N

N
N

HAL

open science

Deriving trace checkers for distributed systems

Claude Jard, Omar Drissi-Kaitouni

» To cite this version:

Claude Jard, Omar Drissi-Kaitouni. Deriving trace checkers for distributed systems. [Research Report]

RR-0635, INRIA. 1987. inria-00075918

HAL Id: inria-00075918
https://inria.hal.science/inria-00075918
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075918
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 635

DERIVING TRACE CHECKERS
FOR
DISTRIBUTED SYSTEMS

UmStﬁMNétU o Claude JARD

RETIN Omar DRISSI-KAITOUNI
@nﬂ f@rmatuqu

@t@m/é\uﬁ

Domeine de'Voluceau
Rocquencourt
BR105
Le

Franoe

Tl(1)396365611

Mars 1987

v
J AT O TSN

] RIS (1 'NSTITUT DE RECHERCHE EN INFORMATIQUE
| ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu

35042-RENNES CEDEX

FRANCE . °
Téléphone : 99 36 20 00 , Publication Interne n 347
Telex: UNIRISA 950 473 F Févri 1

Télecopie: 99 383832 veier 1987

18 Pages

DERIVING TRACE CHECKERS
FOR DISTRIBUTED SYSTEMS

GENERATION DE VERIFICATEURS DE TRACES
POUR LES SYSTEMES DISTRIBUES

Claude Jard and
Omar Drissi-Kaitouni

IRISA
Campus de Beaulieu
35042 RENNES CEDEX FRANCE
Tel 99362000

Abstract

What we call a “trace checker” is a module which observes the execution of a system under
test and compares its behavior with the formal specification given for that system. This paper
provides a survey on the design of trace checkers to detect violation of service properties, for
distributed systems. We focus our presentation on the automated derivation of trace checkers
from different formalisms, synthesizing several recent papers in the testing and simulation
research area. We first begin by extended finite state models and their applications using the
Estelle language. The main part is devoted to temporal logic specifications over finite
computations and their translation into finite acceptors. We end the paper by introducing some
open problems with distributed trace checking.

Résumé

Qu’appelle-t-on “vérificateur de trace™ . C’est un module qui observe I'exécution d’un syst®me
sous test et compare le comportement observé avec la spécification formelle de ce systéme. Cet
article fait le point sur la conception de vérificateurs de traces, chargés de détecter la violation
des propriétés de service des systémes répartis. Notre exposé est centré sur le probléme de la
génération automatique de vérificateurs de traces a partir de différents formalismes exprimant le
service. Nous offrons ainssi une synthése de récents travaux de recherche dans les domaines du
test et de la simulation. La partie principale de I’article est consacrée aux spécifications en
logique temporelle sur des traces d’exécution finies et leur compilation en automates accepteurs.
Nous concluons en introduisant quelques problémes liés a la vérification distribuée de traces.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L. A 227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 I.N.S. A. DE RENNES ° " {LABORATOIRE DE RENNES) ‘

1 Introduction

It is now well-known that the validation activity for distributed systems can be conducted by two
complementary ways:

® verification, which analyzes the specifications by logical means. This may take the
form of program “correctness” proofs, exhaustive simulation, symbolic execution, etc.

® testing, which explores a large number of the possible execution histories of the system
and compares the observed behavior with the expected one given by the
specifications. This may take the form of simulation studies or traditional testing
procedures. : '

Verification methods have difficulties to handle real protocols. This increases interest in
testing methods. Our synthesis on “trace checking” is a contribution in this context.

What we call a “trace checker” is a module which observes the execution of the system
under test (which may be a system implementation or an artificial execution of some refined
system specifications) and compares its behavior with the formal specifications given for that
system. A similar notion was first introduced by the worker-observer principle in [Ayache 79]
and in [Molva 85].

Figure 1 presents a global trace checking architecture to detect violations of service
properties for a distributed system.

