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Abstract

Several techniques for experimental determination of floating point precision
in practical computations are examined, and applied to linear algebra algorithms.
These techniques are simple enough to be directly applicable to existing production
codes, requiring a very limited amount of software on many machines, and yet they
vield interesting information on the numerical precision of a computation.

Our choice of linear algebra algorithms includes a direct solver (namely the MA32
program from the Harwell Library), several variants of preconditioned conjugate
gradients. The results may be of interest as method selection criteria and thus
complement M FLOP performance data available from several sources.

Résumé

Nous examinons plusieurs techniques pour déterminer la précision des calculs
en virgule flottante dans les algorithmes numériques, en particulier en algebre
linéaire. Ces techniques, suffisamment simples pour étre directement applicables a des
codes industriels, exigent un volume limité de logiciel pour leur mise en oeuvre sur la
plupart des ordinateurs, tout en étant capables de fournir des informations intéressantes
sur la précision des calculs. ]
A titre d'illustrations nous avons choisi : une résolution de systéme linéaire par méthode
directe (plus précisément la routine A7A432 de la librairie Harwell); plusieurs variantes
de gradiants conjugués préconditionnés. Les résultats peuvent &tre utilisés comme -
critere de sélection de méthode, et complémenter les évaluations de la vitesse en
MFLOPS obtenues par d'autres moyens.

*) Computations performed on the CCVR equipment
1) 1. Duff was at INRIA on leave from Harwell

Présenté a
Sixieme Colloque International sur la "Simulation d'écoulements par ¢léments

finis"
Sixth International Symposium on "Finite Element Methods in Flow
Problems”

Antibes, Juin 1986.
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1 Introduction

The evolution of computers large in both speed and memory size now makes
practical numerical computations that exceed 102 floating point operations.
In standard practice, programs are being “stretched” to cover finer and finer
discretized models, with little consideration given to their limitations in terms
of arithmetic precision.

However, the basic floating point precision of the machines has not varied much
in the recent years, since it is generally felt that the speed issue is still the most
important. Most of the effort has been towards a standardization of floating
point formats and the construction of High Precision Arithmetic, which is not
generally available and incurs high performance penalties [JW86]. Our present
view is that the systematic use of some easy to use precision evaluation tools
can help both at algorithm design and coding stage and when selecting an algo-
rithm for a particular application. This implies being able to apply the method
on production codes with little, if any, programming cost and to analyze the
results.

The introduction of vector computers with large memories, especially those with
32 bit Floating Point capabilities, brings us closer to the limit where precision
consciousness may become a major issue. Moreover, this class of machine natu-
rally comes with powerful restructuring and optimizing compilers which perform
some transformations that can potentially affect the floating point precision of
a result [KM}[KKLW]. Here too we feel that a properly instrumented approach can
help to cope with the issue.

2 A Model of Floating Point Arithmetic
2.1 Basic Notions

The most difficult aspect is to have a model that can be precise enough to ana-
lyze the phenomena, yet abstract enough to permit meaningful study of whole
algorithms. This question is not totally identical to the one of making floating
point representation characteristics available to high-level language codes.In the
latter case, one would be seeking to adapt at run time the algorithms to exploit
the full precision of the computer. In the former case we want to assess how
successful the algorithm is, and how hard the problem is.

The aim of normalized floating point representation is to bound the admissible
relative error on arithmetic computation, under the constraint that the operands

and results are neither in the OVERFLOW range, nor in the UNDERFLOW range. If
this is true, one has:!

Yue 7L ; Vve 7L

1Some machines may exhibit deviations from this model. e.g. Cray X-MP




orh = (wopr) x(1+9) (1)

6] < Uerr

Where Uerr is 2 machine dependent constant, the maximum relative error,
whose relation with the number representation is discussed in detail in [Bx],
[Kn] and [Hw]. '

The main problem in analyzing an algorithm’s behaviour is that this relation
introduces an auxiliary variable §,pnum per operation in the computation. Set-
ting nops to the number of actual floating point operations, the actual result
is thus a mathematical function of the data D and the set of individual relative
errors {81, ...y Snops) %: ,:'

