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Résumé

Nous &tudions les propriétés statistiques et numériques de deux algorithmes
performants du maximum de vraisemblance pour le probléme des mélanges
1'algorithme EM et sa version avec apprentissage probabiliste, 1'algorithme SEM.
On montre qu'en général 1'algorithme SEM est préférable. En particulier, on
montre qu'il fournit une estimation grossidre des dcarts-types des estimateurs
des param@tres beaucoup plus rapidement que les estimateurs bootstrap de ces

écarts-types par 1'algorithme EM.

Mots-clés : mélange de lois, maximum de vraisemblance, apprentissage

probabiliste, bootstrap.

Abstract : This paper is devoted to the study of the statistical properties of
two efficient algorithms for the mixture problem under the maximum likelihood
approach : The EM algorithm and his probabilitic teacher version, .the SEM
algorithm. We show that in general the SEM algorithm performs better. In
particular, we show that the SEM algorithm provides a rough estimation of the
parameters standard-deviations in a very competitive time compared with thé
expensive time with the Bootstrap estimates of standard deviations via the EM

algorithm.

Key words : Finite mixture, maximum likelihood, probabilistic teacher, bootstrap.
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THE EM AND THE SEM ALGORITHMS FOR MIXTURES :
STATISTICAL AND NUMERICAL ASPECTS

L' ALGORITHME EM ET L' ALGORITHME SEM POUR LES MELANGES : ASPECTS
STATISTIQUES ET NUMERIQUES

G. CELEUX, J. DIEBOLT

1. INTRODUCTION

Consider a .md-valued random variable (r.v) whose distribution can be

represented by a probability density function (p.d.f.) of the form :

K
f(x) = I p f(x;a)
k=1 K K
K
where the mixing weights pk's satisfy : pk > 0 for k = 1,...,K and ¢ pk = 13
k=1
the p.d.f.'s f(.;ak) have a specified parametric form ; the ak's denote R2 valued

parameters.

Let (xl,...,xN) be a random sample from the r.v. X. The mixture problem
consists in estimating the number of components K and the parameters (qk =
(pk,ak), k=1,K) of the mixture. This problem has received great attention. We
refer the reader to the monographs of Everitt, Hand (1981) or Titterington,

Smith, Markov (1985) for reviews of statistical methods used to solve it,

Many authors have studied the mixture problem when the number of components K
is known, but little work has been done in case K is wunknown. The maximum
likelihood approach seems to be the most popular and one of the most efficient,

"particularly in the multivariate case.

Given a random sample (x,,...,xN) from the mixture, the log-likelihood

function is

N K
L) = L 1in[ 3
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where q = (Piye-- »Pyr-q? EREEE ,aK-) ER k=1+ks are the mixture parameters.

Classical Newton-Raphson-type methods are unreliable in view of the matrices
inversions required. For instance, for a five components Gaussian mixture in

R, q takes values in R22",
Within the maximum likelihood approach, the most appealing and efficient
methods are the EM algorithm (Dempster, Laird, Rubin (1977)) and its

probabilistic teacher version, the SEM algorithm (Celeux, Diebolt‘(1985)).

This paper is devoted to the study of the statistical and numerical properties

of these algorithms.

2. THE EM ALGORITHM

2.1. Presentation

The - number of components K has to be known. Starting with some initial
position of qo, the EM algorithm generates a sequence (qn) of estimates. Each

iteration consists in the following double steps :
Expectation step :
For k=1,K ; i=1,N compute the quantities

K ‘n n
.L. p. [ (xi;aj)

n n n
ty (xi) = P £ (xi,ak)/ 581 Pj

n
tk (xi) is an estimate of the posterior probability, conditionally on X that
observation Xy belongs to the kth component given the current estimates

(q?,j=1,K) of the mixture parameters.
Maximisation step :

This step consists in solving the likelihood equations, given the current

posterior probabilities estimates :
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N
For k=1,K compute p£+1 = % I t; (xi) and solve the following equations for
i=1
N n aln f(xi; a;+1) '
k=1,K ; j=1 P . - = = j=
j=1,s L tk (xl) 5 27, 0 where a, (ajk’J 1,8)

For instance, for a Gaussian mixture, we have a, = (mk,rk) where m,_ and Fk are

k K
the mean and the variance matrix of the kth component, and the above equations

yield :

n+1 . 1 N t'n )
mk N - 151 K (xi X,
It (x,) -
. K
i=1
1 N
n+1 n _ n+1 _n+1.T
Ty - - 151 £ (xi) (xi m )(xi m )
R 4 (x.)