Generator Generator
1 2

A A Trace

¥ Checker

‘ ¥ Trace >
-

Besultat

Figure 1. Global trace checking

In such an architecture, the implementation under test is stimulated by some test input
sequences. These inputs, as well as the outputs produced by the implementation, are observed
by the trace checker. The trace checker checks that the observed sequence of events is a
possible sequence according to the given specification. This allows on-line testing. It is to be
noted that an important requirement for validation is that observation must not disturb the system
under test. Consequently in some cases, we cannot prevent a latency in error detection.

b,%! !D PAPIER RECUPERE ET RECYCLE

Deriving Trace Checkers for Distributed Systems

Since interactions at different service access points are considered, the observed trace is a
global trace. For checking global properties, the relative order of interactions at different points
must be determined. In a distributed system, this may be in general a difficult problem.
However, there exist practical methods to obtain a total order of all observed interactions. At
the end of this paper (section 5), we shall introduce some problems with distributed trace
checking, when a global trace is not considered, as shown in figure 2.

Generator Generator
v 1 2
Local ——] A Local
Observer|q . ¥ Observer
1 2

l l

This show how to derive trace checkers from various formalisms and discuss their practical
use. We do not address the problem of the choice of a good language to express service
properties of protocols or distributed algorithms (which still seems to be an open
problem). Deriving trace chechers was also partly addressed in [Ural 84] and is complementary
to the problem of automatically obtaining test sequences from formal specifications
[Sarikaya 84,Castanet 86].

* Our presentation is organized as follows:

In section 2, we describe models for trace checkers based upon state machines. Two different
approaches are considered: use of finite acceptors and use of finite transducers. First of all, we
have defined extended finite acceptors using the expressive power of an Estelle-like
language. This experience was gained during the Véda Project [Jard 85a) and was presented
last year in [Groz 86] in a simulation context. Finite transducers are then considered in order to
reduce state explosion due to the non-determinism inherent to service specifications. This way
to describe services is quite closed to the ISO philosophy using Estelle. Our experience was
first reported in [Jard 83].

We take into account temporal logic specifications of services in sections 3 and 4. Deriving
trace checkers was a difficult problem a few years ago. We give here a practical algorithm to

do it,and we discuss the use of these “compiled” observers. Section 5 introduces the distributed
checking problem.

Figure 2. Distributed trace checking

Deriving Trace Checkers for Distributed Systems 3

2 Models based on finite state machines

Finite acceptors are obviously trace checkers. Each transition is labelled by a possible event of
the observed traces. The automaton represents the set of all words (traces) spelled out by the
set of all paths from the initial state to a terminal state. A trace is valid (i.e accepted) if it
belongs to this set.

2.1 Non determinism in specification

A non-deterministic service specification is such that several different traces are valid for a
given sequence of input interactions provided to the system under test. This is because the same
inputs can produce different sets of outputs. A given prefix of a trace can be then- accepted by
several states of the automaton. All these states must be recorded and considered for the
acceptance of the next events. A trace is not valid if no possible state accepts the current
event. The number of states may be rather large and costly. Non-determinism is inherent to
service specifications, since non ideal communication medium are generally considered between
processes of the protocol under consideration. In practice, it is mostly due to the observation
of ”spontaneous” actions of the system for one of the following reasons:

® failures of system components which may occur any time,

® time-out mechanisms, which activate time-out transitions after a non-specified period of
time,

® incompletely specified conditions, which may occur at certain times, such as “network
congestion”,

¢ concurrency, where the order in which two or more independent actions occur is not
significant.

2.2 Experience with VEDA'’s observers

Our experience in using finite state observers was gained during the Véda project. Véda is a
simulator of protocols described in Estelle [ISO 86] and was presented in [Jard 85a].

Last year was presented in {Groz 86] what we call an observer in Véda. Observers in Véda
are basically state acceptors. They have their own variables, and use probes to access objects
in the system under test. The observer is active between transitions of the system. When it is
active, it can observe the state of all subsystems and all interactions that have taken place during
the system transition just executed. At each step of observation, it computes its new state from
the previous one and from the situation observed.

Practically, such observers are described in Estelle, with only a few extensions to use probes,
and a few predefined types and procedures. Estelle being based on Pascal, we have the full
power of a programming language for the verification process.

