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LA COMMUNICATION EST UNE ABSTRACTION -

Abstract.

We introduce a formalism that allows to hierarchically define communication structures. The core
language consists of a few imperative constructs operating on shared variables. The semantics
describes two distinct behaviours: a program performs some actions, which are elementary instruc-

- tions, and operates on data by means of its terminated sequences of actions. By abstracting from

this operation we get the notion of atom. At the abstract level an atom operates as an indivisible
action, while it is implemented as a whole program of a lower level. We show that the concept of
atom is well-suited to deal with both low-level and high-level communication and synchronization
primitives.

Résumé.

Nous présentons un langage, et sa sémantique, dans lequel on peut introduire des mécanismes de
communication et de synchronisation & différents niveaux. Le noyau du langage est constitué de
quelques primitives de programmation impérative, qui manipulent des variables partagées; il n’y a
pas d’autre moyen de communication primitif dans le langage proposé. Dans la sémantique nous
décrivons deux modes de fonctionnement des programmes: d’une part ceux-ci exécutent des actions
élémentaires, d’autre part ils opérent, par leurs séquences d’actions terminées, sur des données.
Un mécanisme permet d’abstraire I’opération d’un programme en celle, indivisible & son niveau,
d’un atome. Nous montrons que cette notion d’atome permet de rendre compte de primitives de
communication de différents niveaux. ' '

1. Introduction.

From semaphores and critical regions to monitors, some programming concepts have been designed
to insure a mutually exclusive use of resources — data or devices. Various message passing primitives
have been used to implement communication in distributed systems: communication may be asyn-
chronous (bufferized) or synchronous, and it may be one-to-one (e.g. rendez-vous), or many-to-one
(client-server), or one-to-many (broadcast), and so on. Usually programming languages offer one of
these primitives, but no way to introduce various synchronization mechanisms or communication
structures — two exceptions being monitors, with a fixed synchronization discipline, and tasks. The
purpose of this paper is to set up a semantical framework that embodies the idea of abstraction,
from the low level shared variables to higher level communication schemes.

This research is partially supported under PRC C3 (CNRS).
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Obviously the main goal of language design is to conceive high-level constructs providing facilities
for programming and maintaining large systems ~ whereas language development should provide
efficient implementation. From a theoretical point of view this means that one has to search for
powerful constructive concepts with a mathematically simple semantics - a good example is type
theory (¢f. [7] for instance). Regarding communication there are at least two mathematically
well-founded ideas: deterministic stream processing (Kahn-MacQueen networks) and rendez-vous
(CCS communication); we are mainly interested in the last one. In Milner’s CCS the co-occurrence
of sending and receiving a value v on the same port a, that is the co-occurrence of (alv) and (a?v)
gives rise to the so-called r event. Later on Milner gave the suitable formalization: in SCCS [11] the
co-occurrence of two actions is their (commutative) product, and sending and receiving are inverse
actions; this provides a powerful theory (cf. [4]). However from an operational point of view the
communication law, which may now be written @, - a,~! = 1, is some kind of miracle. Formally
we could say that nothing allows to prove that such a communication occurs; more intuitively the
question is: how to implement such a synchronization?

In fact there is an answer (cf. [8]); let us deal with pure synchronization, without value passing:
a-a~! =1. Then to make a CCS port one takes two boolean semaphores s and s’ (initially true)
and defines ' :

a= P(s);V(s")
a™l=P(s");V(s)

where P and V are Dijkstra’s operations

P(s) = (when s do s:=ff)
V(s) = (when —s do s:=tt)

If we assume that P and V' are uninterruptible and mutually exclusive operations, and that o and
o~ ! are the only way to use s and s', then it is easily seen that one cannot complete, say, an «
without engaging “simultaneously” an o~1. Moreover we must assume that performing, say, a~?!
means to complete it; we thence postulate that it is an atomic (or more accurately “recoverable”)
action, abstracted from its code, which could very well be a complex program. Then the so-called
“mutual inclusion” of « and a~! results from an indissoluble interleaving of their codes, as in the
sequence P(s) ; P(s") ;V(s') ; V(s) for instance. .

This paper introduces a formalism to deal with such a way of looking at communication and
synchronization. The starting point is an imperative language - for there is no simple functional
semantics of concurrent and communicating processes. The primitive constructs are the following:

- simultaneous multiple assignments: (z1,.. . zn):=(e1,...,€n);

- boolean guards: (when t do p);

~ sequential and parallel composition: p;¢ and (p|| q).
We could add boolean conditionals, or more generally case statements. There is no explicit com-
munication primitive in this core language: at the deepest level shared variables are the only
communication means. We shall see later the other constructs of the proposed formalism; let us
say at this point a few words about semantics.

A program behaves in two different ways: first, given some environment collecting definitions
(of data types, recursive processes, and so on), a program may perform some elementary actions.
This is formalized as the “execution” transition relation '

. action . /
environment |+ program ~exec® Program

This transition relation is a rather “symbolic” one: it only says what is a possible next elementary
thing to do. For instance if a and b are actions then the program o ; b first perforus a, then b,
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and terminates. Such a notion of (labelled) transitions is usually taken as a suitable framework to
describe the operational semantics of concurrent and communicating systems — a typical example
being CCS. We adopt the description method advocated by Plotkin in [13]: an execution step is
valid only if it may be proved by means of some inference rules. This holds for all the transition
relations we shall introduce. :

In dealing with concurrency we follow Milner’s idea ([111, ¢f. also [61): a program (p|| q)
may perform composite actions, product of actions of p and ¢; unlike SCCS however we assume
an asynchronous parallel composition, as it was used in MEIJE([1,4]). Moreover since actions are
merely elementary programs there will be no distinction between product and parallel composition:
the product of @ and b is (a||b); this is another departure from SCCS. Then for instance the program
(a || b) performs itself as an action and terminates; it also performs a, then b, or b, then a, still
terminating in doing so.