] =[] .‘ )
= F5 (valg(D) , (61,..., Snops))
under the constraint:
|6i] £ Uerr

{In the above formulae we have made use of the notation: Program’s floating
point data: D; Data value in the field ®: valg (D); Floating point result
expressed in R: 7. )

On the other hand, the exact result is expressed:

R - 7(D) (3
= F; (vaiz{D) , (0,...,0))

2.2 On the Influence of Vectorization Techniques

The vectorization techniques are aimed at exploiting the existing potential par-
allelism in programs so as to obtain significant speed-ups on pipelined machines
and more specifically vector computers. They can be classified in two very broad
categories: program flow and algebraic related transformations.

2.2.1 Program Flow

These techniques are aimed at restructuring the program, but do not require
any knowledge of the properties of the basic operations, besides the fact that

each operator | op |defines a pure function from its operands to its results: res «—

(01, 02). This implies that the exact initial sequence of “atomic” operations

3Since we have not excluded here tests depending on floating point quantities, this amounts
to saying that the program’s output is a function of its inputs D » which may be highly non-
differentiable.



and results are produced on the binary representation of each partial result,
thereby ensuring identical numerical properties.

These transformations are applied either source to source, in an appropriate
high level language, or in the process of translating from such a source language
to machine code. In both cases, we emphasize that the above statement is
exact if the final implementation of floating point operation is identical when
the machine code is generated. In particular, it must be true that scalar and
vector floating point operations are exactly identical, that no improvements
like keeping extra mantissa bits for register quantities, floating point operator
strength reduction,.. ., are used.

Among those transformations, the most notable are: loop splitting, blocking,
reordering, alignment and distribution; replacement of IF by masks, or SCATTER
/ GATHER based constructs. A detailed description of these transformations can
be found in Kuck [KKLW], Kennedy [AK] and [LT] . '

When dealing with conditionals, some of these techniques can nevertheless
produce additional intermediate floating point results - possibly invalid -, which
will not participate in the final results, but which must not produce interrupts
when computed. Since the final result will not be affected, we do not have to
deal with them here, other than to mention that the UNDERFLOW and OVERFLOW
diagnostics that may ensue should be ignored,® unless they really abort the
computation. In such a case, we would be much better off if the hardware
returned NaN ¢, as defined in the IEEE standard [Ste], and is capable of handling
operations between NaN. If restructuring transformations are well designed, the
final results would only involve well formed legal floating point numbers, ie. non
NaN.

2.2.2 Algebraic

The techniques involved here make use of the algebraic properties of the arith-
metic operators. The simplest use only the commutativity and associativity of
addition and multiplication in the reals. The more sophisticated make use of
the field properties of the reals. Of course, such properties do not hold in the
floating point arithmetic, leading to modifications of the arithmetic behaviour
of programs. Among these operations, we find:

e tree-height reduction of general expressions,
e reduction parallelizing by tree-height reduction for 7., z; and [I7.., =;,
e recurrence solving, for instance by odd-even reduction / elimination.

s floating point operator strength reduction

3The adequate hardware and software features should really permit to inhibit these inter-
rupts

4Yalis are symbolic indicators encoded in the floating point format, meaning that the float-
ing point item represents an invalid result or unavailable data



Detailed references can be found in Brent & al. [BKM], Chen & Sameh [CS],
Heller [Hel], and B.Philippe & M. Raphalen [PR].

3 Determining the Precision of a Computation

Starting from formula (1), there are several measures of error we are interested
in:

e worst case error, which corresponds to:

|6:] zatxlerr 75 (valz(D) , (61, 8rops)) (4)

- % (valz(D) , (o,...,0))

e statistical error estimate.
e sensitivities of errors on individual operations.

Worst case estimates have been widely used in connection with linear algebraic
algorithms, and a systematic analytic study of numerical precision by Wilkinson
and others has been most beneficial [¥il]. However, they tend to overestimate
errors, and their application requires a thorough mathematical analysis, espe-
cially if realistic estimates are sought.(Cf. §5.2 ) _

As a reference in making these estimates, we can use the condition of the
problem, which is generally taken to be the sensitivity of the result upon errors
in the problem data:

max

o] < Uerr Fs(vale (..., (De+px)) , (0,...,0)) (5)

= % (valr(D) , (o,...,0))

A sound requirement for a stable algorithm would be that the numerical error
be no greater than the problem’s condition.