This method was developed for simulation studies. It is also applicable to trace checking of
implementations. In that context, interactions have to be globally ordered. Véda's experience

Deriving Trace Checkers for Distributed Systems

has shown (see [Jard 85b] for details about generated codes of Estelle processes) that such
observers may be compiled into an executable code. For a real implementation, provided the
availability of a global trace, care must be taken to:

® use a high-level decoder for service primitives which observes strings of bits and provides
structured primitives (in Estelle terms for example). Specifications for such decoders can be
found in [Ansart 82].

© link the generated code with a specific execution kernel to handle non-determinism and
verification.

2.3 Active services

The OSI philosophy for describing protocol services using Estelle is to consider services as
active components (which accept inputs and initiate outputs). These services are abstract
machines which can be simulated for instance. Differently to the approach explained in the
previous section, the underlying model is the class of finite transducers, which allows to
distinguish between input and output service primitives.

State explosion due to the non-determinism of service specification can be reduced by this
facility. In [Jard 83], we presented how to implement trace checkers from an Estelle
description of services (see also [Bochmann 82] to have a general view on the use of Estelle
during the validation activity). The execution kernel implements the following strategy: The
analysis of the next interaction in the observed trace builds up a list of possible next states; For
each of the states in the list mentioned above, the following action is executed:

® If the interaction is an input, then all possible input transitions are considered, each
leading to a next state which is placed on the list of possible next states. Any output
interaction generated by the transition is recorded in the next state. Then all internal
transitions (spontaneous, and initiating no output) are considered from the new states
found. This process is continued until no new states can be found.

® While an input interaction in the trace usually increases the number of possible states,
output interactions usually reduce this number. When considering an output, and for
each of possible states, all possible spontaneous transitions are considered to check
whether they generate the observed output. Any different output initiated is kept as
state information. After termination of that process, only those states are kept that
have generated the observed output in the trace. All other states are discarded from
the further analysis. An error is detected when the list of possible states is empty.

Several experiences have been performed using this approach: a distributed exclusion
algorithm, the ISO transport and session protocols. These were validated by simulation as
reported in [Jard 84]. Checking an implementation requires a decoder which sorts input and
output interactions, and a specific kernel as presented above. This kind of trace checkers may
be easily obtained by a compilation process using a version of the Véda's compiler.

Deriving Trace Checkers for Distributed Systems ' B 5

3 Temporal logic specifications

The logical context provides an interesting abstraction (independance with respect to
implementation choices) and conciseness to describe protocol services. A trace checker is
basically an observer; therefore the choice of a logic called “linear time” is naturally
imposed. Moreover, with the observation period being finite, the checker must take into
account of finite computations. In temporal logic, we consider services as defined by:

® a set of observable events: these are generally the service primitives exchanged between the
application level and the protocol under consideration. A

® a formula specifying an order relation between the occurrences of these events.
In the following, we will employ the definitions given in the recent survey of A..PNUELI about
specification of reactive systems using a linear temporal logic [Pnueli 86].

3.1 Syntax

The set F of temporal logic formulas is built from:
® a set of observable events E,E= {e)--.e;....e.}
® the constants: true and false
® the classical boolean connectives: A and —
¢ some temporal operators: © (next), ® (previous), * (until), and $ (since)
The well-formed formulas are obtained through applying classical formation rules according to
the fact that ® and ® are unary operators and % and $ are binary operators.
Abbreviations: v, D, = are defined in the usual way.
Simplified temporal operators are defined by:

Of=-—0-f (weak next) ® f=-®f (weak previous)
Of=true * f (eventually) ¢f=true § f (sometimes in the past)
O f=-0-f (always) B =—¢_f (always in the past)

In the following, when the set E is not precised for a formula £, this will be the set of atoms of

f
3.2 Semantics

The logical formulas are interpreted on the traces of execution. A trace is a countable set of
occurrences of events of E. We can range over N the different points of the trace. Let T(i) be
the i’ point. |7] is the lenght of finite traces. :
Example: E={ a, b }
0123 i
e -— —— —
abaa b a