Usually (operational) semantics aims at describing the behaviour of systems made out of
a program p operating on data stored in a memory u, ¢f. [13]. Such a pair, denoted (p\p),
is a configuration of some “abstract machine”. The semantics of sequential languages describes
how configurations evolve up to terminal ones. When dealing with sequential programs one is in
fact interested in (unlabelled) sequences of transitions of the form (p\p) —* u', which are then
abstracted into an input/output behaviour p: u+ p'. However these transitions may be built up
step by step, so that

environment “+ (p\p) % (p'\w')

holds when the program p performs the action @ and becomes P’ in doing so, while a operates on
the memory u with 4’ as a result. We shall regard this transition relation as defining the (dynamic)
semantics of our language. As we can see, a proof of such a step is really twofold: it calls upon
the (formal) execution of the program, and upon another kind of behaviour, according to which
a program may operate on data stored in a memory. This is formalized by means of another

transition relation:
program

environment + memory ~oper  memor,

The oper procedure may use the exec one, for the operation of a program is generally that of
its terminated sequences of actions. For instance the operation of a ;b is that of a followed by
that of b. It is easy to imagine how assignments operate on the memory. At the deepest level,
which is that of (guarded) assignments, we shall postulate mutual exclusion: assignments are
uninterruptible and mutually exclusive atomic operations; then concurrent assignments operate as
their nondeterministic interleaving. However we cannot assume that interleaving is the only way
to compute the operation of any concurrent program. This is because we want to be able to build
configurations which can perform a compound action (« || a~1), but cannot perform just & or
a~1. The exec procedure cannot insure this mutual inclusion: since the execution of a (p|| ¢) is an
“asynchronous” one, a program performing an (a || b) can always perform also @ and b. Then the
rendez-vous will be achieved by abstracting a co-operation, as we shall see now.

In order to introduce higher levels in the language we use definitional mechanisms, that the
environment will incorporate. The semantics of such constructs consists in substituting what is
defined by its definition (“body”, or “code”). In the proposed semantical formalism there are two
positions in which one may substitute the definition for a program: .

— the first one is what is at the left of the exec arrow. In this place one may introduce a process
whose execution is that of its body; :
~ the second position is what is over the oper arrow; here one may introduce what we shall call
an atom. '
Then we have two new instructions in the language: process calls and atom calls. The latter also
are acsicis, aud therefore mzy appear over the exec arrow. The semantics of atoms is such that
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an atom operates as its code, thus possibly in many elementary steps, but is performed atomically:
a program which performs an atom call will never have to execute its code. This is the way we
introduce levels of abstraction. Within the scope of its definition an atom can be used as a new
primitive uninterruptible operation.

It is worth pointing out that the distinction between processes and atoms (that is between
exec and oper) is irrelevant in sequential languages — as a matter of fact, sequential languages stay
at the oper side, while CCS-like languages stay at the exec one. Since the semantics of a sequential
program is its input/output behaviour, the program (“process”, or more accurately procedure)
and the abstract function (“atom”) it computes are semantically interchangeable in any sequential
context. Obviously this is no longer true for parallel programs which communicate during their
computations. A first point is that non-terminating programs are perfectly meaningful, such as
(while true do z:=z + 1); but the main point is that concurrent programs sharing something may
interrupt each other. For instance it is very different to regard (z:=z + 1; z:=z + 1) as an atom
(equivalent to z:=z+2) or as a process: they are not interchangeable in the context (. )| z:=2z).

In our proposal atoms are part of the (communication) structure definitions. In fact such
structures are much like abstract data types or monitors: they consist of a collection of object
types and atoms (there should also be functions). The atoms share objects which represent a local
structured memory. Since we want to achieve synchronization (e.g. rendez-vous) by means of such
structures, there is no special discipline for atom calls; this makes a difference from monitors, ahd
from the concept of atomic action too, for we do not assume serializability (cf. [10] and [9] where
one can find more references). On the other hand atoms are “recoverable”: they operate in an
“all-or-nothing” manner; this is written down in the semantics. ’

To sum up, let us explain how the whole proposed framework deals with CCS synchronization
(value passing will be treated below). We define the CCS port structure as a record-like type with
two boolean fields, provided with two atoms for sending and receiving:

port = (b:bool=t and b': bool=tt)
with
send(o: port) = (when 0.b do o.b:=ff) ; (when —0.b’ do 0.b":=tt) = s ; s’
receive(o: port) = (when 0.5’ do o0.b":=ff) ; (when —0.b do o.b:==it) = r; 7'
Let p be a memory containing a variable u of type port, and let p be a program which performs

(exec) an action a which is either a=send(u), or a~!=receive(u), or the parallel product (afja™).
In order to determine the behaviour of the configuration (p\u), in the context of an environment

which contains the port definition, we have to prove that the action a operates on p. Since a is

made out of atoms, the only means is to unfold these atoms into their codes, while simultaneously
unfolding the memory into a “concrete” one 4/, containing u.b=t,u.b'== #t. Then we have to prove
that the program ¢, which is either s, or r; 7, or (s3] rsr') operates on y'. Clearly in the
first two cases only the first instruction (s or r) may operate, not the second one. Therefore g does
not operate on u’, since oper holds only up to the completion of the program. The configuration

(P\n) cannot perform send(u) or receive(u): there is no proof of such a transition. On the other .

hand we have

wb=t) o fub=fF| , [uwb=F) o [uwb=2)] , [uwb=t
-2, LN —_— —_—
wbl =t oPer | ub'=p [ Oper | ub =g [ OPer | ub'=f [ OPEC ) ub' =
Since s r &’ ' is a terminated sequence of actions of (s;s' [l r 57'), we have a proof that (p\p) may
perform (| a™?).