3.1 Perturbation Techniques

In order both to avoid the analytic difficulties, and to seek a statistically relevant
error estimate, these methods consider that the §; are independent random
variables, distributed according to a known distribution with zero mean, and
postulate that the results will also share a known distribution. From the result



distribution’s variance the error estimate is then derived. These methods have
been advocated and experimented by M.Laporte & J.Vignes [Lv].

To be more specific, the probability measure {1 is constructed by assigning
equal probabilities to all computations in a sequence. The §;(w) are supposed
to satisfy: -

pE) =[&w)de =0 (9
var(6;) =f (6;(w))2dﬂ _ (M)
dev(8))  =+/[(G&(w))*d (8)

= {Uerr (9)

Here £ is a proportionality constant determined from the operation error distri-
bution. This model leads to the following formulae:

E[R(0)] = [ 7 (valg(D) ) (61(w)s s bnope () dO (10)
var(R(Q)) = [ (75 (valg(D) , (61(w), s 6nops(w))) — E[R(Q)])%dD2 (11)
dev(R(D)) =1/ (7 (valg (D), (1(w), s nope (@) - E[R(Q))?d0. (12)

and the error is estimated by &~ 'dev(R(Q)). Here # is determined from the
result distribution.® There remains two difficulties with this approach, the first
one being that in any real computation, all the §; would be determined deter-
ministically, the second being that the hypotheses made on the error distribution
are far from satisfactory. On this last issue one may find a precise discussion
in Cody & Kuki [CK]|, as well as some hints on the effect of some arithmetic
sequences with uniform error distribution, obtained by random perturbations
in Figure 1.

4 Application to Iterative Computational Al-
gorithms

To cope with the first issue, one simply performs a series of computations, explic-
itly perturbing the arithmetic so as to ensure the hypothesis on the individual
errors, but it must be noted that the error distribution on a typical result is
very far from known, as can be seen in Figure 1.

SFor the VAX experiments shown below, we have imposed £ ~ 1000 and taken 3 = 1. For
the Cray experiments, £ & 2 and £ = 1.
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Figure 1: Error distribution for selected evaluations

4.1 Sensitivity Analysis Technique

To describe very briefly this method, introduced by W.Miller, we start by for-
mally linearizing the expression:

E(D, (B1r s bnops)) = |7 (valR(D) , (61, ns Smops)) (13)

- F(valz(D) , (0,...,0))

€.(D,0) = 350, (0,...,0) (14)
and then approximating the worst case error

i5i|gitajxerr (€£ (Dl 0)'(' LER) 5:') ))
by:

nops

LEDY lg—f;(u, ©,-..,0))] Uerr

If we suppose that we are handling a fragment of straight-line code, or more
generally a program in which tests do not depend in any way on floating point
data, we can use the following set of relations to compute such derivatives ef-
fectively. To describe these relations, it is convenient to introduce the following
notation for the linearized error of an expression A involving the error vari-
ables (64(1), - -, 8a(k)), making the expression A and the set of error variables
apparent: .

2

Q(A)(sa(l)) ooy sa(h)) = (Z a—?j—)(ﬂ, (O, ooy O))&a(J)) 'Uel‘l'



The linearized error of an expression is then computed from its operands intro-

ducing a new ® error variable §,,
A= B+C = o4) = (B+C)s, +3(B)+ o(C)
A= B-C = o4) = (B-C)s, +@(B) - (C)
A= B:C = o(4) = (B + C)5, + S2B)-B2(C)

C?

In the case of tests depending on floating point data, the function £ is in general
not differentiable and the whole approach fails. 7

4.2 Tools used in this study

Two tools are used in this study, the first FLOP2 runs on a Cray under CFT
and is designed to handle whole production grade programs, the other, FLOPYV,
runs under UNIX and is designed to enable the user to redefine fully the floating
point semantics. A more detailed description will be made available in [BLTZ];
the source codes are available from the authors.?