T() = b

6 Deriving Trace Checkers for Distributed Systems

Implicitly, there. exists one and only one occurrence of an event at each point of the trace
(no simultaneous events).. - '
The truth value of a formula f, for a trace T is defined inductively by the notion of holding at
position i < |7] of the trace.(noted by i |= f)

® Ve€E, i|=e o T(i)=e

* VILHLEF, il= finhy & (i|=fi)and(|= f)

o YfEF, il= of enail=p

® VfEF, il= of e (i<|T)ad+1|= f)

® VAi.HLEF, i|= fixf o [3,iSi<|T].¢ = fland[VhiSk<j, &k |= f)]
® VfEF, il= @f o (i>0andi-1|=p -

*VfL.LEF, il= £i8f o [3,0SiSi,(|= fland[Vkj<kSi,(k |= f)]
we say that a trace T satisfies a formula f if and only if 0 |= f

Derived interpretation of operators: ¢, O, ¢, B

°i|= of e 3jisj<|1L¢ |= p.

ei|= 0Of o Vjisj<|7,¢ |= n.

oi|= of e 3,05ji,G = N

°i|= mf ® Vj0SiSi,G = h.

nota: for infinite traces: Of ¢ Of, @ fed f
for finite traces: ~|T|—1 |= Of,and|T| - 1| =0Of
similarly for the past: -0 |= ®fand0 |= @f
The logical theorems are the formulas f such that VT € E”, Tsatisfies f

Example :

FO[Ven A —(enre)]
ecE c1.e€E
ej¥ey

3.3 Examples

Deriving Trace, Checkers for Distributed Systems -7

3.3.1 Mutual exclusion

Let n sites sharing a resource. The observable events at the service level are the exclusion
requests to resource (de); the entry in critical section (er); and release (fe).
® All requests are served:
Vi,12isn, O (dg; D Oery)

® Only one request is served at a time (a site cannot request the resource again if it hai_s_
not released it):

Vi,1Sisn, O (de; D O(-de;*fe;))
® A site cannot release the resource if it does not possess it:
Vi,1sisn, O (f; O O(—fe; *ery)
® The resource is released after a finite amount of time:
Vi,15isn, 0O (er; D Ofe;)

® Only one site at a time may have access to the critical section (one can’t observe two
accesses to resource without releasing the accessed one):

Vi,j;18i,jSn, O (er; D O —er; ¥ fe;) (global property)
~® Initial conditions of observation (we can initially assume that all sites are idle) :

V1Sisn,[—(er; vfe;) % de] nl—fe; % er;]
3.3.2 Transfer protocol (reliability and sequencing)
For a transfer protocol between two sites, a set of observable distincts events is
E={+m;, -m,, +m,, —-m,, }
+m; is the emission of the message m; and —m, is its reception at an other site.

® No loss of messages:

® Sequencing (for two transmissions, the reception of the second message must not take
place before the first):

Vi,j21; j#i, O(+m; a0~my) D (== mj) % —m))
® No spontaneous generation: '

Vizl, O(-m; D #+m)

Deriving Trace Checkers for Distributed Systems

nota: Ll (—m; DO ®€+my) = ~(—m;¥+m))
@ No duplication (a reception of a given message can happen only once):

vizl, O(-m; > 00O ~(-my))
3.4 Some results from the theory

The theory of linear time logic over finite traces was linked to the automata theory several years
ago. The main results were given in [Kamp 68] and presented to the protocol community in
fLichtenstein 85,Thomas 81,Pnueli 86]. We are concerned with the following proposition :

et L be a set of traces. The following two characterizations are equivalent:

i) L is definable by a temporal logic formula f.
ii) L is accepted by a counter-free automaton.

Proposition i) means that VT € L, T satisfies f. A counter-free automator {Mac Naughton 71} is
a finite state automaton which can not perform any counting operations. Languages accepted by
such automata (L) are such that :

In € NVu,v,we€ L,uv"“wGL o uv'wel
In particular, there exists a finite state machine A(f;) for each formula f such that:
VTEE *,A (f)accepts T & Tsatisfies f

As explained in section 2, A(f) can be executed as a trace checker.