NOTE. The concept of composite actions seems to be crucial here: could we “implement” the
rendez-vous by means cf 2 purely sequential non-deterministic interpretation of concurrency? The
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idea that an atom abstracts the terminated behaviours of its code has been used in dealing with
semantics and verification of concurrent systems ([4,5]); there it led to the notions of observation
criterion and transition systems morphism. One may regard the abstraction mechanism of our
language as embodying a syntactical (operational) version of these notions.

2. Data and Programs.

Operational semantics aims at describing the behaviour of systems made from a program and data.
In this section we shall begin with a few words about data, and then give the syntax of programs.
We shall assume a collection of data types — among which the booleans (bool), the integers (int),
and so on. Associated with each type are expressions and values. For instance the logical constants
t and ff are expressions, and one may form other expressions using functions like negation (-b) or
conjunction (b A b’). Thus we assume an underlying language of typed expressions — such as the
applicative part of ML, or something more general, cf. [7]. _ :

In order to write expressions, we also need identifiers. We therefore assume a denumerable set
Ident of identifiers, for instance the set of non-empty words written on a finite alphabet Alph:

Ident = (Alph)*

We shall use record-like types, thence we allow compound variables like z.y to be expressions. Let
“” be a symbol not in Alph; then the set of variables is given by

Var = Ident(.ldent)"

In the sequel we let z,y, ... range over identifiers and 4,v,w... over variables.

We must now define the record types we use - there may be some differences with the usual
(PASCAL or ML) notions of record (1). Our record types may be recursively defined, so that fields
of a record are determined accordingly. If for instance

complez = (r:real and 1:real)

then a complez is a record with two real fields r and i, and if ¢ is of type complez then c.r and c.t
are variables of type real. '

The syntax of our language is the following:
RECORD TYPES:
(1) if z is an identifier, r a type (from the expression language), and e an expression of that type,
then z: r=e is a record type. Its only field is z; :
(ii) if z is an identifier, w is a type or a record type, then z:w is a record type. Its only field is z;
(iii) if w and w' are record types whose fields are distincts then (w and ') is a record type whose
fields are those of w and of w’,
(iv) if 7 is an identifier and w1,...,wn are record types, types, or identifiers, then x (wy, .. .y wy) Is
a record type (whose fields are those of the definition of 7).
NOTE. We shall give later the syntax of record type definition. We have not given any means
to form expressions of record types, hence only variables may have such a type, and there is no
expressible value of record types.
ACTIONS:
(i) if vy,...,v, are distinct variables and €1,...,€p are expressions then the assignment
(viy. .o v0)=(ey,. ..)€p) is an action; :
(ii) if t is a boolean expression and a an action then the boolean guard (when t do a) is an action;

(T) In case the underlying language has record types, we might use another word, such as “profile” or
“store” .



(ifi) if a and b are actions then their parallel composition (a ]} b) is an action;

(iv) if a is an atom call then it is an action.

(v) if d is a definition and a an action then (def d In a) is an action.

We shall give later the syntax of definitions and atom calls. We do not say anything about static
semantics, that is about what should be needed to check that assigned variables are distinct, that
expressions have an appropriate type, that the guarding expression ¢ is of boolean type, and so on
(¢f. [13]).

PROGRAMS:

(i) any action is a program;
- (i) if  is a boolean expression and p a program then the boolean guard (when t do p) is a program;
(iii) if p and ¢ are two programs then their sequential and parallel composition p;q and (p|| q) are

programs;

(iv) if p is a process call then it is a program,;

(v) if d is a definition and p a program then (def d In p) is a program.

The syntax of process calls will be given in a next section. We could also add conditionals of the
form (if ¢ then p else ¢). In the following we let a,b,c... range over actions and p,q,r... over
programs.

3. Execution of Elementary Programs.

As indicated in the introduction, programs perform actions in a single step. The method to describe
these transition steps is that advocated by Plotkin in [13]: they are the ones we may prove
according to a set of inference rules and axioms.

The first element of this specification set is an axiom which says that in any environment € an
assignment @ is a process which performs itself — as an action — and terminates. There is nothing
in the syntax which is intended to mean “termination”: there is no “skip” program. Thus we need
a special symbol 1 which is not a program but may be the result of an execution. Then our first
statement, where a is an assignment (v, .. Svn)i=(ey,...,e,), is:

. . * a
assignment (execution): € F a axee 1

This axiom indicates that an assignment is uninterruptible since its execution cannot be broken
into many steps.

' The execution of a guard is specified in a simple manner: (when t do p) performs the same
actions as p but formally guarded by the test — here we do not have to take care whether the test
is true or not. This is formalized by the rule:

a ’
eF PGP

guard (execution): '

(when t do a)

€ F (whentdop) “‘—'mc-—-—-'-*

/

REMARKS.

(1) When p terminates, i.e. when p' = 1 then the guard (when ¢ do p) terminates. o

(2) The boolean test ¢ only guards the initial actions of the program p, since the resulting program
p' is no longer guarded.

In the same manner we could describe the execution of a conditional, if we regard it as a “sum”

(if t then peise ¢) = (when t do p) + (when ~t do q)

6



We do not introduce a sum or “select” construct in the language, as it is done in CSP or CCS;
however this suggests the following rules for the execution of a conditional: :

a !
€ }-pexecp

conditional 1 :
(when t do a)

e F (if ¢ then p else q) xec 7
b.
el g axes 4
conditional 2 :
(when -t do )
€ + (if ¢t then p else q) > g

exec

We could also introduce other conditional constructs, such as (while ¢ do p) or (if t then p) which
terminate when the test is false. These will not be needed for our immediate purpose. Moreover, in
order %o describe their semantics, we should have to regard 1 as an action ~ thus also a program,
as in [6] -, stating something like

(when -t do 1)
exec

(if t then p)

