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THE INFLUENCE OF VECTOR AND PARALLEL PROCESSORS
ON NUMERICAL ANALYSIS

L'INFLUENCE DES PROCESSEURS VECTORIELS ET
PARALLELES SUR L'ANALYSE NUMERIQUE

TIain S. DUFF

Résumé

Voici dix ans que le premier Cray-1 a été livré au Laboratoire de Los Alamos.
Depuis, les supercalculateurs vectoriels se sont répandus et sont devenus importants
pour la résolution des probléemes posés par de nombreux domaines des sciences et de
'ingénierie qui nécessitent du calcul a grande échelle. Leur influence sur I’analyse
numérique a été moins fondamentale, mais nous en précisons la portée.

Dans la derniére année, des "superminis” présentant diverses formes plus générales
de parallélisme sont apparus. Nous les décrivons briévement et donnons les principes de
leur programmation. De nombreux exemples tirés de plusieurs domaines de I’analyse
numérique dont algébre linéaire, l'optimisation et la résolution des équations aux
dérivées partielles nous permettent de soutenir la thése que ces derniers auront une
bien plus grande influence sur I'analyse numérique que leurs prédécesseurs vectoriels.

Abstract

It is now ten years since the first CRAY-1 was delivered to Los Alamos National
Laboratory. Since then, supercomputers with vector processing capability have become
widespread and important in the solution of problems in many areas of science and
engineering involving large-scale computing. Their influence on numerical analysis
has been less dramatic but we indicate the extent of that influence.

In the last year or so, advanced "superminis” that exhibit various more general forms
of parallelism have been developed and marketed. We identify these and give some
general principles which algorithm designers are using to take advantage of these
parallel architectures. We argue that parallel processors are having a much stronger
influence on numerical analysis than vector processors and illustrate our claims with
examples from several areas of numerical analysis including linear algebra,
optimization, and the solution of partial differential equations.

This paper is based on an invited lecture given at the State-of -the- Art Meeting in
Birmingham, England, April, 1986.

Keywords : parallel computers, vectorization, parallelism, supercomputers, numerical
analysis, linear algebra, optimization, partial differential equations.

Mots clés : ordinateurs paralléles, vectorisation, parallélisme, supercalculateurs,
analyse numérique, olgébre linéaire, ontimisation. éonations aux dérivées partielles.
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1 Introduction

It is interesting to reflect that, if a paper of this title had been included in the proceedings of
the previous State-of-the-Art conference (Jacobs 1977), its content would have been
considerably different from the following text. It is not that parallelism was not studied. There
were many early papers on the subject (for example, Miranker and Liniger 1967 and Traub
1973) and much analysis principally on abstract machines like the paracomputer (Schwartz
1980) where unlimited parallelism could be allowed without concern for communication or
synchronization costs. Nor was it that parallel machines did not exist. Burroughs delivered the
ILLIAC IV to Illinois in 1972 (Bouknight et al. 1972) and there was much activity in
developing numerical algorithms for that machine (for example, Sameh 1977). However, the
predominant trend in research ten years ago was that of complexity analysis, and results of the
form “the solution of Ax=b can be performed in O(log,’n) time on a machine with
21331 log,?n processors” (Csanky 1976) would have been considered at great length in a
survey paper written at that time. '

However, the situation in 1986 is radically different. The emphasis has changed to the
construction of algorithms for specific architectures, the design of algorithmic principles for a
range of parallel or vector machines, the establishment of a parallel programming
methodology, and aids to portability such as language developments, language extensions, and
the development of schedulers. A major reason for such a change of emphasis is the
availability of machines: both high-powered vector supercomputers and, more recently,
several general-purpose superminis with parallel architectures. We discuss such machines in
Section 2, distinguishing between vector and parallel architectures but avoiding any detailed
description of architectures. We refer the reader to Dongarra and Duff (1985) for a consumer’s
guide to commercially available hardware. The survey paper by Ortega and Voigt (1985)
contains a summary of developments in hardware and algorithms just prior to the arrival in the
marketplace of these machines.

It is also worth mentioning that several projects at universities and research laboratories are
now stimhlating much research and are promising to make real advances in the design of
parallel architecture machines. Indeed, some of the current commercial machines have been
developed directly from such projects. Examples of projects include the CEDAK project at
Illinois, the NYU ULTRA project and the allied IBM RP3 effort, the CMU Warp, LCAP at
IBM Kingston, the Connection project at MIT, and the Caltech hypercube.

The influence of vector computers is presented in Section 3 and a discussion of some basic
concepts in parallel computing in Section 4. Then. in Section 5, we define several techmques
used in algorithms which exploit parallelism; in each case we give concrete examples of such
algorithms, with one or two explored in detail. In the foilowing three sections, we briefly
consider the influence of both vecior and parallel processors in the areas of linear algebra,
partial differential equations, and optimization, before concluding with some coverall remarks
on current and future trends in Section 9.



2 Vector and parallel processors

The most general categorization of paralle!l architectures is due to Flynn (1966). Two of his
main categories are SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction
Multiple Data) machines. Broadly speaking, these subdivisions correspond to vector
computers and more general parallel computers. We do not, however, discuss any
categorization in detail because we do not feel that it is particularly germane to our present
concern. Indeed, it is not our intention to give a rigorous classification or to list ail machines
which are available (see, for example, Dongarra and Duff 1985). We do, however, make a
distinction between vector and parallel machines. Although we subdivide the latter between
shared and local memory architectures, we make limited use of this distinction in the later
sections.

We define a vector processor as one which can process operations on vectors with great
efficiency but which does not exhibit a more flexible form of paralielism. For example, when
we discuss vector machines per se we assume that it is not possibie for them to execute quite
different programs concurrently. Examples of vector machines are those of Cray Research
(CRAY-1, CRAY X-MP, and CRAY-2), Control Data (CYBER 205), Fujitsu (FACOM VP
30, 100, 200, and 400 ... also marketed by Amdahl and Siemens), Hitachi (S-810 and 820), and
NEC (SX-1, SX~2). We concentrate primarily on the influence of these high-powered and
expensive supercomputers in Section 3 although we note that there are several other cheaper
but less powerful vector machines now available, for example the IBM 3090 VF machine, the
Alliant, several FPS machines, and the so-called Crayettes from Convex and Scientific
Computer Systems.