4 From temporal logic to trace checkers

The problem is to automatically derive the automaton A(f) from a formula f. Using only future
temporal operators, Z. MANNA and P. WOLPER in [Manna 84] turn away a satisfiability
algorithm in order to synthesize programs. Here, we present a similar algorithm of construction
in which the problems of its termination and of determining the terminal states are clearly
solved. This allowed us to program (in PROLOG) a compiler of formulas.

4.1 From temporal logic without past

The principle of operation is the following: ‘

Each state is characterized by a formula which represents the remaining condition to be verified
in the trace. Initially, the automata begins in the state F. To calculate the successors of F, and
for each possible event e, we begin by “scrolling” F through decomposition to obtain a formula
containing only atomic events and ©-formulas. The condition on the current state is then

!

Deriving Trace Checkers for Distributed Systems 9

calculated for the event e by replacing it with true and the others with false, and realizing the
boolean reductions. After elimination of the ©-operators at the first level, the formula
represents the next condition to be realized after having observed the event e. We check if this
one is equivalent (according to the propositional calculus) to an already-seen state, otherwise a
new state is created. The operation is performed again for all states, until termination. A
transition leading to the state false means that the event is not accepted in this state (such
transition is generally not represented). A state is terminal if after “scrolling” and replacement
of the atoms with false and ®-formulas with true, the formula is reduced to true.

Scrolling operation D : Deduced from the interpretation of the until operator, the rule of
scrolling f) % f, is as follows: :

fi %2 =2 v (fy AO(f; ¥ f5))
(then Of = fv@Of ,and O f=fA0 O f)

VXEE, Vf, fi, LEF

®*D(x)=x

® D(Of)=06f,and D(—f)==D(f)

* DUy A =D AD(f)

® D(fy % f) ==(=D (f)) A=(D(fy) A O(f; ¥[5)))

Example: D ([(aD0b)) = (-a v (b vOOb)) A=00(adob).

The operation of instantiation and reduction R
This consists, for a formula F and a given event e, in changing event e by true and the other
events by false (only on event at a time). Then we perform the boolean reductions, to obtain
a O-formula. The characteristic formula of the next state is obtained by elimination of
©-operators at the first level.

Vx,y€E, Yf, fi, HEF
L R(@f,,\.f) =f, (path to next state)
® R(fy Anfy,x) =R(R (f1,x) AR (f3,x),x)
® R(-f,x) = R(=R(f,x),x)
® R{x,x) = true,and R(x,y) = false
® R(true nf,x)=f,and R(f Atrue,x) = f

R (false A f,x) = faise,and R(f faise,x) = false

R(~false,x) = true,and R (-true,x) = false

i

10 Deriving Trace Checkers for Distributed Systems

Examples : R(D (O (@20b)),b)= O (aDob).
RD (O (@a290b),a) =0b A O (aD0D).

Condition of acceptance: The condition of acceptance for a state is calculated in a similar
way to operation R, replacing the rules for events and ®-formulas by:

Vx €E, R%(x)=false,and Yf€F, R°(®f)= false

A state is terminal if the recursive application of R” to the formula produces the constant true.
Examples : R® (D (0 (aD0b))) = true,
RY(D(0b A O (aDOb))) = false .

Propositional equivalence E:

Vf, h € F,f"P-equivalentto h if and only if f & h considering the temporal expressions of f
and h as atoms of the propositional calculus. The computation of E uses a classical decision
procedure for the propositional calculus. Two states of the automaton are equivalent if their
formulas are P-equivalent.

The termination of the construction algorithm is one of the essential point of this method. That
is to say that the set of states of the automaton is finished. The idea of the proof is to establish
that R(D(f),e) produces a formula composed of sub-formulas of f. The number of these
sub-formulas being finished, this provides the result. Clearly, the automaton produced is not
necessarily minimal knowing that two temporal formulas f and h may be equivalent without
being detected as propositionally equivalent.

