFunvctional Equation...

It is natural to try and extend the previous analysis to the case of the free access
version of the protocol. As we shall see, the functional equations that appear are of a
different form, and they lead to some analytic difficulties. However, from the analysis,
the maximum admissible throughput can be exactly determined. A

Consider thus the free access tree protocol with a Poisson rate of arrival A. The
starting point is a recursive relation on RV’s that extends Eq (1). Since arrivals keep
coming in, the basic equation is: ‘

Ly=14Lgsyx+Ln_k4y with Lo=L =1 ‘ 9)

where X,Y are Poisson RV’s. At this stage, also consider the possibility for the
coin flippings to be biased, with probabilities p and ¢ = 1 — p for head and tail.
Introduce the egf I(z) of the expectations Iy and the modified egf A(z) = e™*I(2).
These quantities now depend on A and Iy = Ix(}) etc., thus the Iy for blocked access
coincide with In(0). It is not too difficult to see that A(z) satisfies an equation of the
form:

A(z) = AA + pz) + A(A + q2) + a(2) (10)

where a(z) is a known function. That functional equation ceases to be “local”: it
relates the values of A around 0 to the values around ), and this reflects the fact that,
due to arrivals, each Iy is related by an infinite recursion to all the other I;.

A first step is thus to consider functional equations of the general form (where ¢
is the unknown function):

#(2) = a(2) + ud(o1(2)) + vé(o2(2)) with 01(z) = A+ pz and 02(2) = A +¢=.
(11a)
Solutions by iteration of (11a) involve a sum over the “iteration semigroup” H defined
as the set of all compositions of oy and o3 (observe that H is non commutative in
general):

#(2) = S[a(.);zj = Z(u;v)ra(‘r(z)) where (u;v)” = ulTlo1pllea, (11%)
T€EH

We have thus at our disposal a summation operator S to solve non local difference
equations of the form (11a). Applying it to the equation giving A yields explicit
expressions, again involving sums indexed by H that are easy to evaluate numerically.
More important, we see that A(z), as well as the I, become infinite when A= A
where A .. is determined as the solution of a certain transcental equation. Thus
the maximum admissible throughput of the tree protocol with free access is precisely
determined. We state here the easier case where p = ¢ = ;—:

THEOREM 2: [FFH 1986] The supremum X, of arrival rates for which the tree
protocol with free access using fair coins is stable, is the smallest positive root of the
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equation:

2exp(—2))

4+=T"%

> 2 exp(22/2) [exp( —M2)(1-A/2)-1- 2(,\/2*)2+2(,\/2*)]_o

i>0 )
(12
Numerically, X, ., = 0.360177147.

Thus, free access accepts a slightly er traffic rate than blocked access before destabilis-
ing. Viewed from the stations, free access is also easier to implement since there is no
need of a continuous monitoring of the channel during inactivity periods. Therefore
it seems to be the method of choice in this class of methods, especially after further
optimisations to be discussed later are applied. .y .

The asymptotic analysis is trickier than before. The Mellin transform of a har-
monic sum involves a Dirichlet series related to amplitudes and frequencies:

/ow (; akf(bkx)) 2"l dz = w(s) /0°° f(z)z*~tdz  with w(s) = zk: akb;(sl.B)

In the case examined in Section 2, we just had w(s) = (1 —2°*!)~!, by summation of
a geometric progression. Now, there appears sums indexed by semi-group H, of the
form:
w(s)= D r(r(0))(#"¢’) (14)
TeH

where r(u) is a standard C*® function (a combination of exponentials). To carry out
the asymptotic analysis requires determining the singularities of such an w(s).

There is an interesting topological property of semi-group H: the images of a
given point 2y under H are dense over the real interval [A A] determined by the fixed
points of oy,0,. Furthermore, these images are in a sense asymptotlcally uniformly
distribuled, and this fact yields the poles of w(s), from which the a.symptotlc analy31s
can be completed.

THEOREM 3: [FFH 1986] For the tree protocol with free access under a Poisson
flow of arrivals of parameter A with A < )., we have, neglecting small fluctuations:

IN~c(A)N+0o(N) asN — co. (15)

Thus, the burst response of the protocol is also fully characterised.