4.2.1 FLOP2

This tool intercepts all floating point computations in selected program units by
making use of a compiler option of the Cray CFT FORTRAN compiler. This is
completely independent of vectorization options, which means that vectorized
and possibly restructured code is intercepted “as is”. It is of course possible
to inhibit the effect of vectorization so as to compare with a less restructured
version.

The precision assessment capabilities are as follows:

¢ rounding and truncation of the floating point results at any mantissa
length shorter than 48 bits

e random perturbation of the floating point results at any mantissa length
shorter than 48 bits

Both these operations are performed on the full precision floating point result,
which is obtained by standard Cray Floating Point operations (cf. [CrH]). The
mantissa length and processing option can be varied at run time. To make full
use of the random perturbation technique, the user has to make a series of runs
and compute the standard deviations.

%i.e. unique for each operation in the program

T1t is still possible to use the method, ignoring the tests, to obtain an estimate of rounding
errors for a ‘frozen” sequence of branches. Indeed we shall just do so for pivot selection
strategies in the sequel.

By electronic mail 1ich@inria.ARPL, ...Imcvax!inriallich



)

-4.2.2 FLOPV

In this case we have provided a Pascal environment in which the user can fully
redefine the floating point semantics. This is done by the translation of the
original Pascal program, so as to use a user-defined type newreal which rede-
fines the standard real type. The set of Pascal standard arithmetic functions
are supported, as well as the full Pascal syntax. The floating point semantics
are then simply defined by a user written package, containing the realizations
of our functions. It must be noted that the implementation of such packages
in object based languages permiting the overloading of operators makes the
implementation of such a package most convenient. (Cf. Stroustrup [Str]).

In these tests we have made use of two semantics for floating point opera-
tions: '

e random perturbation after 56 mantissa bits.
o simplified sensitivity analysis.
To obtain this simplified model, we simply overestimate ®(A):
k
B(A)(6a(a)s -+ -1 ba(r) < (E,’=1 laff;;(”: (0,---,0))-5a(j)|) Uerr (15)
< ¥(4) (19)

and use the following set of rules to compute the ¥(.):

A= B+C = VY(A) = |B + C| Uerr + ¥(B) + ¥(C)
A= B-C = ¥(4) = |B - C| Uerr + ¥(B) + ¥(C)
A= BsC = V(4) = |B+C|Uer+Cs¥(B)+Bs¥C)
A= B:C = V(4) = |B + C| Uery + 222220

5 Method Validation on Test Problems

The following set of tests is intended to validate our approach and show its
relevance on test problems. Most of the information is obtained by compar-
ing the outcome of the random perturbation and the simplified sensitivity
(Model) methods.For each test result given below, we indicate the test software
used (FLOP2 / FLOPV), the value of Uerr, and the method (Round / Trunc /
RandP / Model). For the Model method the results come out in the form of a
floating point number whose mantissa shows only valid digits. When none is
estimated valid, we show the result in the form x.xxxxe+xx (nn) which means
that the estimated error is 10" times greater that the result. For the RandP
method we show the standard deviation as a measure of the estimated error.
Our set of test problems contains:

e Polynomial interpolation



Uniformly distributed interpolation points

Nodel . RandP (std.dev.) Interp.Error
0.622194Eb61463E1 6.22194551463784e+00 9.9e-12 -0.62E1
2.10011074E -1 2.10011073912721e-01  2.9e-12 2.8E-3
1.873294E -1 1.87329439769213¢-01 4.3e-10 -1.2E-%
Chebychev intarpolation points
Nodel RandP (std.dev.) Interp.Error
0.40969E -1 4.09686104143964¢-02 6.3e-10 1.6e-3
2.13181015468E-1 2.13181015458284¢-01 9.9e-16 ~3.3E-4
0.687007101873E-1 6.87007101872744e-02 3.4e~16 ~-1.2E-3

Figure 2: Results of Newton form interpolation

o Gaussian elimination

e Conjugate Gradient

5.1 Polynomial interpolation

Our test interpolates the function (1+ 25z2)™* on the segment [~1, +1] using
Chebychev or uniformly spaced interpolation points. The Newton form is used
in the computation. (Cf. DeBoor [DBo]). The results are shown in Figure 2.
Both methods indicate that the floating point error vary both with the choice
of interpolation point spacing and with the point where the result is evaluated.
However they are coherent as they give the same relative information. For the
points where the interpolation (method) error is small, computation error does
become an interesting issue.