4.2 Past and future

Theory shows us that all temporal formulas composed of future and past operators may be
expressed solely with future operators. Unfortunately, the translation may be extremely
complicated and we do not yet know a practical algorithm to calculate this. Without doubt,
what is most interesting is to know how to process past operators while constructing the
automaton.

The construction algorithm becomes much more complicated. A past formula concerns an
already observed trace sequence. For each state of the automaton, we thus calculate and record
the truth value of past sub-formulas. These values are then used in the reduction R. The
precise description and proof of this algorithm go beyong the needs of this paper. A more
general view based on linear logic of the first order, is currently under development by R.GROZ
to solve these problems more directly, as announced in [Groz 86].

Examples: A state noted with star is terminal ; an initial state is represented with a point.

¢ [a D 0b]

e [] [erl D (-aerzikfe])]

Deriving Trace Checkers for Distributed Systems 1

o U [(eya0ey) D (=rp¥*r)]

e [dfa DO #b]

4.3 Practical use

Concerning the adequacy for the description of service properties, temporal logic seems better
adapted to the description of global properties of execution sequences such as the exclusion
property defined in section 3. The associated automaton may be very large since all the
interleavings of possible events must be considered. On the contrary, machine based formalisms
are interesting to characterize situations where there exist “tight” relationships between events
such as sequencing or precedence properties. This is often the case of local properties (see
section 2), for which a logic specification is presented as a conjunction of many
formulas. J.SIFAKIS exposes a similar point of view in [Sifakis 86] and combines the behavioral
and logic based approaches together as advocated in [Graf 86).

On the other hand, the expression power of temporal logic is very weak: we saw that it is
inferior to that of finite state automata. However, when the description is possible, abstraction
make it an interesting tool. The idea, therefore, consists in only using logic to generate the
skeleton of the completed automaton which we will be able to further develop with the
techniques mentioned in section 2.

5 Introduction to distributed trace checking

The purpose of this section is to introduce some problems raised by distributed testing. The
distributed verification of traces generalizes the notion of checkers that we have presented, but
puts important theoretical problems bound to the distributed observation.

5.1 Distributed testing and error detection power

The global approach presents a great interest from the point view of the verification
process. However it is sometimes difficult to realize (the modification of the application code
to derive a total order, etc.). Recently, an important work was accomplished in defining
distributed testing architectures (see [Rayner 85)).

In that context, we must use many observers to verify the (local and global) properties of the
system. Each observer sees only one part of the system. Verifying a global property with local
observers needs the cooperation among them (i.e a testing protocol) (figure 3).

12 Deriving Trace Checkers for Distributed Systems

>\\‘ \\\\\\\\\\\\\\\\\\\\\ Q:\\\\\\\\““\\\\\\\\‘\\

\po B s

% Automaton % % Automaton %

IR I \
NI N L

N
PDT i N POT j \ Test Protocol
Ram— R NN ¢ &\\\\\\\ AN -
A \ 4

Figure 3. Distributed testing architecture

Let G be the global trace checker, introduced in section 2. L(G) is the set of accepted global
traces. The error detection power (PDE) [Dssouli 85] is defined as the set of traces which
invalidate the service properties and belong to L(G). In our case, we suppose that the global
observer has a PDE reduced to empty (it is said maximum). The different observation points
define a partition of E, E, .. ,En; E; contains the set of events produced at the observation
point .

At this point, let L; be the set of events external to that point:-Ve €E, e€ L;®e€ E;.

These events are communicated by other observers. At each observation point i, we associate a
local observer O, The observer's checking automaton is obtained through the projection of G
for the events E\UL..