Some of these vector machines have models with more than one processor with access to a
shared memory (CRAY X-MP, CRAY-2, and Alliant). Other machines with a parallel
architecture whose processors share a common memory include the ELXSI 6400, FLEX/32,
Sequent Balance 21000, and the ENCORE Multimax. Denelcor, whose HEP computer piayed
a significant role in the development of algorithms and methodology for shared memory
machines (for example, Kowalik 1985), has now been liquidated, a testimony to the current
competitiveness in this area of scientific computing. Although we have lumped the shared
memory machines together in this way, we should stress that many architectural differences
exist which can have an important effect on the design and performance of algorithms. For
example, access to common memory may be via a global bus or a more costly bat faster switch,
which itself may have a range of configurations. Furthermore, each processor may have a
cache, and cache management may vary greatly from machine to machine (for example,
Montry and Benner 1985). However, in the spirit of the rest of this paper we regard such
differences as affecting only the implementation details specific for the machine itself and so do
not consider them further. -

In local memory parallel architectures, each processor has its own memory and
communicates with other processors through message passing. The local memory machines
can be further subdivided according to the connections between processors. Popular
configurations include a linear array, a ring (for example, the CDC Cyberpius), a
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two-dimensional lattice with toroidal topology (the Goodyear MPP and the ICL DAP), or a
more complex connectivity as in the BBN Butterfly. A cube-connected cycle configuration has
been analysed, and algorithms have been designed for it (Preparata and Vuillemin 1981), but
we know of no commercially available machine with this architecture. Perhaps the currently
most popular local memory topology is that of a hypercube, distinguished by the fact that each
processor in a hypercube with 2" processors is connected to n processors which can be
identified by flipping a single bit of a binary string of length n which labels the processor. As
well as the logarithmic growth in connection complexity, the hypercube is also easily scaled to
reasonably many processors (> 1000) and has the attractive property that a message can be
passed from one processor to any other by communication paths whose length is logarithmic in
the number of processors. An attractive feature is the parallel communication feature whereby
messages can be sent from all the processors to all other processors concurrently in 2 logn
steps. Examples of computers exhibiting this topology are the Ametek System 14, INTEL
iPSC, NCUBE, the Thinking Machines Connection Machine, and the FPS T-Series machines.

Two comments are worth making when comparing vector supercomputers with parallel
machines. The first is that, although the latter are usually much slower than the former, they
are far cheaper, typically costing between $500K and $1.5M as opposed to the more than $10M
price tag on most supercomputers. Their manufacturers claim a better price-performance
characteristic compared with the supercomputers. A second difference is that many of the
superminis are built from widely available chips and indeed owe their genesis to research
projects of universities or non-commercial laboratories. Thus most of the companies are small,
new, and presently financed by venture capital rather than sales or a major company. The
viability of these companies will therefore depend on establishing a niche in the marketplace.
This again justifies our determination to stand back from discussing detailed implementations,
since by the time of publication any architecture being so addressed could well be obsolete.
Our main reason for the foregoing catalogue of available computers is to emphasize the
prevalence of vector and parallel architectures. As we said in the introduction, this availability
is one of the most important factors in the influence of vector and parallel computers on

numerical analysis.

3 The influence of vector processors

Without doubt the advent of vector machines has had a profound influence on computation
in science and engineering. Indeed, one can argue that the field of scientific computation owes
its birth to the existence of such machines. Certainly, since the first CRAY was delivered to
Los Alamos in 1976, increasingly complex calculations have been undertaken using vector
supercomputers whose computational rates now approach one Gigaflop (a thousand
Megaflops or one thousand million floating point operations per second). In spite of this
imract, e weu'd argue that the influence ¢n numerical analvsis due to such machines is
relatively small. Certainly there are few numerical analysis research papers in which the use of
such architectures is the primary concern. The reason for the lack of influence lies both in the
very nature of such supercomputers and in the lack of in-house access by most numerical

analysts.



By definition, a supercomputer is a powerful computing engine which means that, even in
non-vector mode, its capacity for computation exceeds that of other computers. Thus, without
paying much attention to optimizing or designing algorithms to exploit the architecture, the
use of a supercomputer should give considerable computational gains. Much of the influence
of vector supercomputers in computational science has been due to this fact alone. Indeed
vectorization is sometimes considered as merely an added bonus. In this context, it is not
surprising that the influence on numerical analysis has not been dramatic. In particular
applications, however, significant attempts have been made to exploit vectorization, and the
computational science literature abounds with papers on this subject. Note that our definition
of supercomputers is not machine specific, and indeed machines presently considered
supercomputers will not be so considered in a few years time.

Since many vector machines require the use of fairly long vectors (well over 1000 in some
instances) to exploit their hardware fully, much effort has been spent in reorganizing the data
so that inner-loop operations are performed on long vectors (for example, see Rizzi 1985).
This is usually a top-down procedure and often results in a significant redesign of the entire
method. In this sense, the influence of vector machines on computational science is very great,
but few numerical analysts would regard this as numerical analysis, although some would argue
that such considerations should be of more concern. The other major way in which vector
processing has influenced computational science has been in the choice of solution algorithms
employed, for example the choice of method for the solution of linear equations may be very
dependent on the architecture being used.

However, the concept of a vector is a rather simple one in a mathematical sense and so has
not caught the interest of most numerical analysts. When dealing with vectors, the natural
tendency has been to think in terms of a bottom-up approach, and a primary concern has been
to develop techniques to assist in the portability of codes while maintaining efficiency over a
range of architectures. Much use has been made of the BLAS (Lawson et al. 1979) and most
manufacturers have implemented efficient versions for their machines, usually using assembler
level coding.

As an example of the use of the BLAS, we consider the product of a matrix A with a vector c.
One can view this product as a linear combination of the columns of A, so that

Ac = YA, (3.1)

where A,; is the j—th column of A, or one can obtain the i—th component of the product as a
scalar product between ¢ and the i—th row of A. That is,

(Ac), = AL c S (3.2)

where AL is the i—th row of A. In the former case (3.1), use can be made of the SAXPY
routine from the BLAS, which adds a multiple of one vector to another. In case (3.2), the scalar
product routine, SDOT, is appropriate. On some vector machines, the use of SAXPY is much
to be preferred. For example, on the CYBER 205, the SAXPY routine is intrinsically more
efficient than the SDOT code (Louter—Nool 1985) and accesses the columns, which are stored
contiguously, rather than the rows which are not. On the other hand, a hardware peculiarity in



the CRAY-1 allows the SDOT routine to perform significantly-faster than SAXPY on that
machine (Duff and Reid 1982). Thus, although efficient kernels can be used to-effect
matrix-vector multiplication on vector machines, the choice of kernel can be very machine
dependent.

This fact, coupled with a desire for portability and efficiency over a wide range of parallel
and vector machines, has led many people to use larger computational modules when
designing code for vector machines. An obvious candidate is matrix-vector multiplication
itself. Dongarra et al. (1984) have formalised the higher-level modules in a proposal for an
extended set of BLAS, sometimes called O(n?) BLAS since the arithmetic involved is O(n?) for
vectors of length n rather than the O(n) of the original BLAS. The proposal includes. BLAS for
matrix-vector multiplication (where the matrix can be general, symmetric, triangular, or
banded), rank-one and rank-two updates to matrices, and the solution to triangular systems. It
is possible to formulate many of the routines from LINPACK and EISPACK using these kernels
_ (for example, Dongarra et al. 1986a), and it is hoped that the establishment of an agreed set of
extended BLAS will persuade manufacturers to provide efficient code for them in.a similar way
to the current situation for the original BLAS. The omens are good since already many
manufacturers supply efficient code for matrix-vector multiplication.