5.2 Gaussian elimination

We have tested the Gaussian elimination method with the following pivoting
strategies:

e no pivoting.
e column pivoting using the maximum element in absolute value.

¢ column threshold pivoting, using the same heuristic as in the MA32 frontal
code from the Harwell library. Namely, the next row 1 is selected if

a5 )| 2 o+ maxla(s )]

The parameter a (0 < a < 1) is used to set the threshold.

e full pivoting using the maximum element in absolute value.

10



Our test problems are as follows:
o Hilbert Matrix of order n
o Van der Monde Matrix of order n with z; = %"1—1

Matrix M-A (Cf. Wilkinson [Wil]):

1 0 ... 0 O
-1 1 .. 0 0
-1 -1 1... 0 o0
-1 -1 ... 1 0
-1 -1 ... -1 1
o Matrix M-B (Cf. [CR]):
1 -1 =2 ]
0 1 k -k
0 1 k+1 —(k+1)
0 0 O k
e Matrix M-C (Cf. [FMM]):
10 -7 0
-3 2 @
5 -1 5
e Matrix M-D
MD,‘,.' =n
MD;; =5l fori#j

The results of our models can be compared with the estimates from Wilkinson’s
backward analysis technique (Cf. [Wil],{GIV]). Solving the system A.z = b by
the Gauss method, the computed solution  satisfies exactly: (A+ E)z = b,
where the perturbation matrix E is bounded by:

1Bl < 8 n° p |4 Uer

with:
(K
ma.x;,_,;;,'as.j)

p = ee————ns
Il 41l oo

(T3
[y



no interchange for piveting

RandP (std.dev.) Model FULL precision
x{1] 1.00000000000004 (1.99e-14) 1.000000000000000 1.000000000000000
x{10] 1.00000000000209 (5.87e-12) 1.000000000000 1.000000000000000
x[20] 2.00000000213607 (5.96e-09)  2.000000000 2.000000000000000

Figure 3: Results of Gaussian elimination for Matrix M-A, n=20

&s;) = element in row i, column j at step k of elimination. If we set:

ro= ||BlL[47,
then provided r < 1 and total pivoting strategy is used:

-3y v
lzlle 1-r
We give below the computed values of r, taking for Uepy the value corresponding

to full precision on DEC/VAX namely 2757 = 6.7 10~'8, We also use the
classical notation for the condition number of A: xo,(4) = [|A],, || A7 .

5.2.1 Test with Matrix M-A

This matrix of dimension n has £; and £, condition number n2"~1. For n = 20,
both Model and Random perturbation techniques indicate a degradation in the
result’s precision, as is shown ° on Figure 3, whereas the exact solution is
zy = 219 = 1.0; 230 = 2.0. The a priori estimate is r = 8.9 16-!2, In this
case, both methods are coherent, the FULL Precision result shows that they
are both exaggerating the error.

5.2.2 Test with Matrix M-B

This set of matrices are designed to have a large 4; condition number 8%2 +
6k + 1, that goes undetected by the Linpack estimator embodied by the SGECO
routine. Our test shows that the Modelling method shows the lack of estimated
precision before the failure which occurs for k = 1.0E8. For k = 1.0E7 we
obtain the results of Figure 4, which is to be compared with the exact solution
(1,1,1,2.0000002). Note that here r = 0.14, and = =0.16.