L(O;))=L(G)/E; U L;
The error detection power of a local observer 0, (PDEi) is deduced from PDE :
PDE; = {T; € L(0)),T; € PDE/E; U L;}
5.2 Some interesting classes of testing protocols

The coupled medet

Deriving Trace Checkers for Distributed Systems 13

RDV

Asynchronous observation

RDV
OB§ OBS

é Queue Qusue

Distributed observation

In this model [Merlin 83], every communication is made
through rendez-vous. The local observer has always an
exact image of the system, since all external or internal
events are communicated. Unfortunately, this kind of
active observation is inapplicable since it disturbs in general
the distributed system under test. The systems for which
this perturbation is not significant (i.e do not alter the
execution sequences) are very synchronized .

For this kind of passive observation, the observers receive
the (internal) events of the system through queues ; where
as, the external events are communicated through
rendez-vous. The error detection power of the local
observer (PDEi) decreases in general. Systems which
guarantee a maximal PDE are transactionel systems where
the transactions are numbered [Ecault 84], or better, those
systems which verify the “ping-pong” property defined in
[Dssouli 86].

In this case, every communication is made through
queues. Its error detection power is weak:

Vi, PDE;, = PDE/E, ® PDE/L,,(® : Shuffle operator).
The valid properties are therefore the formulas which are
shuffle-invariant. This class of valid formulas is very
reduced.

Knowledge of a total order relation
Some protocols maintain a total order relation between the observable events (for example when -
all messages are time-stamped). If this relation may be known to the observers, it is easy to
build a testing protocol which resequences the observable events for each local observer. This
allows for a maximum error detection power.

14 Deriving Trace Checkers for Distributed Systems

5.3 Towards easily testable protocols

The previous examples demonstrate the difficulty in controlling the quality of diagnosys with
distributed testing. An important research is to be done to give some answers to the following
questions:

® A testing architecture being given, what are the observable properties?.

® Service properties being given, what testing architecture may be proposed to observe
these properties?.

The correctness of existing testing protocols is often due to implicite assumptions made upon
the tested protocol itself. We could define observation points and specific actions in order to
make easier subsequent testing. This approach was effective in the hardware design.

Deriving Trace Checkers for Distributed Systems 15

6 Conclusion

Different formalisms seem to be interesting and complementary for the service description
activity. We focused our attention on finite state machine based models and on temporal
logic. Deriving trace checkers from these formalisms is possible and hints for practical use of
checkers on real implementations were given.

We think that our experience, which was performed essentially in a simulation context, is
mature enough to be used for distributed applications in a more industrial context. In particular,
it might be useful for protocol test centers to analyze (possibly off-line) complex traces produced
during a test phase. Trace checkers can then decide their correctness. o

References
[Ansart 82] J.P. ANSART, Genepi/ A Protocol Independent System for Testing
Protocol Implementation, 11 IFIP WG6.1 Workshop, 1982.
[Ayache 79] J.M. AYACHE, P. AZEMA, M. DiAz, Observer: a Concept for On-line

Detection for Control Errors in Concurrent Systems, o't Int. Symp FTC,
Madison, June 1979.

[Bochmann 82] G.v. BOCHMANN, E.CERNY, M.GAGNE, C.JARD, A.LEVEILLE,
C.LACAILLE, M.MAKSUD, KS.RAGHUNATHAN, B.SARIKAYA, Experience
with Formal Specifications Using an Extented State Transition Model,
IEEE trans on Comm, Vol COM-30, Nu 12, dec 1982, pp 2506—
2513. '

[Castanet 86) R.CASTANET, R. SUELMASSI, Methods and Semi-automatic Tools Jor
Preparing Distributed Testing, VI IFIP WG6.1 Workshop, Gray Rocks,
Montréal, June 1986, North-Holland, Gv.Bochmann and B.Sarikaya ed.

[Dssouli 85] R.DssouLl, G.V.BOCHMANN, Error Detection with Multiple observers,
V IFIP WG6.1 Workshop, Moissac, June 1985, France, North-Holland,
M.Diaz ed.

[Dssouli 86] R.DSSOULI, Etwude des Methodes de Test pour les Implantations de

Protocoles de Communication Basées sur les Spécifications Formelles,
PhD Thesis, Université de Montréal, Dec 1986.