These equations show that posterior probabilities can be regarded as

"weights",

2.2. Mathematical properties

n+1

The sequence of 1likelihoods (L(qn)) is monotonic increasing ; q =qn if and

+
only if L(d™ ") = L(dM.

For a mixture of the exponential family densities, Redner and Walker (1984)

give the following convergence result.

Theorem :

If the Fisher information matrix evaluated at the true q is positive definite,
if all the mixing weights are strictly positive, then, for every N large enough,
with probability 1, the unique strongly consistent solution qN of the likelinood
equations is well defined, and if qo is close enough to ay then the sequence (qn)

generated by the EM algorithm converges to qN at a linear rate.
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Redner and Walker specify that the rate of convergence of (qn) to A depends
greatly of the component separation. If the components are poorly separate then

qn converges in a excruciatingly slow way to ay -

In general, there is no guarantee that (L(qn)) should converge to a local
maximum ; (L(qn)) may converge to a saddle-type stationary value of the

likelihood function.
Finally we have to mention a difficulty of the maximum likelihood approach
which arises for some mixtures (e.g. Gaussian mixture) : the likelihood function

is unbounded. Section 5 is devoted to this important and intriguing question.

2.3. Experiménting the EM algorithm

The EM algorithm works perfectly well and rapidly in both univariate and
multivariate situations whenever the true number of components is known, the
components are well separated, the mixing weights are not too extreme and the

0
initial position of the parameters q are not too far from their true values.

Otherwise, the EM algorithm happens to converge to a saddle-type point of the

likelihood function, or to stay an intolerably long time near such a point.

Hence, beginning with the true number of components and with good initial
values 1is crucial for good performances. Numerical examples dramatically

highlighting these restrictions can be found in Celeux, Diebolt (198%4).

In view of the slow convergence, the choice of a threshold for designing
stopping rules is quite sensitive ; we 1illustrate this point by the following

example.

We have generated 200 sample points from an univariate two-component Gaussian

= 0,75, m_, = 3, o, = 1.

=0, g, =1, 2 >

mixture with parameters : Py = 0,25, m 1

1 Py

We have wused the following stopping rule : Stop the run at iteration n+1 as
soon as
+1
(L™ - LaMI/L(aD) S a

where o is a preassigned threshold. We give below the parameter estimates for
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different values of the threshold a. All the runs have been initiated with Py =

P2 = 0,5, m1 = 0, m2, 01.= 02 =1,

Threshold n P1 P2 mi m2 6% Ugi
0.001 | 2 0.267 0.733 '07035 2.884 1.330 1.113
0.0001 - 5 0.265 0.735 -0.095 27897 1.174 1f066
0.00001 21 0.245 0.755 -0.223 2.857 11010 1.109

0.000001 39 0.236 0.764 -0.275 2.837 07956 1.137

0 100 0.232 '. 05768 —0._297 2.828 0',933 1.150
0 ZQQ 0.232 0.768 -0.297 2.828 Of933 1.150

The column 'n' indicates the number of iterations.

It can be seen from this table that getting reliable and precise estimates
needs performing a great number of iterations (e.g. one hundred in this

univariate case) rather than using a stopping rule.

Finally, we draw attention to "strange" stationary points of the EM algorithm

for Gaussian (and many other) mixtures.

For any sample from any Gaussian mixture, every‘parameter q = (p1,..., pk-1’

m1,r1,...,mk,rk) with for k=1,K m. = X and rk-= I where x is the mean of the
whole sample, and T is the variance matrix of the whole sample, is a stationary

point of the EM algorithm. The proof of this assertion is straightforward.

3. THE SEM ALGORITHM

2.1. Presentation

The number of components has not to be known. An upper bound of this number

has to be known.
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This algorithm leads the underlying statistical ideas of the EM algorithm to
their logical conclusions. At each iteration, the weigths tk (xi) are used to
simuiate a classification of the sample points between the mixture components

using a probabilistic teacher step. The SEM algorithm proceeds as follows :

Define an upper bound K of the unknown number of components.

Define a threshold C (N,d) = d+; Ll oca s,

N 2

Starting with any initial position of qo, the SEM algorithm generates a
sequence (qn) of estimates. Each iteration consists in the following three

steps
E-step :

For k=1,K ; i=1,N compute the quantities
n n N n n
tk (xi) = p, f‘(xi;ak)gi‘.1 pj f(xi;aj)

In the following, we refer to the tk (xi)'s as the affectation probabilities.

Stochastic step :

For each sample point Xis draw the multidinomial r.v. en(xi) = (eE(xi),k=1,K)

of order one and with parameter (tE (xi), k=1,K).