It is worth reflecting that much debate has gone into the definition of what should be
included in a set of extended BLAS. For example, Gustavson (private communication 1985)
has found that, in order to obtain high performance in the solution of equations on the IBM
3090 VF, it is necessary to code the kernel as a matrix-matrix product, while the frontal code,
MA32, at Harwell (Duff 1983) uses a double Gaussian elimination step (rank-two change to an
unsymmetric matrix) to obtain nearly maximum performance on both a CRAY-1 and a
CRAY-2 (Dave and Duff 1986). It is inevitable that any proposal will not cover all needs or
present usage, but the general feeling and that of the authors of the proposal is that the
important thing is to establish a standard which manufacturers will recognize.

A form of parallelism more general than simple vectorization consists of the independent
execution of different instantiations of the same computational sequence. It is possible to
exploit this very common form of general paralielism on vector computers by vectorizing
across the independent streams. We can illustrate this with the ADI method as used in the
solution of elliptic or parabolic equations. At each half-step of the ADI method it is required
to solve a set of & tridiagonal systems, each of order n,

T,x, = b, , i=12,..k, (3.3)
which are independent of each other. Now, the inherently recursive nature of the solution of a
tridiagonal system has made it somewhat of a “cause célebre” in the world of vectorization
“and, although algorithms exist which are superior to straightforward Gaussian elimination (see
Section 6), highly vectorized codes do not exist. However, if one chooses as vectors the
COIESPONGING COMpPUNENTS fron eacn SYSiem, 10v CXampie (X, 11X 1 (X3 ---1a¢ ), » then the
systems (3.3) can be solved as a single block tridiagonal system with n blocks of order k and
vectors of length k. ' ’

It is difficult to interpret more general forms of parallelism in this way but, as we shall see in
Section 5, many of these forms are of a similar kind to that described above.

]



4 Basic issues in parallelism

Since it is recognized that much of the intended audience of this paper may have little prior
experience of concepts and issues in parallelism, some of the basic terms are discussed in this
section.

Returning to vector computers for a moment, a common approximation for the time to
perform a calculation on a vector of length n is

t, = (n+n1/2)r;,' ! microseconds |, 4.1)

where r,, is the maximum asymptotic rate of computation, and nyp is the vector length at which
half the asymptotic rate is attained (Hockney and Jesshope 1981). We use the notation nip
since it is now standard in the literature. We would like to stress, however, that the quantity
ny is independent of n. The formula (4.1) gives rise to a performance curve of the form shown
in Figure 4.1 whose shape gives quantitative justification to our desire for long vectors in
Section 3. Typical values for r, and ny, on a 2-pipe CYBER 205 utilizing linked triads in
64-bit arithmetic are 200 and 200 respectively. The size of n, /> is important when designing and
comparing algorithms on vector machines.

Figure 4.1. Typical performance curve for vector machines.

Another issue pertinent to both vector and parallel machines is the effect of vectorization (or
parallelism) on the run time of a complete program or subroutine. Clearly the higher the
percentage of calculations performed in vector or parallel mode, the greater the gains from
vectorization or parallelism. This can be formulated in many ways and we choose one of the
2erhiest axd simplost as appied to vestorization, viz,
Re — L1 | (4.2)

v+ (1-f)s
where R is the overall computational rate, v the vector rate, s the scalar rate, and f the fraction
of the number of operations performed at the vector rate. This is often termed Amdahl’s Law
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(Amdahl 1967) and, although it is a gross over-simplification, it is adequate for our present
purpose. We have plotted equation (4.2) in Figure 4.2 where we have chosen values of v and s
appropriate for the CRAY-1.

Figure 4.2. Graph of Amdahl’s Law for machine with v=130 and s=4.

On looking at Figure 4.2 it is immediately apparent that a very high percentage of
vectorization is necessary if overall computational rates comparable to the vector rate are to be
attained. For example, even if 90 percent of the calculation were at the vector rate and this part
could be done in zero time, then the speed-up would be limited by the 10 percent scalar part to
a factor of 10. Fortunately, for some important calculations, for example the solution of linear
equations, a very high percentage of the calculation vectorizes.

The counterpart to Amdahl’s Law for general parallelism is Ware’s Law (Ware 1973) given
by
§=_—— L (4.3)
fomt + (-f)
where fis the fraction of calculation in parallel mode, p the number of processors (amount of
parallelism), and S the speed-up. Performance measures for parallel computation (including a
definition of speed-up) are currently a matter for some debate. The S in equation (4.3) is the
ratio of time for a code on one processor to that of the identical code on p processors. Some
people nrefer to define speed-up as the ratio that comvares the best parallel algorithm with the
best sequential one, which may of course be different. Indeed some people define a similar
measure using the increase in problem size, for the same time of solution, as the number of
processors increases. Of course equation (4.3) is quite inadequate in the parallel case (see, for
example, Buzbee 1984) since communication and synchronization delays are absent, but we
use it to illustrate the risk of making over-optimistic extrapolation. For example, a speed-up of



30 x 30 grid 10 x 100 grid

No parallelism 3.7 7.5
within nodes

Parallelism within 30 47
nodes

Table 4.1. Illustration of effect of change in granularity. Values given are, in each case, the
maximum speed-up.

where load balancing is of concern are multisectioning (Section 5.2) and global optimization
(Section 8).

The perimeter effect relates to the ratio of the amount of computation within a processor to
the amount of data that must be transferred between the processor and other processors. In
some cases, for example when solving grid-based problems by subdividing the grid between
processors, the amount of data transferred (the boundary) grows sublinearly with the
computation. The implication is that the overheads of a message passing environment become
less significant as problem size (and granularity) increases. Currently, this effect is rarely
encountered because of the sizes of problems being run on message passing architectures.
Indeed there is some debate concerning this phenomenon, because of the efficiency of passing
long messages, and because the implications of local memory size can prevent an arbitrary
increase in problem size. McBryan and Van de Velde (1986) have, however, observed the
perimeter effect when solving large systems of hyperbolic partial differential equations on the
Caltech hypercube, and Lichnewsky (1982) has observed the phenomenon when solving linear
. systems arising in finite-element calculations.

Our aim in this section has been to introduce some of the basic issues in parallel processing
of concern to the numerical analyst, and we will feel free to use the terms without further
comment in later sections. We have not, however, been completely exhaustive and
recommend the book by Hockney and Jesshope (1981) for further background reading. The
- books by Kronsj6 (1985) and Schendel (1984) discuss the design of parallel algorithms in some
detail, although they are more theoretical than our present approach.