[Ecault 84 C.ECAULT, Une®Experience dans la Spécification et la Validation des
Systémes Distribués, These de 3'°™¢ cycle, Université Rennes I, France,
Avril 85.

[Graf 86] S.GRAF, J.SIFAKIS, A Logic for Description of non Deterministic

Programs and their Properties, Information and control 68, 1-3, 1986.

[Groz 86] R.GROZ, Unrestricted Verification of Protocol Properties on a Simulation
using an Observer Approach, VI IFIP WG6.1 Workshop, Gray Rocks,
Montréal, June 1986, North-Holland, Gv.Bochmann and B.Sarikaya ed.

16

[ISO 86)

[Jard 83]

[Jard 84]

[Jard 85a]

[Jard 85b]

[Kamp 68}

[Lichtenschein 85]

(Manna 84)

[McNaughton 71]

[Merlin 83]

[Molva 85]

[Pnueli 86]

[Rayner 85}

Deriving Trace Checkers for Distributed Systems

ISO/TC97/SC21/WG16—1 DP9074, Estelle : a Formal Description
Technique based on an Extented State Transition Model, Sept 1986.

C.JARD, G.V.BOCHMANN,An Approach to Testing Specification, The
Journal of Systems and Software, 3, pp. 315—323, 1983.

C.JARD, Protocoles et Services : Test des Spécifications, PhD thesis,
Université Rennes I, France, May 1984.

C.JARD, R.GROZ, J.F.MONIN, Véda: a Software Simulator for the
Validation of Protocol Specifications, COMMET’85, Budapest, Oct
1985, published by North-Holland in Computer Network Usage: Recent
Experiences, L.Csaba, K.Tarnay, T.Szentivanyi ed.

C.JARD, J.F.MONIN, R.GROZ, Experience in Implementing X250 in
Véda, V IFIP WG6.1 workshop, Moissac, June 1985, France,

. North-holland, M.Diaz ed.

HW KAMP, Tense Logic and the Theory of Linear Order, PhD Thesis,
1968, UCLA.

O.LICHTENSTEIN, A.PNUELI, L.ZUCH, The Glory of the Past, Logics of
Programs, LNCS, 1985.

Z MANNA, P.WOLPER, Synthesis of Communication Processes from
Temporal Logic Specifications, ACM Trans on Programming Languages
and Systems, Vol 6, Nu 1, January 1984, pp. 68—98.

R.MCNAUGHTON, S.PAPERT, Counter Free Automata, MIT Press,
Cambridge, Mars 1971,

P.MERLIN, GV.BOCHMANN, On the Construction of Submodule
Specification and Comnmunication Protocols, ACM Trans on
Programming Languages and Systems, Val 6, Nu 1, January 1983.

R. MoLva, M. DiAZ, J.M. AYACHE, Observer: a Run-time Checking
Tool for Local Area Network, V IFIP WG6.1 workshop, Moissac, June
1985, France, North-Holland, M.Diaz ed.

A.PNUELL, Application of Temporal logic to the Specification and
Verification of Reactive Systems: a Survey of Current Trends, LNCS 224,
1986, pp. 510—584.

D.RAYNER, Towards $andardized OSI Conformance Tests, V IFIP
WG6.1 workshop, Moissac, June 1985, France, North-Holland, M.Diaz
ed.

)

17

[Sarikaya 84] B.SARIKAYA, Test Design for Computer Network ‘Protocols,’ PlhD thesis,
March 1984, School of Computer Science, Mc Gill, Montreal.

[Sifakis 86] J.SIFAKIS,A response 1o Amir Pnueli’s “Speciﬁcatifm and development of
reactive systems”, IFIP Int. Congress, 1986, Dublin.

[Thomas 81] W.THOMAS,A Conbinatorial Approach to the Theory of w-Automaia,
Information and Control 48, 3, pp. 261-283, 1981.

[Ural 84] H.URAL, An Approach to Life Cycle Testing of thmufzication Protocols,
PhD Thesis, 1984, Dept Computing Science, University of Ottawa.

Imprimé en France

par
I'Institut National de Recherche en Informatique et en Automatique

<

LYl

