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RESUME

On considére un systéme de files d'attente avec N serveurs et deux types de
clients. Les clients de type 1 demandent a &tre traités par I'un des N serveurs
alors que ceux de type 2 doivent é&tre traités simultanément par les N serveurs. On
généralise le schéma de Loynes a ce type de files d'attente. On en déduit la
condition de stabilité et diverses propriétés sur le régime stationnaire de ce

systeme.
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ABSTRACT

We consider a queueing system with /V servers and two types of customers: Simple customers
which require a service from one of the N servers and Locking customers which have to be served
simultaneously by all /V servers. Loynes’ .increasing schema is generalized to this type of queueing
system. Various properties such as the stability condition and the uniqueness of the stationary

regime are then derived.
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1. Introduction

We consider a queueing system with NV servers and two types of customers, Simple and Locking.
One arrival stream of Simple customers is associated with each of the /V servers. The Simple
customers arriving to server kK require a service from this server only, so that in the absence of
Locking customers, each of the /V servers gives rise to a classical First In First Out queue of Simple
customers. On the other hand, the stream of Locking customers is unique, and each Locking
customer requires service from all of the IV servers. More precisely, a Locking customer requires
these IV services simultaneously. Hence, when one of the servers is r;ady to serve one of the
Locking customers, it has to wait until all of the /NV—1 other servers are ready to serve the same
customer in parallel. The interaction of the two types of customers is now fully specified when

adding that a global First In First Out discipline is enforced everywhere.

Such locking mechanisms are commonly used in data bases to enforce consistency ([11). In a
system of this type “updates™ (our Locking customers) have to acquire locks on all of the “data

elements” on which they operate before beginning any real processing, while “queries™ (the Simple

ones) concerning one data element may be processed by reading this data element independently.

The conflict resolution mechanism based on time stamps gives rise directly to the global First In

First Out discipline mentioned above.

In a recent paper [2], the stability condition for this type of queueing system was given under
certain assumptions on the input and service pi'ocesses. In particular, it was assumed that Locking

customers arrive in a renewal process, all Simple customers arrive in Poisson processes, and all



-service time sequences are iid. In addition it was assumed that all of the above processes are

mutually independent. The proof was based on explicitly constructed pathwise upper and lower

bounding systems of G/G /1 type.

The aim of the present paper is on the one hand to generalize this stability condition and on the
other hand to build and analyze the stationary regime of this system while relaxing the various
independence and exponentiality assumptions. We only assume stationarity and ergodicity of the
input and service processes. An increasing schema showing both the existence and uniqueness of the
stationary waiting times under the stability condition is analyzed in Section 3. The proofs are
extensions of the argument of Loynes [3] for simple G/G/1 queues. The basic formalism to be

used is outlined in Section 2.

This type of approach was already used to analyze the stability and stationary regime of other

queueing systems with synchronization constraints [4] and seems to be of general applicability.

2. Preliminaries

We denote by M the space of integer valued measures on R which are finite on finite intervals

and have no double points. Any ¢ in M has a unique representation of the form

p0) = 3 5,0
ieZ

where ,, a €R represents the Dirac measure at point @, and the t;’s are real numbers satisfying

the inequalities:
¢ t—l<t0<0<tl <

The space M is endowed with the o-field generated by the events ¢(x) = k. where x varies
over the Borel sets of R and k over the nonnegative integers. All of the random variables used in
the present paper are defined on a common probability space (2,27 ,P,8,), where (6,2 ¢R) is a
group of measurable automorphisms from ) onto Q leaving P invariant. It is also assumed that

P is G-ergodic. Within this framework, a stationary and ergodic point process K is a measurable

function from (2,27, P) onto (M, 4 ):



w—Kw) = T80,

ie
which satisfies the condition

K,(w),) = 3 5,,(“,)_,('),
ieZ

for all § in R.

A Palm space (Qo,.d 0), along with its Palm probability measure P on (Qo,ﬂ 0). can be
associated with the point process K, where
Q%= 0an{t,(w) =0}
and
A° = o O (o) = 0}
We do not give the definition of PO which can be found for instance in [S]. We should point out,
however, that P? can be understood as the law of K conditioned by the event that K has a point at

zero (ie., ty = 0).

Let @ = 6, . The main results to be used in the paper are the following two properties:

P is 6,-invariant iff PO is @-invariant
and

P is 6,-ergodic iff P? is f-ergodic.

3. Stability Analysis
3.1 Assumptions and Notation

The assumptions on the arrival point processes and the sequences of service times are limited to
stationarity and ergodicity. There is, in particular, no independence hypothesis between these
processes. Within the mathematical framework outlined in Section 2, this gives rise to the following
model. Let K and K j»J = 1, ..., N be stationary point processes on (Q,94,P,0,) representing

respectively the arrival point processes of Locking and Simple customers destined for server j.

These processes can be written as



Kw)=3 8, )
ieZ
and

Kj (w,°) - EZI 53/(“,) () .

The Palm spaces of K and K; are denoted by Q% % P% and (QJQ, K74 ?, P}’) respectively.