There is no surprise for what regards the execution of a sequence p ;3 ¢, which is determined by
two rules. In any case such a program first performs an action of p, and what it becomes depends
whether p terminates or not: :

a
ek pexecpl;én

sequential composition 1 :

a
e piggeepig

In this rule p’ # 1 is a purely syntactical test, as it will be always the case in what follows; this
does not mean testing deadlock or termination of an algorithm!

a
€ l-pexecn

sequential composition 2 :

ek psgag
exec

NOTE. We could have introduced sequential composition in the actions — as it is done in [6] - by

a rule like
‘ a b ’ . a;b l
Paxet 1) Y@t 9 = Pig exec 7

Such composite actions could be required in the formalization of the implementation of the
ESTEREL programming language ([21), for the semantics of this language uses “instantaneous”
actions involving causal dependencies. :

The semantics of a parallel composition is, roughly speaking, that of MEIJE [1,4], or more
accurately that of [6]. Let us assume for a while as in [6] that 1 is an action that any program
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1 . ; .
may perform without any state change (p xee p). Then the execution of (p || q) is defined by the

single rule

LD, o)

Since (a || 1) = a = (|| a) (in the formalism of [6]) this is more or less the asynchronous parallel
composition of MELJE, where an action of (p || ¢) is an action of one of its components, or results
from their simultaneous activity. Moreover we have to take into account termination (p' = 1 or
¢’ = 1); therefore in our formalism where we want to avoid the use of semantical laws such as.
(z]l 1) = z we must describe the execution of (p || ¢) by means of eight rules. This will be reduced
to just four by using non-deterministic rules that entail several possible conclusions. The first rule
deals with the case where the activity is of one component only, which terminates:

b
P50, 0=>4 = (p]l9)

a
€+ P exet L
concurrency 1:
a a
eb (Pl geee » e (allp) gz g

The following is the same, but the component does not terminate:

el-pé—x—eép’;én

concurrency 2:

ek () gz P'lle) 5 &+ (llp) 52 (gl )

When the action is a compound one, and at least one of the components terminates, one has:

b
sl—pa’—(%cvn , s}—qex——eéq'
concurrency 3:
d @lb) Gla)
etk (Pllg) e @ » et (ellp) o @

Finally there is the case where the two components perform something concurrently, and neither
terminates:

a b
5"?5;53?'?—"1 , € F Qé;e“E'I'iéﬂ

(a]l®) (6lla)

ek (plle) 5o P'lI) e+ (gllp) 5 (@' 1IP)

concurrency 4 :

REMARKS.

(1) One may note that if the two components terminate, then their parallel composition terminates,
and this is the only termination case.

(2) These rules will be the only way to introduce a compound action (a ||b); hence when a programs
performs such an action, it may also perform a and b.

This ends the execution rules of elementary programs; the semantics of the other constructs — atom

calls, process calls, definitions — will be given below.
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4. Operation of Elementary Programs.

In this section we shall describe how simple programs use and modify data, that is we shall describe
the oper procedure. The corresponding transition relation, as well as the previous relation exec, is
needed to synthesize the behaviour of configurations, that are pairs of programs and data.

4.1 The Memory.

Data are stored in a memory, which is a partial mapping from a (finite non-empty) set of variables
to values - this mapping is partial since some variables may have been declared but not initialized.
It will be convenient to add some information about types, so that a memory can be represented
as

{viim=vy, . 0 Te=Va, U Wy, ., Uk Wi )

if {v1,...,Vn,u1,...,ux} is the set of declared variables, v,,...,v, are the respective values of
the v;’s, and the 7;’s and w;’s are the types. Since we have introduced record types we must say
something about the value of a variable u having such a type. With respect to a memory p, this
value is just another memory, part of the given one. For instance let stack(r) be the recursively
defined record type of pushdown stacks (of items of type r)

stack(r) = (top: 1 and tail: stack(r))
and let s be an identifier of type stack(int). Then, given the memory
B = {s.top:int=0 , s.tail.top:int=1", s.tatl.tail: stack(int)}

(where s.tail.tasl has no value), the value of s.tail is the “sub-memory” {top:int=1, tail: stack(int)}.
Therefore the convenient model for a memory is that of a set of trees with typed and possibly valued
leaves; nodes are labelled by identifiers, so that variables are paths in the trees. The memory
above may thus be drawn, omitting the types

s
N
top=0 tatl

~

top=1 tail

Formally a memory u is then a triple (M, v, 8) such that

(1) M C Var is the finite non-empty set of paths, satisfying u.v€ M = ue M,

(2) v is a partial mapping from the set I(M) = {u/u € M & Vv u.v & M} of leaves to values of
underlying types (bool, int, and so on);

(3) 8 is the mapping assigning types to (all) the leaves.

Although we require values to be of underlying types, and not of record types, we allow as a

notational convenience v; to be a memory in

{viin=vy,. . V=V, uwy, . Uk Wi}
For instance the u of the previous example could be denoted
{s: stack(int)={top: int=0, tail: stack(int)={top: int=1, tail: stack(int)}}}

Moreover the type information will be omitted in most examples. This representation shows that
a memory is just a special kind of Kahn-Plotkin’s concrete data structure, cf. [3].