5 Techniques for the development of parallel algorithms

In this section, we classify several commonly used techniques for exploiting parallelism. In
doing so we are extending earlier work of Voigt (1985), van Leeuwen (1985), and te Riele
(1985). Like them, we preface our categorization with the caveat that any particular algorithm
may exhibit traits of more than one category. Our main intent in following this line is to give
numerical analysts a feeling for the issues which influence parallel algorithm development. By
giving concrete examples of each issue, we illustrate both the particular technique and its
influence on numerical analy51s Because of the detail with which we explore these techniques,
we have chosen to identify each in a separate subsection. In all cases we have kept references
to specific parallel architectures to a minimum so that the generality of each paradigm is
emphasized.



5.1 Vectorization

We discussed vectorization in Section 3. It is clearly a very powerful tool and, since some
computers combinc aspects of both vector and parallel machines (for example, CRAY X-MP,
CRAY-2, and ALLIANT), the advent of more general forms of parallelism will not remove
the need for vectorization. Indeed all today’s supercomputers use vectorization as their
principal means of achieving high-speed computation. Additionally, as we illustrated with the
example of ADI in Section 3, it is often possible to reformulate parallelism as vectorization in
a rather straightforward manner. A technique which uses the same philosophy as the hardware
of vector processors is pipelining. We discuss a pipelined technique for QR factorizations in
Section 6. '

5.2 Divide and conquer

Without doubt, dividé and conquer is the most widespread technique used in the
development of parallel algorithms. The idea is the first that would occur to anyone
contemplating parallel algorithm design. One first partitions the problem into several
subproblems and then solves the subproblems separately. Unless the subproblems are
independent, data must be communicated between them. For the success of a divide and
conquer technique, it is necessary that the gains in solving the subproblems in parallel are not
outweighed by the work required to construct the solution to the whole problem from that of
the subproblems.

There are many areas in numerical analysis where divide and conquer methods are
employed. In linear algebra, they are used in the solution of banded and tridiagonal systems
(Wang 1981) and in obtaining eigenvalues of symmetric tridiagonal matrices (Cuppen 1981).
Bisection or more general subdivision techniques include using Sturm sequences to isolate
eigenvalues (Barlow er al. 1983), root-finding techniques (Kronsjo 1985), and line-search
methods (Schnabel 1984). Problems defined over two or three space dimensions often are
amenable to a subdivision process where the only information that needs to be communicated
is data on the boundaries of the subdivisions. In the solution of partial differential equations,
techniques of this kind are termed domain decomposition (see for example, Glowinski er al.
1982 and Chan and Resasco 1985). In structures problems, the term substructuring is used
(Noor et al. 1977), and in the solution of linear systems we use the term dissection (George
1973). The original motivation for these techniques was not to design algorithms for
parallelism but rather to solve very large problems by éplitting them into tractable
subproblems. As in “sectioning methods”, which can be viewed as a one-dimensional form of
substructuring, it is the task of the numerical analyst to control and combine the solutions of
the subproblems in order to solve the main calculation. The added bonus of easy parallelism
has spurred much work in this area, particularly in domain decomposition for the solution of
partial differential equations.

Similar decomposition techniques are used in other areas, including approximation theory
(see Cox 1987, for example), global optimization (Schnabel 1984), and combinatorial
optimization (Kindervater and Lenstra 1985, Roucairol 1986), in addition to many
non-numerical and semi-numerical areas, such as sorting (Tseng and Lee 1984) and
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convex-hull problems (Evans and Mai 1985), which are outside the scope of this present
discussion.

We will now indicate the use of divide and conquer in more detail by looking further at
algorithms in two of the above areas, namely tridiagonal eigensystems and parallel
multisectioning.

The divide-and-conquer algorithm for symmetric tridiagonal eigensystems was originally
proposed by Cuppen (1981) and has been developed for shared memory multiprocessors by
Dongarra and Sorensen (1986) and for local memory machines by Ipsen and Jessup (1986).
The idea is simply to observe that any nxn tridiagonal matrix, T, can be partitioned as

T, Bexe| <T1 0 ) <°k> T T
= = 3 e, €
T (ﬁelekT T, 0T, +ﬁel(k ')
where T, , T,, ’i‘l , and T2 are tridiagonal matrices, § is the (k,k+1)th entry of T, and e, and e,
are the first and k-th columns of the (n—k) x (n—k) and k x k identity matrices respectively. If
the eigendecompositions of T, and T, are given by

Tl = Q1D1Q1T and Tz = Q2D2Q2T

then T can be written as

= (& O ) )@ )Y )

where q is the last row of Q, and q, is the first row of Q,. Thus, the eigendecomposition of T
has been reduced to the eigenproblem for a rank-one change to a diagonal matrix. This has
been considered by Bunch et al. (1978), among others. Naturally, to obtain more parallelism
the algorithm should be applied recursively by subdividing ’i‘l and 'i‘z , and so on. The results of
Dongarra and Sorensen (1986) show good speed-up on both the Denelcor HEP and the Alliant
FX/8. An interesting feature of this work is that the divide-and-conquer algorithm can save
work by deflation in the rank-one update problems to the extent that, even on a sequential
machine, it can outperform the QR implementation in the TQL1 routine of EISPACK. For a
general symmetric matrix, one must first use orthogonal similarity transformations to reduce it
to symmetric tridiagonal form. Parallel methods for this calculation are discussed by Dongarra
and Sorensen (1986) and Moler (private communication 1986).

Multisectioning methods require a good adaptive load-balancing strategy since it is not
known in advance where the work will be. When using the method to obtain the eigenvalues of
a symmetric matrix using Sturm sequences, each processor can work independently on a
different subinterval and the main problem lies in ensuring that a similar amount of work is
required in each subinterval. Ipsen (private communication, 1986) does this by first running all
processors on one large interval that is known to contain all the cigenvalues (obtained, for
example, from Gerschgorin bounds) in order to obtain an approximate eigenvalue distribution
that is used to determine the apportionment of subintervals to processors during the main
phase. Bernstein and Goldstein (1986) have also developed a parallel Sturm sequence
algorithm.