The service requirements of the Locking customers (defined as the duration of their simultaneous
residence time in all V servers once these are locked) are characterized by a real valued and -
nonnegative random variable ¢ defined on ( ﬂo,&[ O,Po). The random variable o represents the
service requirement of the Locking customer arriving at time ¢ (= O on 09, This specifies fully
the sequence of service requirements when noticing that the service requirement of the K -th Locking

customer (the one arriving at time ;) is given by g0 0,".

Similarly, the service requirements of the Simple customers of K j are fully characterized by a

nonnegative random variable o; defined on (ﬂ}), -4 ](-),PJQ).

It is assumed that o is P? integrable, o i is P}) integrable, and the intensities of X and K j are

all finite, for j = 1, ..., N.
3.2 Evolution Equations for the Waiting Time of the Locking Customers

From now on, the basic probability space we work on will be (ﬂo,&l O,Po), the Palm space of
the Locking customers. For a given j = 1,.., N consider a sample path of K j and
(6008,/, i €Z) on this probability space. For t and w eR™, let F § (t,w) be the residual workload
of simple customers in front of the j-th server at time ¢, if the initial workload at time zero is zero,
the server is blocked up to time w, and this server is fed with simple customers only. It is clear that
F j (t,w) is a nonnegative real valued random variable on (00, K74 O,Po) since this residual
workload can be obtained pathwise from the values of s{ and 0 oﬁs/ for i 2 0 defined on the same
probability space. We assume that the function ¢ — F j (t,w) is left continuous. Notice that
F )i {¢,%) is measurable in both arguments z;nd w. The behavior of the function t — F j (r,w),

w fixed, is exemplified in Figure 1.
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Considered as a function of w, with ¢ held fixed, F f (t,w) is equal to F f (¢,0) for
0<w<g b; (t), increases linearly with slope 1 for b; (¢t) < w <t and is equal to a J (t) for

w 2 t. This behavior is depicted in Figure 2.



aJ(D T

-~ 1-—

!
b; ()

Figure 2
Let
h;(t,w) = max(w—1,0) + F;(t,w).

Thenw — h ; (t,w), t fixed, is constant and equal to F f (2,0) up to time bj () and linear with

slope 1 after (Fig. 3).
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Figure 3

Assume one knows W, the waiting time of the Locking customer arriving at time fo = 0.
(This waiting time is defined as the time between its arrival and the beginning of its simultaneous
services). Let us then determine the waiting time incurred by the next Locking customer (arriving
at time 7). Due to the First In First Out assumption, one sees that the delay to exhaust the total

workload (Simple plus Locking) in queue J at the arrival of customer ¢y is the random variable



F;i(t,, W + o) if t; > W + 0 and the random variable W + o — 1, + Fi(t|,W + o) if
ty S W + 0. Thus, this delay is actually equal to v
Fj(tl,W+U) + (W+U_tl)+,

where [a]* = max(a,0) for a¢R. Our assumption on the left continuity of  — F, (t,w)
implies that if Locking and Simple customers arrive simultaneously, priority will be given to the

Locking customer. The waiting time of the Locking customer arriving at #, is equal to

max [Fj(tl,W+a)] +[W+o—1,]%.
1€j<N

The existence of a stationary regime means that the waiting time of the Lockiné customer arriving
at 2, is the waiting time of the one arriving at 25, W, composed with 0;,- Thus, if one denotes 8,
by 0, the existence of a stationary regime is equivalent to the existence of a nonnegative real valued

random variable W on (Qo, k-4 0, P% which satisfies the evolution equation

@Ga.1) Wof = [W+0"‘t1]+ + max (Fj(tl’ W+0')) .
I<j<N

3.3 Stability Condition
Let E9 denote the expectation with respect to P?,

Theorem 1. If the condition

(.2) E%] + E°[ max ajcxl)] < E%¢))
. Ij<€N

is fulfilled, there exists a finite random variable W on (Qo,d O,Po) which satisfies (3.1). ®
Proof. Consider the following sequence of random variables on (00, oA 0, PY:

(333) Vo - 0
and _
(3:3b) e [[V,, +o—t,]* +  max Fj(tl,V,,+a)]oo".

rot any fixed { 2 0, the function w — F j (z,w) is pathwise continuous and nondecreasing.

These properties imply that the function



gw) =Iw+o—11* + max F;(t),w+o)
1€j<N

is also pathwise continuous and nondecreasing. We can now show that the schema ¥V, is

nondecreasing. Assume that ¥, 2 ¥V, _; (this is true for #==1). Then, one gets from (3.3) that
Vas100=g(WV,) 2 g(V,_)) = V, 00,

so that the nondecreasingness of ¥, is proven by induction. Let ¥ be defined as the increasing
limit of the V},’s. The continuity property of g (w) implies that ¥ satisfies the relation (3.1), so

that

(3.4) "~ Vob=[V+o—1;,]"+ max (F;(t},V+0)).
I1<j€N

Accordingly, the theorem will be established if we show that the condition (3.2) implies the
finiteness of V. To show this, notice first that (3.4) implies that the event (J/ = o0) is @ invariant.
(The random variables o, #}, and F; (t,,V +0) are as. finite, so that [V +0—1,]% is as. finite
if and only if V is finite.) Thus, the ergodic theorem shows that either V' = o0 as. or ¥ < o0 as.
To show that (3.2) implies that ¥ < o0 as,, it is sufficient to prove that the assumption V = oo as.

implies that (3.2) is not satisfied.
We need the following Lemma.
Lemma 1. For n 3> 1, ¥, is P integrable.