4. Free Access: Delay and Other Parameters

The previous section has demonstrated how to analyse the session (or collision res-
olution interval, CRI) lengths when theré are N initial colliders ~both exactly and
asymptotically~ characterising in passing the stability region. In particular, we intro-
duced in (11b) a rather powerful summation operator S over semi-groups.
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The problemnow is to determine the steady state behaviour of important pa-
rameters of the protocol like delay etc. The basic approach is in two steps:

1. For parameters that are inductively defined on the tree structure, generating
functions of the form (11a) can be set up. Thus, using the solution method (11b),
we could also obtain expressions for their expectations over a session conditioned
to be with N initial colliders.

2. The values of the generating functions, like A(2), at z = A have a probabilistic
interpretation, and they yield unconditional expectations of the parameters.
The new point is 2 above. To see it in the case of session length, observe that, by

definition:

IVEDY zNe-*?V—IT. (16)
N>0 ;

Now, the coefficient of Iy in the above is nothing but the Poisson probability. But

sessions start at “random” times, where the number of colliders also obey the Poisson

distribution. Thus, the weighting in (16) yields the unconditional expectation of a

CRI (or interval between two returns to the empty state, with no station backlogged).
That argument can be adapted to a delay analysis:

(i). - The expectation of the cumulated delay experienced by all stations in a session,
conditioned upon the number of initial colliders M, has a modified generating
function D(z) which satisfies an equation of the form (11a).

(ii). Over a large number s of sessions, by the “law of large numbers”, the total
delay will tend to sD(XA). The total session length will tend to sA(}), with
asymptotically sAA(A) arrivals. Therefore, the unconditional (steady state) mean
delay per message is equal to the quotient D(X)/(AA(X)).

We shall summarise (see [FFHJ 1985] for detailed expressions) the previous discussion

by:

THEOREM 4: [FFHJ 1985] The steady state expectation of the delay experienced
by a station under the free access tree protocol has an explicit expression in terms of
the summation operator S of (11b) applied to standard functions.

Similar results hold true for the variance of delay, the top-of-the-stack occupancy
distribution etc. and the expressions obtained lend themselves to easy numerical
evaluation. When p=gq = %— they further simplify and somewhat resemble expressions
found in Theorem 2. As an example of extensive numerical estimates, when A = 0.25
and fair coins are used, the expected delay is only 4.79180 with a standard deviation
of 11.2; there is probability 0.619 that a newly arriving message will be delivered
immediately. Also, a detailed “low traffic” analysis can be conducted: We find that
using a baised coin with p =2 — /2 = 0.586 slightly optimises delay for low traffic.
Finally, this type of analysis applies mutatis mutandis to other versions of the
tree protocol. An unexpected result [MF 1985] is that using ternary instead of binary
splittings in the basic protocol improves some of the characteristics by about 10%, at

-7 -



no extra cost of implementation: In the stack formulation, simply go down by two
levels in the stack when a collision is encountered.

THEOREM 5: [MF 1985] The tree protocol with free access and ternary splittings
has a maximum admissible throughput of

A = 0.401599.

5. The Deterministic Tree Protocol

So far, the tree idea has been used, in accordance with the ALOHA principles, in
a probabilistic manner. However, as already noticed by Capetanakis, it can also
be implemented in a non randomised way, when the number of stations is fixed in
advance.

Assume a network is configured to operate with a maximum number K of stations
and consider the blocked access version of the protocol. If K is taken a power of 2,
K = 2%, then assign to each station a binary string of length k that uniquely identifies
it. In each session, a station can use its predetermined string (instead of a random
sequence) to participate in the splittings and schedule its retransmissions. This is the
so-called deterministic tree protocol.

Quite clearly, the maximum length of a session is now 2K ~ 1, corresponding to a
full binary tree of height k that develops when all K stations are active; the maximum
delay for a message will always be less than 4K. Thus, it seems, a little gain occurs
from this worst case guarantee at the expense of a little loss in flexibility. We shall
see later that there is actually more to it!