12



5.3 Reordering

The second main technique used in designing parallel algorithms is that of reordering the
problem or data to enhance the underlying parallelism. Perhaps the area in which this
technique has been most used is in the solution of linear equations from finite-difference
discretizations of partidl differential equations. For example, when using the SOR method to
solve for a five-point discretization of the Laplacian on an m xn grid, the natural pagewise
ordering of the points forbids parallelism since a value at a point is computed from its
immediate predecessor in the same row. This is easily overcome by reordering the points by
diagonals so that all points on each diagonal can be computed in parallel. When using
successive line over-relaxation (SLOR), parallelism is most easily obtained by updating first the
odd rows and then the even ones (called a zebra ordering). A red-black, or chequerboard,
ordering is very beneficial for vectorization since vector lengths can be increased from n to
_ mn/2. Much work has been done to evaluate the effect of different orderings on the
convergence of SOR (see, for example, Adams and Jordan 1984, O’Leary 1984, and Adams
1985) which seems remarkably resilient to such assaults. The use of SOR or incomplete LU
factorization (ILU) preconditionings in conjunction with conjugate gradients or similar
methods can also be similarly implemented in parallel by the use of multicolour orderings on
the original grid (Adams 1983). Lichnewsky (1984) combines dissection with multicolouring to
develop preconditioners appropriate for multiple-processor vector machines. Erhel et al.
(1985) investigate the effect of reorderings on preconditioned conjugate gradients in the
context of vectorization.

In the one-dimensional case, if a red-black ordering is performed on a tridiagonal system
being solved by a direct method, cyclic reduction results. This reordering can also be obtained
from a nested-dissection technique. Thus we see one instance of the relationship between
divide and conquer and reordering, illustrating the point we made in Section 5.1 concerning
the overlap between categories for parallel algorithms.

Although nested dissection and minimum-degree orderings are very similar in behaviour for
the amount of arithmetic and storage when used as a pivoting strategy for the solution of
grid-based problems using sparse Gaussian elimination, they give fairly different levels of
parallelism when used to construct an elimination tree for the parallel 1mplementatlon of
multifrontal methods (Duff 1986). We illustrate this point with some results from Duff and
Johnsson (1986) in Table 5.3.1. '

Ordering Minimum degree Nested dissection
Number of levels 52 15

in tree

Number of pivots 232 I3

on .onges: path '
Maximum 9 47
speed-up

Table 5.3.1. Comparison of two orderings for generating an elimination tree for multifrontal
sciution. The problem is generated by a S—point discretization of a 10 % 100 grid.
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Another reordering of a computation, particularly suitable for local memory machines, is
the wavefront version of Choleski’s LL7 factorization (see, for example, Kung et al. 1981, and
O’Leary and Stewart 1985). We indicate the order of computation of the entries of LT in
Figure 5.3.1, where all calculations of the same number are performed in parallel and data are
transferred from a calculation at stage i to stage i+1 only. An important thing about the
wavefront method is that, as soon as the operations with the first pivot have been performed
on entry (2,2) (at step 3), this entry can then immediately be used as the second pivot and
calculations using the second pivot row and column can sweep down the matrix immediately
following the calculations using the first pivot. Subsequent pivots can follow in like fashion so
that the whole decomposition is effected in 3n—2 parallel steps. A similar strategy can be
adopted in solving time-dependent problems where different waves can simultaneously be
computing at different time steps. This windowing technique is discussed by Saltz and Naik
(1985).

T E N
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Figure 5.3.1. Order of computation in the wavefront method.

The use of ADI techniques on hypercubes poses a rather interesting ordering problem since
the data must be transposed between half sweeps in order to maintain parallelism in both
directions. On some machines (for example the CYBER 205) it is best not to transpose the
data, but rather to solve the systems in the second direction as a very large concatenated single
tridiagonal system. However, Saad and Schultz (1985¢) have found it sometimes preferable to
do the transposition on the hypercube and keep the parallelism over the tridiagonal systems
(see Section 3) in both directions. McBryan and van de Velde (1986) discuss in some detail
algorithms for matrix transposition on hypercubes.

In the QR method, reordering to obtain parallelism is obtained by using the suggestion of
pairwise pivoting of Gentleman (1976). Clearly this freedom allows several Givens rotations to
proceed at once, the overall efficiency being determined by the ordering chosen. Sameh and
Kuck (1978) and Modi and Clarke (1984) have described possible orderings, and the latter
scheme can be shown to require only about log,m + (n——l)logz(lbgzm) steps on a system with
m rows and n columns, where m >>n >> 1. Pairwise elimination can also be applied to Gaussian
elimination in a stable fashion (Sameh 1985, Sorensen 1983).

5.4 Recursive doubling

Recursive doubling techniques were originally suggested for vectorization but, as we shall
shortly indicate, they give rise to inconsistent methods and so are asymptotically inferior. They
have, however, been suggested as being more viable on parallel architectures where extra
work may not be penalized. As an example of recursive doubling suppose that we wish to
compute ’



for given r;, i=1,2,...,n.

A straightforward computation yields the n products in n—1 multiplications. If, however, we
place r,,r,,...,r, in a vector, r; say, and denote by shift, (r) the operator that shifts the vector
r down by 2¥ positions and places I’s in the first 2k positions, then the sequence of operations

., = shift,(r,) * r, k=0,1,... ,

will produce a vector ry, after [logon] steps, that holds the desired products. That is, the
successive r,, k=0,1,..., are given by

n r r n
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Unfortunately, the complexity of each vector multiply is O(n), giving O(n logn)
multiplications in total as opposed to O(n) for the straightforward algorithm. Van Leeuwen
(1985) gives a list of functions amenable to recursive doubling. '

An algorithm for solving tridiagonal systems based on recursive doubling was proposed by
Stone (1973). If one defines

g9 =149, =4, ¢ =0a49;.1 b9, , i=2,..n,
then the LU factorization of the matrix
a; b

"¢ ay by
c3 a3 ®

includes the entries

where the u; are the diagonal entries of U. We see this by comparing the expression for
generaling the g; above with the normal factorization equation
_Gbiy

Uiy

Stone observed that the recurrence for g; can be written as
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from which the use of recursive doubling immediately follows. Because of its instability and
inconsistency this method fell from favour but is now being revived, together with an
investigation of methods for stabilization, in a more parallel environment. Doubling
algorithms for Toeplitz systems are discussed by Brent et al. (1980) and Morf (1980).

5.5 Asynchronous techniques

As discussed in Section 4, the need for synchronizing parallel processes can be a major
problem in achieving effective levels of parallelism. Therefore techniques have been
developed where processes can execute asynchronously without having to suspend
computation while awaiting the results from another process.

It is fairly easy to devise an asynchronous version of almost any iterative process. For
example, Kronsjo (1985) discusses an asynchronous version of the Newton-Raphson iteration.
However, it is usually more- difficult to analyse the convergence or stability of such a
technique.

An algorithm of this type, whose initial development predated the current interest in
parallelism, is chaotic relaxation (Chazan and Miranker 1969, Miellou 1975, and Baudet 1978)
where, for example, new values of the variables on a five-point discretized mesh are calculated
from the four neighbouring values without regard to when these values were calculated.
Experimentation has been done on parallel architectures (for example, at Los Alamos,
Hiromoto, private communication 1985) that confirms the earlier analysis of Chazan and
Miranker (1969) and indicates the feasibility of such techniques.