®We will show here only a few of the result’s component together with the precision esti-
mates, more extensive results will appear in [BL1Z]

12
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ne 4interchange for pivoting

RandP (std.dev.) Model FULL Precisien
6.76000302617782e-01 (2.14) 1.0e+00( 0) .997666464676721
1.42400000379421e+00 (2.14) 1.0e+00( 0) 1.00234363542328
9.99999967600011e-01 (2.14e-07) 1.000000CED .990089990766646

2.000000200000018+00 (3.87e-14) 2.000000200000000E0 2.00000020000000

Figure 4: Results of Gaussian elimination for Matrix M-B

5.2.83 Test with Matrix M-C

This matrix has been constructed to demonstrate that pivoting can be neces-
sary to ensure precision. Our test with the Model method confirms this fact
(Figure 5), at least for the partial column pivoting (exact solution (0,-1,1),
r = 4. 10712). In this case both the Modelling approach and the full precision
show that total pivoting is certainly not justified, as it appears less precise.

5.2.4 Test with Matrix M-D

The tests with this diagonally dominant well conditioned matrix show that the
modelling method gives very good worst case estimates that are not systemati-
cally exaggerated. In comparison with the other tests, they are thus interesting
to appreciate the diagnostic capabilities of such a method. (See Figure 6). The
random perturbation technique performs satisfactorily too. Note that pivoting
is not relevant in this case and that r = 2.8 10713, x,(4) = 2.6.

5.2.5 Test with Hilbert Matrix

The Hilbert matrix is well known for its bad condition number.This fact is
confirmed by the Model method, as well as the quickly growing lack of precision
on the successive reduced matrices obtained during the forward elimination.
However, this estimate shows that the total pivoting variant should behave
much better than the variant without row or column interchange. This is not
confirmed by the experiment as evidenced in Figure 7, and furthermore some
worst case error estimates seem grossly over-estimated by this method. The
random perturbation technique gives very precise information in this case and
is thus preferable. We give the results for n=8 (r = 0.023, xo,(4) = 1.17 101,
exact solution: z,,z4 = 1; 25,25 = 2).

5.2.6 Test with Van der Monde Matrix

The Modelling method appears very pessimistic for small n but gives a clear
warning before a sudden loss of precision which occurs for n = 12. The random
perturbation method gives strikingly precise results here too. The results for

13



no interchange for pivoting

Model FULL Precision BandP (std.dev.)
~-3.9¢-16( 2) -3.88578058618808¢-168 -1.00073282093663e-13 (4.61e-13)
-1.000000000000 ~1.00000000000000 -1.00000000000014 (6.66e-13)

1.00000000000000 1.00000000000000 9.99999999999996e-01 (9.66e~15)
partial pivoting
Model FULL Pracision RandP (std.dev.)
] 0.00000000000000 1.00286445814391e~14 (1.69e~14)
-1.00000000000000 -1.00000000000000 ~9.99999999000596e-01 (3.41e-14)
1.000000000000000 1.00000000000000 9.99999999999999e-01 (1.02e-14)
total pivoting
Model FULL Precision RandP (std.dev.)
-4.4e-17( 1) ~4.440892008500683¢-17 -1.72261102270691e-14 (2.79e-14)
-1.00000000000000 ~-1.00000000000000 -1.00000000000003 (3.98¢-14)
1.000000000000000 1.00000000000000 1.00000000000000 (1.20e-14)

Figure 5: Results of Gaussian Elimination with Matrix M-C

ne interchange for pivoting
Model FULL Precision RandP (std.dev.)

x{ 1] 1.000000000G0000 i.00000000000000 1.00000000000002 (1.49e-14)
x[10] 1.00000000000000 1.00000000000000 ©.99999999999956e~01 (2.77e-14)
x(20] 2.00000000000000 2.00000000000000 2.00000000000002 (3.86e-14)

x[1]
x[4]
x[5]
x[8]

x[1]
x{4]
x[5]
x[8]

x[1]
x[4]
x[5]
x[8]

Figure 6: Results of Gaussian Elimination with Matrix M-D, n=20

no interchange for pivoting
Model FULL Precision RandP (std.dev.)