The realizations en (Xi) define a partition Pn = (P?,...,P;) of the sample
where :
n n
Py = {xi/ek(xi) = 1}

If card (Pﬁ) is smaller than Nc(N,d) (let denote (A) this event) then define

neWw values of the aL s by drawing them at random from a preassigned distribution

and go to the E-step. Else
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M-step :

1 n+1 n+1

Kk 2y ), k=1,K using the

Compute maximum likelihood estimates qn;

n
pk‘s as sub-samples. This gives :

n+l 1 g o (x.)
P TN k X4
i=1
The formulas which provide the a2+1 's depend on the parametrized family
involved.
For instance, in the Gaussien case, we have ak = (mk, rk)'and
n+1 ! n
m. = I e (xi) X,
N n i=1
I e (x,)
. ¢
i=1
n+1 1 N ‘
T = n _ n+1 __n+1\T
Kk .2 e, (xi) (xi m k,) (xi m )
N n i=1t
=zek(x)

3.2. Mathematical properties

Set e" = (eE(xi),i=1,N;k=1,K)

The sequence (qn) generated by the SEM algorithm can be expressed by the

recurrent equation :

qn+1(e°,...,en) - TN(qn) + VN(qn.en)

n n
where T. is the operator of the associated EM algorithm, and VN(q ,e ) is a r.v,

N
independent of TN(qn) conditionally on qn.

. n C N . .
The sequence of r.v. s (q = ane); iz an erzodic Markov chain (see Celeux,
Diebolt (1984)). Hence this sequence converges in law to its unique stationary

probability wN‘
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Note that the estimates of parameters q are not pointwise : they consist in

the probability distribution wN on the parameter space.

Further, we have proved (Celeux, Diebolt (1986b)) the following convergence

result for a mixture of the exponential family densities.

Under the same assumptions as mentioned in section 2.2 (The Fisher information
matrix at the true q is positive definite, all the mixing weights are strictly

positive) and under some additional technical assumptions on TN’ we have :

Theorem

N Then there

Let XN be a rfvf on the parameter space such that law (XN) =
exists a matrix S such that the limiting distribution of /N (XN-qN), as N goes to
infinity, is a Gaussian distribution with mean 0 and variance matrix S. Here dy
is the.unique strongly consistent solution of the likelihood equations. Moreover,

the matrix S can be expressed interms of the exact mixture p.d.f..

Thus, if the SEM algorithm has been initiated with the true number of
components, then the probability of occurrence of an (A)-event is very small.
Otherwise, 1if the 1initial K 1is greater than the true number of components,

frequency of (A)-events is large, indicating that the initial K is too large.

3.3. Experimenting the SEM algorithm

In order to enhance its competitivitness, the SEM algorithm has been

implemented as follows,

Each time an (A)-event occurs, we replace K with K-1 and continue the whole
'procedure until no more (A)-event occurs. This provides a number-of-components

estimation.

Further, after the exact value of K has been found, we compute the empirical
mean and standard deviation of each marginal of the stationary probability wN.
This requires that the random sequence (qn) has reached stationarity. We do not
know of any criterion for testing such a stationarity. We run the algorithm a few
tens iterations (learning stage) before beginning to record the values of (qn) in
order to compute the empirical mean and standard deviation of each of its

marginals (working stage).
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These empirical mean values give a pointwise estimate for each parameter, and
the empirical standard deviations give an evaluation of the accuracy of these

estimates. We discuss the meaning of these accuracy statements in section 4.

Many uses of the SEM algorithm (see Celeux, Diebolt (1984),(1985),(1986a)) in
univariate and multivariate situations, on both simulated and real data and for
different mixture types, have shown that it performs very well and gives an

answer to the limitations of the EM algorithm.

More precisely, the SEM élgorithm has the followiﬁg practical properties for

a reasonable sample size (at least twenty points by component).

- It always finds the true number of components if the initial K is an upper

bound of this true number.

- Its results do no depend upon the starting point. The sequence (qn) always

converges to the stationary probability y, . The sequence (qn) does not stay near

unstable stationary points and the SEMN algorithm avoids the cases of slow
convergence observed for the EM algorithm. This'appealing property is due to the
Stochastic step. For instance, in case it 1is initiated with a "strange"
stationary point'of the EM algorithm as mentioned at the end of section 2.3, the

SEM algorithm obviously does not stay in the neighborhood of such a state.

- The pointwise estimates given by the SEM algorithm are precise even when the
components are poorly separated (equal means for instance) and the mixing weights

are extreme,

n
- The marginal empirical standard deviations of estimates q are useful to
measure the degree of overlap of mixture components and perhaps to evaluate the

accuracy (see section 4).