We discuss in more detail a suggested asynchronous algorithm for checking the convergence
of an iterative process (Saltz et al. 1986). Here we assume that a region has been divided into
subdomains, each assigned to a processor. Iterations continue on each subdomain with
neighbouring subdomains communicating with each other, as mentioned in Section 5.2. There
is therefore a local synchronization between neighbouring subdomains but this is not very
costly if there is reasonable load balancing. Checking for convergence does, however, present
more of a problem, and it is this part of the algorithm for which an asynchronous method is
used. Each processor can conduct a convergence check on data in its subdomain leading to
either a non-convergent result or a tentatively converged result (tentative because later data
coming in from the boundaries may cause future non-convergence). Each processor keeps
track of its number of iterations and a “header” is defined as the iteration count at the
beginning of a tentatively converged sequence. A separate processor is designated as a “host”.
The alaorithm then proceeds as follows, with action (2) being performed by the host and
actions (1) and (3) by the other processors, all in an asynchronous fashion.

(1) As soon as a subdomain (assigned to processor k, say) reaches tentative convergence,
processor k sends its header, i, , to the host.

(2) Host waits until all processors have reported and then calculates



iiax = max{i, }

It compares i, with its previously calculated value (if any) and, if equal, the host
broadcasts a stop to all processors and stops itself. Otherwise, the host broadcasts the

new value to all processors and repeats action (2).

(3) When the processor receives prompt from host, it sends back its current header if

tentatively convergent, or the next one if it is not.

Saltz et al. (1986) have programmed this method on a hypercube and find that the number of
unnecessary calculations because of processors continuing iterations after convergence is very
low (3—5 0/o).

5.6 Explicit methods
Clearly explicit methods are very suitable for vectorization or parallelism. Thus, if
= £t L) =120
then each new x; can be calculated in a parallel or vector operation.

An example of an explicit method for solving one-dimensional time-dependent partial
differential equations is Euler’s method, but its stability is only assured by restricting the time
step drastically. The Crank-Nicolson method is unconditionally stable but requires the
solution of a tridiagonal system at each time step. Evans and Abdullah (1983) suggest
combining two steps of a semi-explicit method of Saul’yev (1964) to get an unconditionally
stable method which is only implicit because a set of 2 x 2 systems must be solved at each stage.
These systems are trivially invertible to yield an explicit method, termed the group explicit
method by Evans and Abdullah. Indeed any method that is implicit because of the solution of
small blocks may also exploit parallelism by solving its implicit systems in parallel. Gelenbe et
al. (1982) experiment with both implicit and explicit methods for the one-dimensional heat
equation using two processors and develop a probabilistic model to assist in their analysis.

A simple example of converting an implicit algorithm to an explicit one is the use of a

Neumann series expansion

I-A)'=1+A+A%+ ..
to approximate the inverse of a matrix. Thus, the solution of a set of equations is sometimes -
possible by matrix-vector multiplication only — an explicit process. An example is given by van
der Vorst (1982), who uses a truncated Neumann series approximation to (I-L) ~1 L alower
triangular matrix, as a preconditioner for conjugate gradients.

5.7 “New” algorithms

It is often claimed that no new algorithms have been developed because of the advent of
parallel processors. To sems extent this is correct. although it is largely because such machines
have only just recently become readily available, and much of the current effort is in trying to
implement known techniques and modifications of them on the new architectures. Certainly
many methods with obvious implications for parallelism have been proposed over the last few
years. We have seen some examples in earlier sections and would maintain that much of the
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present interest in block techniques, including block preconditioning methods (Concus et al.
1985), has been generated because of their application to parallel and vector machines. Indeed
claims have been made for new algorithms which are just block factorizations. For example,
the WZ algorithm of Evans and Hatzopoulos (1985) is identical to block 2 x 2 pivoting and can
also be used as a splitting for SOR like methods or as a preconditioner (Evans and
Sojoodi-Haghighi 1982).

New interest in old algorithms has been sparked by the advent of parallel architectures. For
example, Gauss-Jordan elimination avoids the need for the recursive back-substitution step
and is preferable to Gaussian elimination on some architectures in spite of its larger number of
arithmetic operations (Bowgen et al. 1984). Indeed, the use of explicit inverses and a
resurrection of Cramer’s rule (Swarztrauber 1979) have also been suggested on parallel

machines.

One novel idea is the use of multi-splittings (O’Leary and White 1983), where several
iterations with different splittings of the same matrix are executed in parallel. Some analysis of
this idea has been done, but no results have been reported of practical experiencé on parallel
architectures. '

Recently there has been development of a class of methods for solving partial differential
equations called cellular automata or micro-random-walk methods. The technique is based on
monitoring the motion of particles in cells and the principle calculations involved are
non-numerical in the sense that most of the work involves manipulation of bit vectors. Because
of their possible importance in the solution of numerical problems, it is clearly appropriate to
mention them here. Much work in this area has been done by Wolfram on the Connection
machine, and cellular automata have also been studied by Frisch et al. (1986a, 1986b), inter
alios. Indeed it may well be that the existence of parallel architectures gives rise to the further
development of this whole class of methods.

6 Influence on linear algebra

In the next three sections, we survey the influence of vector and parallel architectures on
three major areas in numerical analysis. As with many new developments in the field, the area
in which most effect has been felt is linear algebra. This is both because of the very
well-defined nature of many linear algebra algorithms and their central role in other numerical
areas. Indeed, some people have argued that the advent of vector and parallel machines has
revitalized numerical linear algebra in a similar way to the development of sparse matrix
techniques in the 1970s. We discuss the influence on linear algebra in this section by indicating
some of the areas in which parallel or vector algorithms have been developed. From
bibliographies on vector and parallel computing, for example that of the Bochum Computing
Centrs (Rernutat—Ruchmann #7 o/, 1983). it is evident that the other areas most influenced are
the soiution of partial differential equations and optimization. indeed, out of around 1000
numerical references in the Bochum bibliography, 192 are on linear algebra, 116 on partial
differential equations, and 57 on optimization (te Riele 1985). We discuss the influence on '
partial differential equations in Section 7 and on optimization in Section 8. In our conclusions
in Section 9, we touch briefly on other areas of numerical analysis.
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Since we are discussing the influence on partial differential equations in the next section, we
will leave a discussion of linear algebra algorithms particularly geared to discretizations of
partial differential equations until then. Here we do not explicitly consider the source of the
linear algebra problem. Earlier reviews in this area have been given by Gentleman (1978),
Heller (1978), Sameh (1983), and Ipsen and Saad (1985).