1.0e+00( 5) 1.00000000005318 9.999969788210168~01 (6.16e-08)
1.0e+00( 4) 9.99999929467760e-01 1.00002682649518 (8.30e-05)
2.0e+00( 3) 2.00000018657510 1.99993715219381 (1.96¢-04)
2.0e+00( 1) 1.00000006268034 2.00001390746351 (4.42e-05)
column pivoting
Model FULL Precision RandP (atd.dev.)
1.00+00( B) 9.99999999803623e-01 1.00000001023833 (1.48e-07)
1.0e+00( B) 1.00000028078078 9.99989057077121e-01 (2.02e-04)
2.08+00( 4) 1.99999938556962 2.00002453764322 (4.79e-04)
2.0e+00( 2) 2.00000013700937 1.999906106879122 (1.08a2-04)
total pivoting
Model FULL Precision RandP (std.dev.)
1.0e+00( 4) 9.99990999895500e-01 9.99990080005349e~01 (6.79e-08)
1.0e+00¢ 4) 1.00000014331820 1.00001339724146 (8.73¢-05)
2.0e+00( 3) 1.99999068032516 1.99996908549938 (2.049-04)
2.04+00( 3) 2.00000007659342 2.0000066568881595 (4.51e-05)

Figure 7: Results of Gaussian Elimination with Hilbert Matrix, n=8
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no interchange for pivoting
Madel FULL Precision RandP (std.dev.)

x[1] 1.0e+00(11) 9.99999900346608e-01 1.00000349807613 (4.01¢-05)
x{4] 1.0e+00( 9) 1.00000272587411 9.99906683532963e~01 (1.11¢-03)
x[B] 2.00+00( 8) 1.990997210922086 2.00009461643463 (1.14¢~03)
x[6] 1.9e-08(13) 1.89448236242643e-06 -6.36842631562269¢-05 (7.73¢-04)
x[8] 2.0e+00( 5) 2.00000024663102 1.99999187598520 (1.01e-04)
column pivoting
Model FULL Precision RandP (std.dev.)
x{1] 1.0e+00( 8) 1.00000001357746 1.00000860118802 (2.0-04)
x[4] 1.0e+00( 7) 9.990997403857680-01 9.99751452866156¢~01 (5.47¢-03)
x[5] 2.0e+00( 5) ~2.00000022695029 2.00025804077647 (5.61e-03)
x[6] -1.3¢~07(12) -1.27844765665186e-07 ~1.79219475005296¢~04 (3.81e-03)
x[8] 2.0e+00( 2) 1.99999989017490 1.999976804651876 (4.97¢-04)
total pivoting
Model FULL Precision RandP (std.dev.)
x{1] 1.0e+00( 8) 9.99999884076119e~01 9. 999636097461 79¢-01 (6.82¢-05)
x[4] 1.0e+00( T) 1.00000317866839 1.00101702733704 (1.80e-03)
x[6] 32.0e+00( B) 1.90099674430238 1.99896280691326 (1.94~03)
x[68] -1.3e-07(12) 2.21309017545098¢-06 7.15804532045789¢-04 (1.32-03)
x[8] 2.0e+00¢ 2) 2

.00000028866136 2.00009436845204 (1.740-04)
Figure 8: Results of Gaussian Elimination with Van der Monde matrix, n=10.

n = 10 appear in Figure 8, and show that Wilkinson's bound can be over
pessimistic indeed. (Here r = 15.15, ko (4) = 2.16 10'2, exact solution:
71,24 = 1,25 = 2; z¢ = 0; 25 = 2;).
5.3 Conjugate Gradient

In this case our test matrix of order n is:

2 -1 o . 0
-1 2 -1 ... 0
-1 2

Our series of test using the Modelling method shows that this method tends to
overestimate arithmetic errors too much to be of diagnostic value. The apparent
reason seems to be related to the extensive use of scalar products of nearly
orthogonal quantities. The random permutation result is applicable in this
context and gives precise results on our test problems. We give the results for
n=20 with two strategies for computing the residual: (Cf. e.g. [GIV])

e iteratively update the residual r(k) at iteration k with the formula: r(k) :=
r(k) — alpha* A.p(k— 1) where p(k — 1) is the search direction at previous
step;
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Model FULL Precision RandP (std.dev.)