9



Given u = (M, v,8), the value of a variable u € M — (M) (a leaf v € I(M) obviously has value
v(v)) is
M/u= {v/u.w € M} and for v € (M/u)
(6/u)(v) = 8(u.v) and
(v/u)(v) = v(u.v) if u.v € dom(v)
undefined otherwise

u(u) = (M/u,v/u,0/u) where

Pi'ograms operate on the memory by updating it, assigning a new value to some variables. We
define this as the modification of an old memory p = (M, v,8) by another one ' = (M’,v’,8")
resulting in the new pl[p'] = (MIM'], v[v'],006"] ). The set M [M'] of new paths is that of M,
plus the paths of M which are not suffixes of a leaf of M':

MIM'} = M' U (M - I(M')(.\dent)*)
V'(u) if u € dom(V')
vVl =94 p(u) if uedom(v)— I(M’')(.Ident)*
" undefined otherwise
818'] = 9'(v) ifuel(M')
T\ 6(v) if ue (M) - I(M')(\dent)*
Obviously to compute the operation of assignments and guards one must use an evaluation mech-
anism for the expressions, by means of which one computes the value of, say, e in the context of a
memory p. This will be denoted '
€ Fe—v
e, #) eval
so that for instance v = p(e) if e has a record type (in which case e ought to be a variable). Here
the environment may contain definitions of functions. We do not say anything about the evaluation
of expressions of the presumed underlying language, and for more details we refer to {13]; however
we make a single assumption, that evaluation is purely applicative — this is in fact implicit in the
previous notation. In our formalism the non-existence of side effects means that the eval procedure
never calls the oper one.

4.2 Assignments and Guards.
The whole technical apparatus of the previous section allows us to formalize the operation of an
assignment,

a=(vy,...,v,):=(eg,...,€n)
Intuitively this is rather simple: one evaluates the expressions e; and accordingly updates the v;.
The rule is as follows:

(e, Fer—vi,..., (e, F e, —> v,
. R eval eval
assignment (operation):
a
ek oper pl{vi=vy,..., v,=v,}]
In this rule we use the previous notational convention for {vi=v1,..., v,=v,}. Continuing the

above example, the assignment (s.top, s.tail):=(s.top + 1, s} updates the memory
u = {s.top=0, s.tail.top=1, s.tail.tail}

into : :
{s.top=1, s.tailitop=0, s.tail.tail.top=1, s.tail.tail.tail}

10



REMARKS. It is worth emphasizing two facts about this rule:

(1) first we regard it as an axiom of our formalism: this is right because we have assumed a purely
applicative evaluation of expressions. Therefore the inference bar of this rule makes a strong
parting ‘with the underlying (functional) language. Moreover this means that assignments
operate in an indivisible manner since there are no oper steps during the evaluation, as there
are no steps in updating.

(2) we must say that this rule will be the ounly axiom of the oper procedure. Thus in order to prove
an oper transition we will always have to come down to the operation of assignments. These

. deepest instructions are in fact the only ones by which a program may operate on data, even
if this can be somehow hidden (by the abstraction mechanism). .

* For all these reasons we regard assignments as the particles of the language - this is true also with

respect to the exec relation.

Boolean guards operate as the guarded program when the test is true, that is:

p
(E,#)"te—v;rft » b pggw

guard (operation) :
(when t do p)
—_— s

ek op oper

This is the single rule for guard’s operation; thus, when the test is false (or unevaluable) the guard
cannot operate. One should also note that this time the entire operation, and not only its first
step, is guarded by the test. From this point of view an action such as

(when t do (vy,...,v.):=(ey, .. -y€n))

is like a generalized test-and-set, as for instance the Dijkstra’s P and V operations on semaphores.

4.3 Sequences of Operations.

When introducing the oper procedure, we have said that the operation of a program is that of its
terminated sequences of actions. Two general rules formalize this idea - according to which our
notion of operation is very much like the usual mathematical one (operation of a semi-group on a
set). A program must perform at least one action to complete a sequence, and the first rule deals
with this “immediate completion”:

operation (completion) :
P,

el—uasa

The next rule states that operation may result from a sequence:

!
a ’ a " p !
¢ b Pexet? » ¢ Fop oper K oper ©

operation (sequence) :
' '

p
el-pa’—e-;p

’ ’
. a 14 /- T a 1" n P ’
In thisrule e + p (Tp_e? u BFe? p' 18 an abbreviation for e l— m o—"per B, e b op _*oper g

Naturally enough these rules allow us to infer the operation of a sequential composition p; g, as it

n
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is examplified in the following proof (where we omit the irrelevant environment):

. zi=z+1
=l —oe— L
z:=z+1 =z+1 =2z
(z:=2 + 1) 5 (z:=22) —exec T=2z {z=0} ~oper {z=1} ~oper’ {z=2}

{z=0} (z:=z +olp)e;r(z:=2zl =2}

It is then unnecessary to state any inference rule for the operation of sequential composition p;q —
note that p;q is an interruptible program for both exec and oper. What is much more important is
that we do not state any specific inference rule for parallel composition. The consequence is that
we still have to use the general rules above to determine the operation of (p || ¢) - at least this is
true for elementary programs (without abstraction). For instance le

p=(a]|b) = (z=z+1| z:=2zx)

The terminated executions of this program are, omitting the environment:

T=r+1 , | p=9g =2z , =z +1 (a]l ®)
exec (:c.-2:c) exec 1,0 exec (z.—:c+< 1) exec 1, 0pr exec 1

Now we want to know how p operates on the memory {z=0}. We find out that the only possible
proofs are instances of the previous rule, e.g.

a a " b ’ (a”b) ’
(alld) 52t » hoper e K P B oo

Then we get either {=1} or {z=2}. One must conclude that the operation of a concurrent
program (p || ¢) is that of the non-deterministic interleaving of its components — again this is true
for elementary programs. The absence of an inference rule for concurrent operations formalizes
the postulate that assignments are mutually exclusive operations. As an exercise, the reader could
establish that the programs ((z:=z + 1) ; (z:=z +1) || 2:=22) and (z:=z + 2| 2:=2z) do not have
the same operation.
To conclude this section we give the semantics of configurations. First let us give the syntax

of this new species.
CONFIGURATIONS:

(1) if p is a-memory then (1\p)is a configuration;

(ii) if p is a memory and p a program then (p\u) is a configuration.
Then configurations perform some transitions that we regard as defining the operational semantics
of our language — we do not qualify this new kind of transition (although the qualification might be
exec). However, given an environment €, only closed configurations are allowed to perform actions;
a configuration (r\p) is closed in ¢ if any variable occurring free in r is either defined (in €) or
declared (in ) - this should be checked by static semantics, cf. [13]. The following rule states
that a possible transition of a configuration (p\p) results from both the activity of the program p
and the operation of this activity on the memory u:

a a
e’*pexecp,’EF-”oper“,

(closed) configurations :
e b (P\u) % (p"\)

12



REMARK. At this point we may explain why exec is a “symbolic” procedure: in order to prove an
execution step of a program, one has only to use the execution of subprograms, but no operation
on the data. On the other hand the oper procedure may require the exec one: this is apparent in
the two general rules above. Moreover we must point out that, as a consequence of the given rules,
the operation of a program is only determined by its terminated sequences of actions.