Tridiagonal systems play a critical role in numerical analysis so it is not surprising that they
have received much attention. They have particularly been of interest in the study of
parallelism because of the inherently recursive and sequential nature of such systems. We have
already discussed several algorithms for tridiagonal systems which can exploit vectorization or
parallelism, including Stone’s method (Stone 1973) and cyclic or odd-even reduction
(Buneman 1969). Another variant arises when we effectively perform an odd-even reduction
on all equations instead of on alternate ones. This is called odd-even elimination, and one

stage of this algorithm on the matrix
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eliminates the entries adjacent to the diagonal in the way that produces the form
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Next we eliminate similarly the new nonzero off-diagonal entries, and after log,n such
reduction steps, the resulting system is diagonal. Like Stone’s method, odd-even elimination,
termed PARACR by Hockney and Jesshope (1981), is not consistent and is unstable, but
further work on this algorithm continues. A divide-and-conquer strategy applied to tridiagonal
matrices gives a partitioning scheme where most of the work can be performed on separate
tridiagonal systems, the communication between them being kept low. An example of a
partitioning scheme is that of Wang (1981), discussed in detail by Duff, Erisman, and Reid
(1986).

Partitioning schemes can be extended to more general banded systems (Johnsson 1985 and
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Dongarra and Johnsson 1986) and are suitable for implementation on both shared and local
memory machines. Another possibility is to consider the banded system as a block tridiagonal
system and use block cyclic reduction (Hockney and Jesshope 1981) in an analogous fashion to
the point case discussed earlier. Wavefront methods akin to those discussed in Section 5.3 have
also been proposed and developed for banded matrices, particularly those whose band is large
(Saad and Schultz 1985b).

For full systems of equations, the use of the extended BLAS can have a marked effect on
vector machines (Dongarra and Eisenstat 1984), although we do not know of good applications
of this approach to local memory parallel architectures. On message passing architectures,
several implementations of Choleski’s method (Geist and Heath 1985) and Gaussian
elimination (Geist 1985) have been proposed. These divide the columns in an a priori way
across the processors (the cyclic reuse of processors is recommended on the hypercube by, for
example, Geist and Heath 1985) and perform a column oriented reduction, passing
information from a reduced column to its successors. On systolic or data-flow architectures,
wavefront algorithms as discussed in Section 5.3 have been proposed (Kung et al. 1981 and
O’Leary and Stewart 1985). There is, of course, abundant small granularity parallelism in
Gaussian elimination, and one way of exploiting this is to perform pairwise pivoting, where,
for example, at the first minor step rows 1,3,5,... are used to produce zeros in the first column
of rows 2,4,... respectively. Pairwise pivoting has been discussed for ring architectures by
Sameh (1985) and its stability analysed by Sorensen (1983). Block elimination methods (for
example, the WZ algorithm of Evans and Abdullah 1983) have also been proposed and studied
on local memory machines like the ICL DAP and the loosely-coupled Loughborough
NEPTUNE (4 fully connected VAX 750s). Gauss—Jordan elimination has been proposed for
the DAP, and a hybrid algorithm that uses block Gaussian elimination with Gauss—Jordan on
the individual blocks has been developed (Bowgen er al. 1984). The often discredited
techniques of Cramer’s rule (Swarztrauber 1979) and explicit inverses have also been
considered.

The use of a QR decomposition for solving full matrix equations, or more commonly for use
in the least-squares solution of overdetermined systems, has received much attention. Pairwise
ordering of the kind mentioned for Gaussian elimination in the previous paragraph can be
used, and indeed many orderings have been proposed to exploit the independence of
orthogonal rotations between different pairs of rows. Ordering schemes have been suggested
by several people including Sameh and Kuck (1978) and Modi and Clarke (1984), and
experiments have been perfofmed on a range of parallel architectures. In pipelined QR, the
matrix R is developed by reducing each row in turn using Givens rotations and is stored in a
linear array (pipe) divided into segments. Each row of the matrix in turn is passed through the
pipe with the only synchronization being that a row cannot enter a segment until it has been
clezred Ty the provious row in “he sequence ‘Dongerra et el. 1986b). Another technique which
has been programmed for the hypercube by Chamberlain and Powell (1986) is to partition the
matrix into block rows and perform most of the reduction within each block in an
asynchronous fashion, communicating information between the blocks when required.
Dongarra et al. (1986b) discuss and compare three methods for QR decomposition, namely the
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use of the extended BLAS in LINPACK routines, the windowed Householder method which is
similar in philosophy to the wavefront methods discussed in Section 5.3, and the pipelined
Givens method. Parlett and Schreiber (1986) describe a block QR method suitable for

implementation on systolic arrays.

For sparse systems, variants of the distributed Choleski algorithm (George et al. 1986b) and
the pipelined Givens method (Heath and Sorensen 1986) can be developed as trivial extensions
of the algorithms for full systems. Multifrontal techniques are also proving popular, either with
automatic subdivision yielding small granularity (Duft 1986, Liu 1985), or using larger
granularity by generating a simple subdivision of an underlying region followed by use of the
frontal method on each region (Benner 1986, Geist private communication 1985, Berger et al.
1985). In general, partitioning methods can be used to split a matrix into subproblems (for
example, Duff er al. 1986) that can then be handled in parallel. A good splitting or tearing is
one which produces several approximately equal subproblems with only a few variables in the
tear set. Several algorithms have been proposed but we know of no extensive comparisons or
implementations on parallel architectures. Also there are unresolved stability problems when
this approach is used on general systems. There are several approaches available for sparse
systems arising from discretized partial differential equations but we defer discussion of these

until the next section.

We discussed a divide-and—conqﬁer technique for the symmetric tridiagonal eigenproblem in
Section 5.2. A Sturm sequence approach using multisectioning has also been proposed
(Barlow et al. 1983). Jacobi methods have made a comeback because of the ease with which
[n/2] sets of transformations can be performed in parallel (for example, Sameh 1971, Modi and
Pryce 1985, and Karp and Greenstadt 1986). Methods which only use the matrix in forming
matrix-vector products, such as simultaneous iteration or Lanczos methods, can exploit any
parallelism both in the matrix-vector product and in the solution of any small auxiliary
eigensystem. Although such methods are particularly useful for large sparse systems (see, for
example, Parlett 1980 and Cullum and Willoughby 1985), they have recently been
recommended for solving large dense eigenproblems when only a few eigenpairs are required
(Grimes et al. 1985). |

One research area in which many algorithms and much theory have been developed is the
implementation of numerical linear algebra algorithms on systolic architectures (see, for
example, Robert and Tchuente 1982, and Bentley and Kung 1983). Much work has been done
on algorithms for eigenvalues and the singular value decomposition, in addition to linear
equations (see, for example, Heller and Ipsen 1983, Kung 1984, Brent and Luk 1985, and
Brent et al. 1985). We have not, however, discussed this work nere, since we are unaware of
any commercially available systolic architecture computer and a main theme of our
presentation is the influence of readily available machines. The wavefront method mentioned

in Section 5.3 is, however, suitable for systolic architectures.
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7 Influence on partial differential equations

An obvious way of exploiting parallelism in the solution of partial differential equations is to
develop methods for the parallel solution of the resuiting discretized systems. Most iterative
methods, for example conjugate gradients, require one or more matrix-vector multiplications,
some scalar products, and some vector additions at each iteration. Although it is not trivial
(see, for example, the discussion of a parallel version of conjugate gradients by Meurant 1985
or Saad and Schultz 1985a), it is usually possible to obtain high levels of vectorization or
parallelism. For fast convergence, some form of preconditioning is normally required and it is
usually this part of the algorithm where parallel implementation is difficult. We discussed the
use of a truncated Neumann series by Van der Vorst (1982, 1986) in Section 5.6, and more
recently Meurant (1985) and Seager (1986) have discussed more general parallel

preconditionings.