x[ 1] 2.0e+00(14)  2.00600000000000 2.00000000000030 (2.70e-13)
x{ 2] -3.5e-16(30) -3.51932025188795e-16 -3.90450952819646e-13 (5.90e-13)
<[ 3] 2.08+00(1d4)  2.00000000006000 2.00000000000093 (8.73e-13)
x[ 4] -6.40-18(20) -6.44883452104378e-16 -7.62398965573766e-13 (1.130-12)
x[ 5] 2.0e+C0(14)  2.00000000000000 2.000000000001 36 (1.3¢e~12)
x[ 6] -8.7¢-16(29) -8.72023807330091e-16 -1.03915940522642¢-12 (1.58e-12)
x[ 7] 2.0e+00(14)  2.00000000000000 2.00000000000172 (1.73¢-12)

Figure 9: CONJUGATE GRADIENT - N=20 - updating strategy

Model FULL Precision RandP (std.dev.)
x{ 1] 2.0e+00(21) 2.00000000000000 1.99999999999994 (4.70e-13)
x[ 2] 1.1e~1B(37) 1.1449174941446%0e-15  3.072441606688480-13 (1.38e~12)
x[ 3] 2.0e0+00(22) 2.00000000000000 2.00000000000005 - (2.49e~12)
x[ 4] 1.4e-15(37) 1.37541887601511e-16  2.437661509278890-13 (2.30e-12)
x[ 61 2.0e+00(22) 2.00000000000000 2.00000000000050 (3.22¢-12)
x[ 6] 1.7e-16(37) 1.870320744962800-156  8.14745406560368e-16 (2.250-12)
x{ 7] 2.00+00(322) 2.000000000000C0 2.00000000000087 (2.79¢-12)

Figure 10: CONJUGATE GRADIENT - N=20 - recompute strategy

o fully recompute r(k) for each iteration: r(k) == b(k) — A.z{k).

The results after 20 iterations (Figures 9 and 10) indicate a slight superiority for
the first method, which is confirmed by the random permutation method. We
plan to further investigate the reason for this behaviour checking in particular
for orthogonality conditions with the help of this method.

6 Application to Direct Methods

We have applied the Round and Truncation method on the multifrontal code
MA32 from the Harwell library. The results shown on Figure 11 show the pre-
cision obtained on the result, in £, and £, norm, as the arithmetic precision
is varied. We have not been able to produce any significant anomalies using a
set of test problems devised by Duff. We have also tested for the influence of
the parameter a controlling the threshold for partial pivoting in this code. The
benefit of varying a from 0.01 to 0.1 is clearly illustrated in Figure 12. Varying
from 0.1 to 0.99 appears not to be interesting.
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Figure 11: Effect of variable precision on MA32
o cpu time(s) # ops relative error (L2 norm) for several mantissa lengths
(internal loop)
36 bits 32 bits 28bits
0.001 0.199 196312 1.8x10 3.1x10-8 5.4x10°7
0.01 0.199 196312 1.8x10°9 3.1x10°8 5.4x1'6-7,
0.1 0.204 206080 43x10°10 6.4x10°9 9.6x10°8
0.99 0.704 921599 5.8x10 1.5x10°7 5.6x10°7

Figure 12 : Cost of pivoling strategies in MA32 :
solution of system of linear equations of order 441, truncated arithmetic
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Figure 13: Effect of variable precision on Conjugate Gradient codes

7 Application to Iterative Methods

We have run a series of test on the algorithms DIAG, INV, MINV and POLY of
Meurant & al [CGM]. Both Truncation and Rounding methods show that the
most precise results are obtained with the INV and MINV methods, and that the
method POLY gives significantly less precise results. On the other hand, there is
little variation in iteration counts as precision is varied, and almost none when
the mantissa stays longer than 17 bits.

8 Conclusion

We have used two methods to ascertain the precision of numerical software
in practical situations. The worst case sensitivity technique appears overly
pessimistic in many situations but still yield results comparable or better than
“by hand” mathematical analysis. It is also theoretically well founded. The
random permutation technique of J.Vignes gives very accurate information in
most cases, even when the other methods appear inadequate. Globally we find
the use of these methods usefull in getting correct information on numerical
precision, which we have found often very different from our intuition.
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Figure 14: Random Perturbation error estimate for Conjugate Gradient codes
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