Moreover, given d, K, N, the number of iterations needed to reach stationarity

is rather stable.

Now, for small sample size and when the mixture components are poorly
separated, it is possible that some runs of the 5EZM algorithm underestimate the

number of components. For such small sample size (typically g s 20), it is

advised to run the SEM algorithm several times and to choose the number of

components which arises most often.
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4, THE BOOTSTRAP EM AND THE SEM

In its very form, the SEM algorithm provides confidence indicators of the

parameter estimates.

These indicators are the empirical standard deviations of the marginals of the
stationary probability wN. In the following, we refer to these as to the
SEM-SD's.

On the other hand, the bootstrap is an attractive nonpafametric method for
attaching a standard error to a point estimate (Efron (1981)). In this section
we compare the SEM-SD's with the bootstrap estimate of standard error for the

parameters estimates via the EM algorithm.

4.1 The bootstrap estimates of standard errors for the EM algorithm

Denote by § = (al,...,ﬁt), with t = K-1+3, the parameter estimates via the EM
algorithm. The bootstrap estimate of standard error for each 62 (2 = 1,t),

denoted by BSE (al)’ is described as follows :

- Let F be the empirical probability distribution, F having mass 1/N at each

observed X4 (i =1,...,N),

- Repeat R times the following step :

* * A B ]
Let X1,...,XN be a random sample from F, and § be the parameter estimates via

* ¥*
the EM algorithm based on the sample X1""’XN'

* * *
This yields R independent realizations of § , say § (1),...,3 (R) ; for r=1, R
* * *
; set §q (r) = (al(r),...,at(r)).
- Then, for & = 1,t take

@ (r) - 315

(S =)

R 1
Bsa(ql) = [ =T
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4.2 The standard deviations from the SEM algorithm

The mixture distributions problem enters into a wide range of incomplete data
problems for which the use of the EM algorithm has been discussed (Dempster and
al (1977)). For the mixture problem, the complete data are (<xi'°i)’ i=1,N)

where the oi's are the unknown componest labels from which the xi's arise.

At each iteration, the SEM algorithm draws at random the oi's, while the

bootstrap performs random draws of the observed xi's.

In fact, the SEM-SD's are not directly concerned with the standard errors of
the pointwise estimates.AThey provide rather indices which measure the degree of
overlap of mixture components. Nevertheless, there are some intuitive connections
between the standard errors of parameter estimates and the overlap of the mixture
components. So, we can think that the SEM-SD's provide a kind of rough estimate
of standard errors in a very competitive time compared with the expensive BSE's

computing time,

4,3 An example to compare the SEM-SD and the BSE

We have considered the same mixture as presentéd in section 2.3 : 200 sample
points from an univariate two-component Gaussian mixture in R with

p1=0-25,m =0,0=1,92=0.75,m2=3,0 =1-

1 2

We have used the bootstrap EM scheme starting with the same initial position

(p1 = 0.2, Py, = 0.8, m, = 0, m, =2, g, = ¢ 1), which is not too far from the

1 2 1 2
consistent solution. By this way, we avoid problems of slow convergence or
likelihood saddle points. We have repeated the bootstrap resampling plan R = 100

times and we have run each time 100 iterations the EM algorithm.

As for the SEM agorithm, we have drawn at random the initial affectation

probabiiities

0 _ .
tk(xi), k=1, 2; i 1,...,200
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The results are summarized in the following table.

SEM-MEAN EM SEM-SD BSE

pl' 0.237 8.232 0.035 0.058
P, 0.763 0.768 0.035 0.058
m, -0.276 -0.297 0.193 0.342
m, 2.839 2.828 0.081  0.156
oF 0.940 0.933 0.207 0.351
o 1139 1.150 0.119 0.215

First, note that the parameter estimates with both algorithms are quite the

sSame,

As expected, the standard deviations associated to the SEM algorithm (' SEM-SD'
column) are smaller than the bootstrap estimates of standard errors ('BSE'
column). The SEM-3D's do not take account of the whole sampling error ; they take

mainly account of the error connected with the components overlap.

For every parameter, 2 SEM-SD is a little bit greater than BSE. Obviously,
there is no reason that, in general, the SEM-~SD's should be half the BSE's.