We considered block and point SOR techniques in Section 5.3. Here parallelism can be
obtained through multicolourings of the underlying grid (Adams and Jordan 1984, Adams
1985, Schreiber and Tang 1982). Other splittings for exploitation of parallelism are possible,
for example the QIF method of Evans and Sojoodi—Haghighi (1982) or the multisplitting
techniques of O’Leary and White (1983). Chaotic relaxation (Chazan and Miranker 1969) has
also been tried on parallel architectures (Hiromoto, private communication 1985). Spectral
methods can make ready use of any efficient implementation of FFTs, and efficient use of both
vector and parallel architectures is possible (Ortega and Voigt 1985). Indeed the central role of
the FFT algorithm is clear from the fact that 111 references in the 1983 Bochum bibliography
were to methods for implementing vectorized or parallel version of FFTs (Swarztrauber 1986).
FACR techniques (Hockney and Jesshope 1981) also benefit from the parallel implementation
of FFTs.

Multigrid techniques have also been examined with a view to designing and implementing
algorithms on parallel architectures. Many approaches have been suggested including those of
Gannon and van Rosendale (1982) and Greenbaum (1985).

ADI methods have a quite natural form of parallelism when used in the solution of either
time-dependent problems or eliiptic problems. A technique for time-dependent problems
called windowing, akin to the wavefront method of Section 5.3, has been proposed for parallel
implementation (Saltz and Naik 1985). Here simultaneous computation is performed on
different time steps.

Cieany finite-eiement calculations admit ready parallelism both in independent computation
within each element (for example, Adams and Voigt 1984) and in the assembly process (Berger
et al. 1985). Domain decomposition techniques are becoming increasingly more refined and
give immediate parallelism for either finite-difference or finite-element discretizations (see, for
example, Glowinski et al. 1982 and Keyes and Gropp 1985).
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8 Influence on optimization

A central problem in numerical optimization is often the solution of a set of linear equations.
We discussed it in Section 6 and so will here consider other ways in which optimization

techniques can exploit parallelism.

An obvious area where divide-and-cohquer strategies can be used to good effect is that of
global optimization (Schnabel, private communication 1985). Other allied problems are
obtaining feasible points, and nonlinear minimax problems (Schnabel 1984 and Lootsma
1984).

Two ways in which many optimization techniqués can benefit from parallelism are within the
function evaluations themselves (for example, these might involve the solution of partial
differential equations), and in the parallel evaluation of difference ‘approximations to
gradients, where, for example, the necessary function evaluations could be computed on
separate processors and gains could be achieved if these evaluations were expensive (thus
keeping the granularity large). Such parallelism could also be’exploited in the sparse case
although there many less evaluations would be required.

Recently, methods based on holding and updating a set of conjugate directions (Powell
1964) have been proposed in a parallel context (Han 1986) where independent line searches
along each direction can be conducted in parallel and can be used effectively to compute a new
estimate of the solution. Indeed, a line search itself can be implemented using parallel
multisection techniques although there are few instances when sufficient accuracy is required
to merit such a thorough search.

A natural candidate for parallel exploitation is that of partial separability (Griewank and
Toint 1984). Obviously, full separability is embarrassingly parallel and the more separable a
problem is, the more amenable it is to parallel techniques.

Dixon (1985) discusses the use of optimization techniques in the solution of partial
differential equations. He proposes exploiting the parallel nature of finite elements so that the
parallelism then lies with the differential equation rather than the optimization technique. It is

an example of parallel function evaluation.

Often the mintmum values of several functions

F(x, p)

are required for a range of the parameter p. Sometimes individual problems in this parametric
family can be solved independently; at other times the dependence may not be total. In both
cases. parallelism can be exploited.

Finally, there are many problems in combinatorial optimization which are amenable to
parallelism, “many of them using branch-and-bound techniques, for example the
travelling-salesman problem, and the knapsack problem. A good review of this area is given by
Kindervater and Lenstra (1985) so we will not discuss it further here.



9 Conclusions

We hope that we have illustrated the wide and strong influence that parallel computers are
having on numerical analysis. We have chosen some particular algorithmic paradigms and
particular areas in numerical analysis but make no claims that these are exhaustive. Indeed
parallel algorithms have been proposed for quadrature, the solution of ordinary differential
equations, and approximation problems, although their influence has been much less strong
than in the areas discussed in Sections 6 to 8.

When polling several colleagues for suggestions on the theme of this paper, more than one
suggested that by far the most important influence of parallelism on numerical analysis is that it
is difficult to get funding without mentioning it in a proposal. The effect of this is somewhat
two-edged. It does indeed mean that there is an increased amount of research on parallel
algorithms and some of it is good, but it also means that much inferior work is supported and
many poor reports distributed. Such is the danger of the bandwagon.

It seems appropriate, when discussing the current state of the art, to stick one’s neck out and
make some comments on likely future trends. A major problem with the flurry of new and
perhaps poorly-tested ideas is that it soon becomes very difficult to see the wood for the trees.
Few comparisons have been conducted between competing methods. For example, Karp and
Greenstadt (1986) have suggested that even well implemented versions of parallel Jacobi
methods will be inferior to an optimized QR algorithm on almost all architectures, even for
near-diagonal matrices. This somewhat contentious claim warrants further investigation.
Indeed I suspect that there will be much more work in the future aimed at weeding out the less
~ successful suggestions for parallel algorithms (on any architecture) in a similar way to the
demise of recursive doubling on vector machines. Further consolidation should result in the
equivalence or near equivalence of suggested approaches, such as the WZ algorithm and 2 x 2
block elimination. Another exciting trend could well arise from the development of methods
like that of cellular automata for solving partial differential equations that we mentioned in
Section 5.7. Here essentially non-numerical algorithms can be used to solve numerical
problems. Additionally these methods require high degrees of parallelism for efficient
implementation.

Finally, perhaps the real crunch question will be answered in the next ten years. That is, can
high levels of architectural parallelism be used in the solution of real problems. We live in
hope.
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