5. Processes and Atoms.

5.1 Execution and Operation of Blocks.

Definitions have, in the construct (def d in p), a local scope; we thence call block such a construct.
We shall assume that the environment is a pushdown stack of definitions, and denote (e—~d) the
stack we get by pushing d on €. Then the execution of a block (def d In p) is that of p in the
environment enriched with d. This is formalized by the two following rules:

a
(e~d) + Poe 1

block (completion) : (der din a)
efdina

€ F (defdinp) exec

Note that a definition vanishes at completion; on the other hand one has:

(e~d) b p e p'# 1

block (execution) : T2
(def din a)

€ F (defdin p) exec

(def d in p')

These rules introduce the definition as a part of the action. This is needed for the following reason:
in order to prove a transition of a configuration ((def d In p)\#) one has to determine the operation
of some action of the program (def d'in p) on p, and this may require knowledge of some definitions
(of atoms, see below). Actions of the form (def d in @) operate in an obvious manner:

a
_ (e~d) F n oo wf
block (operation) :
(def d in a)
ek op oper

There is no specific rule to determine the operation of a general block — (def d in p) where p is not
an action —, which therefore must be proved by means of the previous general rules (sequences of
operations).

5.2 Recursive Processes.

A (recursive) process is not generally intended to terminate and provide an output, but rather to
proceed endlessly; in its course it updates the memory. -Since we want to avoid “side effects” the
definition of a process explicitly marks what variables it uses, and how they are used. Intuitively
there are three uses of variables: a program imports a variable when it needs to reach its value
in the memory, while it exports the variables it updates — the program may also use objects, by
means of atom calls; we shall see that later. The variables imported by the body of a procedure
will be formal parameters marked !, since in a procedure call the corresponding actual parameters

13



are expressions “sent” to the body. Conversely, a parameter is marked ? when it is updated by the
body. The syntax is as follows: a (recursive) definition of processes is a system of equations

{‘Pi(zl) o '7zm,~)(!x1) . -~:zn;)(?y1) . ')yk.') = qi/ 1 S ¢ S e}

where

(1) the p,’s (the names of the defined processes), z;’s, ,’s and y;’s (the formal parameters) are
distinct identifiers, and the g,’s are programs;

(2) the object, imported, and exported variables occurring free in ¢; are among zi,...,Zm,,
Zi,--.5%Tn,, and y1,. .., Y, respectively.

Static semantics might formalize the correct use of variables; this is deferred to a subsequent paper.

In a more concrete syntax we should write a process definition proc(d; and - .- and d,), where each

d; is an equation. Moreover it would be worthwhile to énrich the syntax — e.g. with “sequential”

constructs such as inside and enclose, cf. [13]. We do not spend much care on the notion of

recursive process, which is a rather standard one. The only thing to say is that a process definition

allows to use process calls, that is, programs of the form

P=p(u1,...,un)(e1,...,e.)(vy,.. .y VUk)

where the e,’s are expressions, and the 5’ s and v;’s are variables (the v;’s being distinct). Such
a process call exports the v,’s, while it imports the variables occurring in the e;’s, and uses the
objects u,’s. For instance

(def ©()(t2)(?y) = (y=2+1)5 p()(z)(v) In z=0;p()(2)(z))

is 2 syntactically correct program. This program yields the sequence of integers on the variable 2.

In order to execute a process call plargs) = p(uy, ..., um)(ey, .- .;en)(v1,...,vx), one has to
search the definition of ¢ in the environment ¢ - let us denote it def(ip, ). Note that since the
environment is a stack, the first encountered definition is the right one. Then the execution of
p(args) is that of def (,€) applied to the appropriate arguments. If we denote

def(p,¢)(args) = def(¢p,€) (ur/21,.. ., um/2m, e1/24,. . en/Ta,v1/21,. .., 08/ 2]

(in our formalism substitution is the parameter passing mechanism), then the rule is

e b def(p, €){args) e?%c’ r

process call :

€ + p(args) %—é r

Note that process definitions are always (implicitly) recursive since, once used, the definition still
remains part of the environment.
5.3 Structures and Atoms.

The last two constructs of our proposal are those of structure definitions and atom calls. A structure
is a collection of object types and atoms; objects provide atoms for a shared and structured local
memory. We have seen that a memory is denoted by records, thus objects will be records; the
syntax of a structure definition is:

d = struc(record types definition with atoms definition)

14
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The code of atoms is intended to be the only way to use the internal structure of objects, and in fact
a structure is very much like an abstract data type. Regarding the data, abstraction is restricted
to the simple idea that the “.” marks the parting with the “internal structure” (in ML one has abs
and rep; for a more general point of view cf. [12,7]. Another more general notion of “abstract”
type could be that of concrete data structure, cf. [3] )- The syntax of our (recursive) record types
definition is the following:

{7i(r1,...,10,) =wj/ 1< 5 < 8}

where
(1) the 7,’s and 7;’s are distinct identifiers, and the w; are record types;

" (2) the type arguments of an wj must be among 1y, ...,7p;;