However, we think that the SEM algorithm provideé rapidly reasonable estimates
of standard errors, namely 2 SEM~SD. Moreover, the intervals of the form
[-2 SEM-SD+SEM-MEAN, SEM-MEAN+2SENM-3D] can be regarded &s kinds of "confidence
intervals" (remember that asymptoticaily the sfétionary hrobability of the SEM
algorithm is a Gaussian distribution : see final comments in Efron (1981)). As a
matter of fact, in the above example, using the Bull DPS8, Multics system,

running the SEM algorithm took 46s and running the bootstrap EM algorithm took
55mn Sis,
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5. SOME COMMENTS ABOUT THE UNBOUNDED LIKELIHOOD FUNCTION

For many mixture models, a fundamental problem with the maximum likelihhod
approach is that the likelihood function is unbounded. Consider for instance a
sample (x1,...,xN) from a two-component univariate Gaussian mixture. Set m, = X,
then the likelihood tends to infinity as ¢, tends to 0. So each sample point
generates a pathological global maximum. Thus it seems that maximﬁm likelihood
estimation breaks down for such mixtures. In order to avoid this problem, some
authors have discussed constraints on the mixture parameters. Perhaps the most
natural assumption is that all components have the same variance matrix (sée

Day(1986)), but obviously this assumption is very restrictive.

In practice, when using the EM algorithm, these singularities occur quite
rarely and so these above restrictive assumptions appear useless in most
applications. This reassuring fact may .appear to be surprising, yet we can give

some guidelines to explain this behaviour of the EM algorithm.

The singularities occur at certain points on the boundary of the parameter
space. Now, with a good initial position and with a reasonable sample size, it
can be expected, f'r'om_ the convergence theorem of section 2.2, to find a sensible

local maximum on the log—-likelihood surface, thus far from the boundary.

Moreover, the fixed points ‘of the EM algorithm are precisely the stationary
points of the 1log-likelihood function. The_ above singularities cannot be such
stationary points by their very nature. Hence the likelihood equations have no

solution in the neighborhood of these singularities.

However, in some situations, the non-convergence of the EM algorithm to a
pathologlical global maximum could be thought of as disappointing. Suppose that
someone has to study a K-component mixture, does not known the K value, and
initiates the EM algorithm with L components, L being greater than K. We might
hope that in this case the EM algorithm would converge to a boundary point of the
parameter space. Such an unusual behaviour could indicate him that there is
something wrong with his choice of the number of components. Unfortunately, this

oceurs quite rarely, as illustrated below.

Consider again the two-component univariate Gaussian mixture discussed in

section 2.3 and in section 4.3,
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Initiated with 3 components and with the following parameters :

p1 = O'.u’ p2 = 0.2, p3 = o'u

2]
[

=3, m, = 4, m, = 0

2 2 2 _
0.25, o5 = 0.25, 03 1

Q
i

We have obtained after 100 iterations of the EM algorithm :

Py = 0.1126,_p2 = 0.188, p3 = 0.386

m, = 2.668, m, = 4,202, m3 = 0.461
2 2 2

oy = 0'2867 g, = 0.260, 03 = 1.714

6. EM or SEM ?

If the right number of components is known, if the components are supposed to
be well separated, the EM algorithm may be prefered to the SEM algorithm : the EM
algorithm is simpler and 1less CPU time consuming (but recall, only with a

judicious initial position!).

For instance, with the previous Gaussian mixture (see section 2.3), on a
HB-DPS8, Multics system it took U46s for the SEM algorithm (100 iterations) and
with the initial position mentioned in section 2.3 it took 39s for the EM
algorithm (100 iterations) to get accurate estimates of the parameters, But it
only took 19s (39 iterations) to get quite reasonable estimates of the pa%ameters

using the EM algorithm (see the table in section 2.3).

In all other situations, the SEM algorithm is highly preferable to the EM
algorithm (estimation of the right number of components, no slow convergence,

measure of the results error).

However there is a difficulty with the SEM algorithm : we do not know how to
detect when the SEM algorithm has reached stationarity. In practice, we think

that a good way to circumvent this difficulty is to proceed as follows,
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- Start with the EM algorithm, obtaining a solution q1.
~ Run the SEM algorithm starting from q1.
There are two possibilities :

1) q1 = qN (the unique consistent solution of iikelihood equations) ; then the

stationary probability wN of the SEM algorithm is reached.

2) q1e=qN ; then the SEM algorithm diverges from'q1 in‘aAfew iterations and
approaches wN. In this case, it is necessary to run again the SEM algorithm from

its last position to get an accurate estimate of the stationary probability wN.

Last, the SEM algorithm needs a threshold c¢(N,d) in the S-step (see section
3.1). The choice of this threshold is not very sensitive. However, the
simulations done incited us to choose

d+1 < d+ 1

C(N,d) = T if N £ 200 and K § 4 and C(N,d) = — with 1/2sa<1 otherwise.
N .
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