We wish to analyse the deterministic protocol under the assumption that each
station has messages arriving at a Poisson rate of A/ K, resulting in a global rate that
is Poisson(}).

A not too surprising phenomenon is that, when A < Anax, the deterministic
protocol behaves basically like the standard randomised version. More strikingly,
however, stability is retained when A > Apax, provided A remains less than % We
shall call such a region the hyperstable region and there is a sort of “phase transition”
taking place at Apax.

Simulations reveal -and analysis confirms- that good approximations, in the
hypersable region, (say within a few percent when K = 256) are obtained by letting
K — co. In particular, the queueing phenomena at the stations can be characterised
in the limit.

The starting point for evaluations is relations that parametrise with k (or K = 2F)
the analysis in Egs. (1-4). Let I%‘) denote the expected length of a session starting
with N initial colliders in a universe of K = 2F stations. Quantities Il(\’;) are also

relevant to the analysis of tries in computer algorithms and had been determined
earlier by Trabb Pardo (1977):

-8 -
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THEOREM 6: (i). [Trabb Pardo] The expected length of a session for the determin-
istic protocol, with N initial colliders and a universe of K = 2* stations, is:

k ) (2" _zi) 2"—2-")
' =142241Y [2-1 (1- 42 - o a7)
j=1 N) (N)

(ii). When k — oo, each expectation I}:’ tends monotonically to 155’.- 11(:) — I with
18 <1y '

The second assertion follows by simple computations. One can actually prove [Jacquet
1987] that, in the sense of Markov chains (i.e. the transition probabilities), the deter-
ministic protocol converges to the probabilistic protocol provided A < Apax. Accord-
ingly, the queueing phenomena at the stations are asymptotically negligible. More
interesting phenomena occur when A > Apay:

PROPOSITION 7: The system formed by queues at the stations coupled via the
deterministic tree protocol is stable for A < A% .., where:

K
Al = .
max 2K —1
This follows from the observation that the K stations receive service in at most

2K — 1 slots. For large K, A}, tends to L.

max

To continue the analysis, we observe that parameters of interest (session length,
delay) should be re-normalised by K, if we want asymptotically meaningful quantities.
We start with a simplified session model whose analysis is closely related to (17):

— Assume the channel is idle and that, at a beginning of a new session, each station
becomes active with probability z. Then the expected length I*¥)(z) of that
session satisfies:

1(k)(z)

k
ok 27k 4 22 [2_j(1 -(1- z)"’“) ~-z(1- 3)2"—1].

j=0

Essentially, I{*)(z) is a generating function of the lg’. As k — oo, the 27%I(¥)(z)
converge to L(z) given by:

o . - .
Lz)=2)_ [277(1- 1 -2)%) - z(1 - 2)¥1]. (18)
j=0
This function L(z) plays an essential role in our subsequent analysis:

THEOREM 8: [Jacquet 1987) Asymptotically for large K, the RV describing the
queue length at any station, under the deterministic tree protocol with arrival rate \
in the hyperstable region, has generating function:

1—2z2
—Zexp(i(l = 7))’

a() = (1= )7 (19)
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where p is determined from A by the equilibrium equation:
B =AL(p)

and L(z) is given by Eq. (18).

The reader will have recognised in (19) the generating function of an M/D/1 process
(Markovian, i.e. Poisson arrivals/ deterministic service time): An M/D/1 queuing
process with rate u is a discrete time process Q(t) such that:

Q(t+1) = |Q) — 1|* + A1)

where A(%) is a Poisson variable with parameter y. Thus Theorem 8 expresses the
following fact: in the hyperstable region, the queuing system behaves asymptotically
like a collection of independent M/D/1 processes.

Let us give a quick intuition about the probabilistic phenomena at stake. In the
steady state, a fraction g (0 < p < 1) of the population will be active, resulting in a
session of length ~ K L(u) during which there arrive in turn KAL(p) new messages.
Whence the equilibrium equation: g = AL(p). Since the “server” (i.e. channel) is
periodically available, each time a new session is started, the system, once normalised,
resembles in the limit an M/D/1 process. It can, in effect, be proved rigourously that
the state transition probabilities corresponding to finite values of K converge to the
transition probabilities of the M/D/1 process.