Proof. The proof is by induction. Assume that ¥, is integrable. So ¥, will also be integrable if

one proves that

(3.5) Vato-1,1* + max F;(t},V,+0)
I1€j<N

is integrable. Note that (3.5) is bounded above pathwise by

(3.6) Vn +0+ 2 aj(t l) .
1< &N

Using the Neveu exchange formula between two Palm measures [S], we obtain



AE®a;(t)) =\, E'lo}],

where E/ denotes the expectation with respect to Pj(-’ and where A (resp. A;) denotes the intensity

of K (resp. K;). Thus, the expectation of (3.6) with respect to POis

G.7) EUV,1+ E%l+27' 3\ Ellgl,
1Sj<€N

which is finite due to our integrability assumptions. This completes the proof of the Lemma.
Since V4, 2 V,,, using Lemma 1 we obtain
(.9 EV, . - V,0>0.
Since P? is f-invariant, E9[ Vaetl = E of V,+100]. Thus, (3.8) implies that
E%g(v,) - V,]1 > 0.
Asgume now that J/== o0 as. or equivalently that V¥, increases to © a.s. Using (3.6), it is clear
that g (W) —w is bounded above by

(.9 , s+ ¥ a),
- I<j<gN

which is integrable as established in (3.7). In addition, g(w) =w is bounded below by 0 —1¢, so

that Lebesgue’s Dominated Convergence Theorem yields

(3.10) 0 < lim E%g(V,)-V,]
. 7~ 00
= E% lim g(¥,)-V,].
n~—+oco

Since the function g(w) —w satisfies the limiting relation

lim gw)—w = g—¢t,+ max a;(t,),
£ Pigjen 0t

L aad
one sees that (3.10) implies that (3.2) is not satisfied which concludes the proof of the theorem. ®
Theorem 2. If

E%6) + 50[ max aj(rl)] = Et,,

1<j



-10 -

then equation (3.1) has a unique solution. If
(3.11) E%] + E° max a;(t) | = E%],
1€j€N
and if the variable ¥ defined in Theorem 1 is finite, then any other solution of (3.1) will be of the
form ¥V +c¢ where ¢ is a positive constant. B

Proof. Let W be any solution of (3.1). Consider again the sequence ¥, of Theorem 1. Since
W 2 Vy =0, one gets by induction (when using the increasingness of w — g(w)) that

W 2V, for all n so that
(3.12) wW=2V.

If V=00 as., one obtains from (3.12) that any other solution of (3.1) will be infinite as well, so
that the uniqueness is established. Consider now the case ¥ < o a.s. Notice first that when it is
differentiable, the slope of the function g (W) is either zero or one. Since g (w) is also continuous,

one gets then

gw)—gw) <Kw-—-v for w>v.
This implies the relation
(3.13) Wol—Vob=g(W)—-g(V) S W-V.

For z ¢R, let A, = min(W —V,¢). Then (3.13) implies that 4, 08 < A, so that the pointwise

ergodic theorem yields

n
> A0
El4,] = lim %—— < 4.
n =+co

Thus, A4, is a constant for all ¢ so that W =V is a constant as well. We have thus established that
in the case V' < o0, W is necessarily of the form W = ¥V + ¢, ¢ > 0.. Now, let us show that

¢ can only be different from zero if (3.11) is satisfied. We have

(3.14) g(.V+c) =g(W)=Wol=Vob+c=gV) +c.



- 11 -

Since g(w) = max h; (t,,w +0), (3.14) implies that g (w) increases linearly for w > V.

1\]\

The properties of the functions w — h j (tl,w) established in Section 3.2 imply that there exists a
Jo such that V' > bjo(tl) —o and
(3.15) gWV) =V +a+a;t) -1,

=V+o+ max a;(t) —1,.
IQJ\N

Thus, since g (V) = V00, (3.15) implies that ¥ 08— V is integrable and that

(3.16) E[Vo8—-V] = E%6] + Eo[ max g (x,)] — E%t,].

Since E(V, 00— V,] = 0 for all n, and due to the bound (3.9) on g (W) —w, we conclude that

the left hand term in (3.16) is zero which completes the proof of the theorem.
Theorem 3. If

(3.17) E%]I + Eo[ max a_,-(tl)] > E%t,]
ISjEN

then (3.1) has no finite solution. ®
Proof. Using the fact that b; @) >t —a; (£)1*, we obtain

(3.18) glw) > [w+a+ max aj(‘l)‘t1]+'k(W)-
I1SjSN

Hence, if we consider the sequence W, on (20 A% P% defined by WO = (0 and
Was100 = k(W,), n >0, we obtain immediately by induction from (3.18) that ¥, > W,

ne

n 2 0. Now, classical results on G/G/1 imply that if (3.17) is satisfied, then W, =0 a5, ®
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