(3) the 7;’s can only occur in the right hand sides as subexpressions 7;(ry, ..., 7,,) (the parameters

can only be the formal ones); T -
(4) the r;’s must be guarded by a field in the w;’s: they must occur in a subexpression z:w.
This last restriction ensures that the fields of a record type are distinct. For instance something
like

heap(r) = (c: cell(r) and heap(r))

is not a legal definition. However we could lay down a weaker restriction in order to take into
account some more general inheritance phenomena (¢f. [71) such as

stack(r) = (top: 7'and. tail: stack(r))
pstack(r) = (émpty: bool=t and stack(r))

The syntax of atoms definitions is almost identical to that of procedures definitions; such a definition
is a system of equations

[y

{a,-(zlzalv,...,zm,.:a'm‘)(!xl,...,xn‘)(?yl,...,yk‘.) =r/1<i<¢)}

In this definition the object parameters z; have an explicit type o;, which must be one of the
7i(71,. ..,rn,.) defined in the structure. The process r; must use respectively the z;’s and y;’s as
imported and exported variables; any other variable occurring fre¢ in r; must be a z; or a path
zj.u of an object parameter. One can for instance define the (boolean) semaphore structure as

sem = (b: boél:tt) with P(o: sern) = (when 0.b do 0.b:=ff)
V(o:sem) = (when —o.b do o.b:=tt)

(parentheses which enclose nothing are omitted). A pushdown stack can be defined as the structure:
stack(r) = (top: r and tail: stack(r)) with push(s: stack(r))(!z) = (s.top, s.tail):=(z, 5)
pop(s: stack(7))(?y) = (y, s):=(s.top, s.tail)

We shall see some more interesting examples in the next section. One may regard what is at the
left of “=” in a structure definition as the specification, or the interface, whereas the right hand
side is the implementation: representation of the objects and code of the procedures.

The last program construct is that of atom calls, whose syntax is the following:

(v1s- -y v)i=alug, . .. um)(ey,. .., €,)
with the same constraints as for the process calls regarding the v;’s, u;'s and e;’s. We shall
simply write a(uy,...,um)(e1,...,e,) when k = 0. One should note that in almost all “object

oriented languages” a class definition introduces only one object type; therefore the procedures (or
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“methods”) have an implicit parameter of that type, and the call (a “message” sent to an object)
is qualified by a variable: u.a(ey,...,e,). .

Contrary to the process calls, an atom call is an action. Let a be such a call; then it is
introduced ~ as an action — by the axiom:

atom call (execution): € F a -2

exec 1

This and the rule for assignments are the only axioms of the exec transition relation: assignments
and atom calls are the uninterruptible atomic actions of our language. One should note that the
following is true:

Va action ¢ F «a 5)%8 1 isvalid (i.e. may be proved, for some appropriate environment £)
A program performing an atom call will never execute its code, since no rule of the exec procedure
prescribes to unfold such a call. On the other side, the execution of the code is needed to determine
the operation of an atom on the memory; this is formalized by the abstraction rule. This last rule
of the oper procedure is twofold: for one part abstracticn relates to data types, for the other it
regards programs. In the hypothesis of the rule, one operates on a memory where record types
have been unfolded according to the definitions found in the environment; and what operates is the
program where atom codes applied to suitable arguments are substituted for atom calls. We shall
not enter into the syntactical details, but merely denote p[typ(e)] and platom(e)] the respective
unfoldings of the memory p and of the program p. For example if p = {---s: stack(int)---} and ¢
contains the definition of stack(r) above then u[typ(e)] will be

u = {---s=(top:int,tail: stack(int)) -- -}

that is, according to our notational convention, p = {---e.top:int, s.tail: stack(int))---}. The
announced rule is the following: ’

platom(e)]
oper

!

e F ultyp(e)]

abstraction :
1

p
EI—”(-)W"

We shall see some examples of use of abstraction in the next section. We should emphasize the fact
that in this rule p is a program, not just an atom call ~ compare with the rule for process calls.

In other words there is no special synchronization discipline (e.g. mutual exclusion) prescribed for

atom calls. This is because we want to achieve some synchronizations (rendez-vous) as a result of
an abstraction; in order to operate an atom thus generally requires the cooperation of some other
ones. Note that an atom call is a recoverable action: its operation holds only up to the completion
of its code.

6. Communication Structures.

A communication structure generally consists of a data type, where the exchanged values are stored,
and some procedures to send and receive through the structure. A typical example is that. of a
cell (“one slot buffer”) which differs from the single shared variable in that one cannot write in an
inhabited cell: |

© cell(r) = (empty: bool=tt and z:7)
with  put(o:cell())(!z) = (when o.empty do (0.2, o.empty):=(z, ff))
get(o: cell(r))(?y) = (when —o.empty do (v, o.empty):=(o.z, tt))
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The empty field acts as a semaphore, and thus put and get are mutually exclusive. This does
not mean that a program cannot perform these atoms concurrently, e.g. in a compound action
(put(c)(e) || z:=get(c)): mutual exclusion only regards their operation.

A more instructive example is that of a CCS port. The specification of this communication
structure is that there must be a rendez-vous between a sending and a receiving; a value is exchanged
at that moment. A variant solution to that given in [8] is the following:

port(r) = ((b: bool=tt and b': bool=tt) and z:r)
with  send(o: port(r))(iz) = (when 0.b A 0.b’ do (0.2, 0.b):=(z, ) ; (When —0.b' do o.b:=tt)
receive(o: port(r))(?y) = (when (-0.b) A 0.b do (y, 0.b'):=(0.z, ff)) 5 (when 0.b do o0.b":=t)

Let p be a program which performs an action a which is either send(u)(e), or v:=receive(u), or
the parallel product (send(u)(e) || v:=receive(u)). We want to determine the behaviour of the
configuration (p\u) - with u(e) = v —, in the context of an environment & containing the definition
above. This can only be obtained via the rule for closed configurations, hence we have to prove