6. Limit Distributions

We conclude our review of analytic results on the tree protocol with a few results
obtained by Jacquet and Régnier [JR 1986]. Let X5 be a parameter (random variable)
of the blocked access tree protocol, like session length (i.e. size of the associated tree),
path length or height of the tree, when a session is started with N initial colliders.
As N increases, those parameters Xy have complicated (exact) distributions that
however tend to limiting distributions of a simple form.

THEOREM 9: [Jacquet, Regnier 1986] Let Sy be the random variable representing
the length of a session of the blocked access tree protocol in its randomised version,
started with N initial colliders. As N — oo, the distribution of the random variable
Sy tends to a limiting Gaussian distribution.

Let pn, be the probability that the modified session length Xy = (Sy — 1)/2 be
equal to k, and introduce the bivariate generating function

N
P(z,u) = E PN e * fN—[uk. (20)
Nk ’

Function P is also a Poisson generating function when z is fixed: It represents the
probability generating function (pgf) of Xn when N is itself Poisson with parameter
z. The rather difficult proof proceeds in stages:

-10 -
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" 1. First use the recursive nature of the tree process to set up a non-linear difference
equation satisfied by P(z,u), like what has been done before:

P(z,u) = uPZ(%, u) + (1 —u)(1+ z)e™". (21)

2. The problem is to obtain a good asymptotic approximation for P(z,u) for fixed
u and large 2. Setting L(z,u) = log P(z,u), L satisfies a quasi-linear difference
equation. From there, the growth of P(z,u) as well as its moments P,(z, 1) and
P,u(2,1) can be determined using Mellin transform techniques.

3. The characteristic function P(z,e®*) -after normalisation using mean and vari-

_ance estimates from Point. 2— converges as z — oo to the charactenstlc functlon

“of a normally distributed variable, namely e~! ’f2,

4. There now remains to translate the previous limit result under a Poisson model
with parameter z to the case where N is fixed but large (The latter is the so-
called Bernoulli model). What is needed here is an argument with which, if an
is a sequence of numbers and

N
A(Z) = E an C_z‘m,
I :

then ay ~ A(N). A general “semi-Tauberian” theorem (requiring the estimates
to be valid in some region of the complex plane for z values) is given in [Jacquet,
Régnier 1986] to that effect. By this device, results can be transfered from the
Poisson to the Bernoulli case.
Several parameters, including various notions of height, can be analysed in this fash-
ion. Also the method is general enough to accomodate the case of biased coins.

7. A Local Area Network Realisation

Besides being theoretically analysable, the tree protocol has many practical advan-
tages. Its simplicity is comparable to that of Ethernet, since stations only need to
maintain an integer index (representing their stack level): It is the way that index is
managed that differs. Implemented in an asynchronous mode (unslotted time), it is
compatible with the IEEE norm 802.3 . It is also fairly resistant to misinterpretations
of channel feedback by stations. Last but not least, the deterministic version offers
good worst-case guarantees on message delay when real-time constraints are present,
and increased throughput results from the hyperstability phenomenon discussed ear-
lier.

For those reasons, the SCORE project at INRIA has designed a prototype reali-
sation, called LYNX, of a real time local area network based on the deterministic tree
protocol, which is currently under industrial development. At present, the network
consists of 14 stations: It necessitates only a simple modification of the Ethernet
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coupling boards, in accordance with what has been said earlier concerning norm com-
patibility.

Extensive measures have been conducted on LYNX, as well as with a network
software emulator for 256 stations. In LYNX (as in any Ethernet network), collision
" slots being of a shorter duration, the observed performances are actually better than
our previous computations imply. It is not difficult to “tune” the mathematical models
to take this fact into account. (We have only refrained from doing so to keep the
discussion simple). Measures and simulations amply confirm the analyses given in
this paper. For instance, it appears clearly on that configuration that Ethernet will
destabilise when X = 70% while this occurs only at A &~ 90% for the deterministic

tree protocol. The rejection rate of messages, due to real time constraints not being

-satisfied, is also appreciably lowered by this change of protocol.
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