B 5——&7 ¢’, by means of the abstraction rule. Let a’ be the program we get from a by unfolding

the calls to send or receive into their codes — respectively s ; s’ and r ;r’. Then a' operates
on a memory where u.b=# and u.b' = #; therefore if a = (v:=receive(u)) nothing can happen.
If @ = send(u)(e) then the first instruction s of the send may operate, but not the second one;
hence the configuration (p\p) cannot perform a since we cannot prove any operation of a on u. If
a = (send(u)(e) || v:=receive(u)) then there is one - and only one — way to prove that a operates
on p, which is (omitting some irrelevant informations from the memory)

, ub=f ub=tt | ub=1t
ub==¢ ub=f , F , ,

b s b r ub =ﬁ s’ u.b =ﬁ' o udb =48
= ¢ oper | WO =t oper | u.z=v oper U2 =V oPer | uz=v
u.z Uz=v

y=v y=v y=v

The interleaving is such that no other atom (send or receive) can interrupt this sequence. What
allows to achieve this synchronization is the fact that atoms are “all-or-nothing” operations, and
that no one can terminate without the cooperation of the other. There are some differences from
the CCS port; the first one is that in an action an arbitrary number of pairs of complementary
atoms may occur concurrently — this is because we use a SCCS-like notion of action. Another
difference is that receive is a program, not a guard, and consequently. the received value is assigned
to a variable which may be a global.one. Finally we do not assume that the co-occurrence of a
send and a receive creates a new action — 7 for CCS and 1 for SCCS/MELJE.

Let us conclude this section with another example of communication scheme, that of sig-
nal/wait; the communication means is an event carrying a broadcast value. There are two possible
interpretation: the signal action may be a blocking or a non-blocking one. According to the first -
interpretation no waiting process is bound to catch the signalled value (we do not assume any
waiting discipline, queue or priority), whereas the second interpretation means that at least one
waiting process must catch it. It is easy to formalize a “flashing” event, that is with a non-blocking
signal:

_ event(r) = (b: bovolzﬁr and zv 7)
with signal(o: event(r))(!z) = (0.2:=z) ; (0.b:=tt) ; (0.b:=f)
wait(o: event(r))(?y) = (when 0. do y:=o.z)
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When the signalled value ought to be receiv;d the formalization is like that of a port:
event'(r) = ((b:bool=ff and b': bool=tt) and z:r)
with  signal’(o: event'(r))(1z) = (when —o0.b A 0.6’ do (0.2, 0.b):=(z, #));
(when —0.b’ do (0.b, 0.b'):=(fF, #t))
wait'(o: event'(r))(?y) = (when 0.b do (y, 0.b'):=(0.z, ff))
In both cases the boolean b marks whether or not a value is available.

[

7f Conclusion.

This paper must be regarded as a preliminary work for many reasons. Certainly our proposal ought
to be thoroughly studied, and enriched. For instance one would like to define a structure such as

pstack(r) = ((empty: bool=tt and top:r) and tail: pstack(r))
Inside U
fifo(r) = (left: pstack(r) and right: pstack(r))
with ppush(s: pstack(r))(1z) = (s.empty, s.top, s.tail):=(f,z,s)
and  ppop(s: pstack(r)(?y) = (y, s):=(s.top, s.tail)
and  siphon(f:fifo(r)) = while ~f.left.empty do
(tet z:7 In z:=ppop(f.left) ; ppush (f.right)(z))
Inslde  put(f: fifo(r))(!z) = ppush(f.left)(z)
and  get(f: fifo(r)(?y) = when =(f.left.empty A f.right.empty) do
" (i f.right.empty then siphon(f)) ; y:=ppop(f.right)
The most conspicuous new keyword in this definition is Inslde; it introduces a group of definitions
which are private to another group. In fact there is no special difficulty in dealing with the
semantics of such a construct (see [13]). There would not be much more trouble in allowing the
use of (while -..do ...} or (If ... then ...); we have already seen that since their termination
depends on eval we should have to regard 1 as an action - which operates as an identity. Finally the

code for the siphon atom above involves a (tet ... In ...) subprogram. This construct introduces
a declaration of local identifiers, such as z:7 - a declaration is nothing but a special kind of

record type expression. A possible way to formalize the semantics of such a program is to pull

up the local declarations to the root of the program - while renaming the identifiers with the
same name but distinct scope. Then the behaviour of a configuration ((let § in p)\u) is that of
(P\1[61): declarations are the syntactical means to build up a memory. This may have to be
done dynamically, since local declarations may appear by unfolding a definition, as in the above
example. It would be worthwhile to design a better formalization, for we have only proposed here
a “centralized” point of view: in a configuration (p\u) there is just a global shared memory, and
no local ones,

For a similar reason it would be interesting to add some analogue to the “ticking” primitive of
MEILJE, since our proposal, while providing for mutual exclusion or inclusion of operations, does not
allow to compel such constraints on actions — that is over the exec arrow. Equivalently we would
have to add Milner’s synchronous product (p x g): we have shown in [4] that this product, together
-with interleaving (or our “asynchronous” product (p|| ), sets up the two fundamental aspects of
concurrency. While (p || ¢) (disjunctive parallelism) relates to the notion of shared memory, the
product (p X ¢) (conjunctive parallelism) rather corresponds to the idea of distributed memory.

As its stands our proposal lacks for a formalization of a static semantics, and especially of a
type checking. For instance, let s be a variable of type semaphore (with sem = (b: bool=tt) with .. );
then nothing prevents one from writing the program

(P(s) || s.b:=tt)
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Needless to say, such an illegal manipulation of the “internal” structure .of an object might be
forbidden. In order to provide a true abstraction, one must ensure that a program only uses the
abstract object by means of the suitable atoms (cf. [121), and this is the réle of the type checking
mechanism. - :
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