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ABSTRACT

We introduce the cornbinatorial matrix of a code, the notion of r-partition-
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RESUME

Nous introduisons la matrice combinatoire d'un code et la notion de
configuration de 7-partition. En utilisant ces notions nous donnons une
caracterisation des codes totalement reguliers et une interpretation com-
binatoire du fait que la matrice des distances d'un code non-lineaire com-

porte le plus petit nombre possible de lignes distinctes.

Keywords : Codes, association schemes, completely regular codes, coherent

partitions.

INTRODUCTION

In this paper we introduce the combinatorial matrix of a code, the notion
of r-partition-design and we relate these notions to fundamental concepts of

coding theory.

Section 1. gives a combinatorial interpretation of the matrix S = (ag;)
giving the basis {P](z)} in terms of {P;(z)} the basis of the ring of polynomi-
als over the finite field F = GF(q) formed by the Krawtchouk polynomials
Pj(x). The element ay; is the number of paths of length j joining two vectors
of the Hamming space #™ at distance i apart. We then give a recurrence rela-
tion and the exponential generating function for these numbers Q5

In section 2. we introduce the combinatorial matrix 4 = (4(z.j)) of a
code C:4(z.j) is the number of paths of length j joining z €™ to the code C.
This matrix A is related to the distance matrix B[2] by the relation 4 = BS
and the sequence of columns of A4 satisfy a recurrence of minimum order
s'+ 1 if and only if s’ is the external distance of C. Moreover the characteris-
tic polynomial of this mimimum order recurrence admits as zeroes
P,(l) =n(q -1} — qll being the dual distances of C. The preceding are exten-
sions to non-linear codes of notions and results already obtained in [4], [5]
and [14].

In section 3. we start the study of r-partition-designs (called coherent
partitions by Higman [15]) which are partitions I1 = {C,,C;, . . ., G, } of F™ into
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r + 1 classes such that for any z€C, the number gy, of elements of C, at dis-
tance one from z is independant of the choice of z in C,. A code C is said to
admit the partition T if C is the union of some classes C,. Perfect, uniformly -
packed and more generally completely regular codes are then characterized
in terms of r-partition-designs. For example we prove the following result :
Let C be a code with covering radius p. Then C is completely regular if and
-only if C admits a r-partition-design for r = p. Moreover p = s' the external
distance of C and the eigenvalues of the associated matrix o = (0yy) are
Pil)=n(g—1) —ql for le{0.d’'y, ... ,d's:} whered'y,. . ..d’s are the dual dis-

tances of C.

In general, if C admits a r-partition-design, then r=s'. The case r =s' is
characterized as follows : C admits a s’-partition-desigii'if and only if the
number of distinct rows in the distance matrix is s’ + 1. This is an analogue of
theorem 6.11 of [1] in the non linear case. On the other hand in the linear
case, we may apply theorem 6.10 and 6.11 of [1] to obtain the result : the
linear code C admits a s'-partition-design Il = {C4,C4, . . ., G5} if and only if
the partition 1 of the quotient group C' = IF*/ C defines an association
scheme over C' (called the coset scheme determined by II) if and only if the
restriction to € of the Hamming scheme is a subscheme. The P-matrix of the
coset scheme has been determined by A. Montpetit in-terms of the s’-
partition-design 1 : it is the left eigenmatrix of the matrix o associated to I
Finally in section 4. we give numerous examples of codes admitting r-
partition-design for 7 = s' and an example where there doesn’t exist such a

s'-partition-design.

i.- PATHS IN HAMMING SPACE
Let F'=GF(q) be the field with ¢ elements, ¢ a prime power and

H(n.q) the Hamrhing space of dimer:ision n over F that is the n-dimensional
vector space F™ over F equipped with Hamming distance d defined by
d{x,y)= number of components in which the n-vectors z and y differ.
H(n.q) is a metric association scheme and we refer to [1,2] for all notions
and results on association schemes that will be needed in the following.

Definition 1.1 A path of length j joining z to y’ in F™* is a sequence
Z(0)=T,Z (). Z(;)=Y of points in F™ such that d(Z(-1)ZTk))=1 for k=1,...5.
The Hamming distance between z and y is the length of the shortest path

joining £ to y .
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The i~th adjacency matrix D; is the g"xq™ matrix with rows and

columns indexed by #™ defined by

it d(zy)=i
D,-(x,y)—{o oth.eru%se.

Since §{D,=/,D,.....D,} is a basis of the Bose-Mesner algebra of H(n,q), we

have
. n
D=3 oDy , (1)
=0
for uniquely defined complex numbers ay;.

If z y&«F™ are such that d(z,y)=i, then for j=0 we have D{ (z,y)=a;;. So
a;; is the number of paths of length j joining two points 2 and y at distance i
apart and this number does not depend on the particular choice of z and y

but only on the distance i between them.

Let S=(ay;) be the nx~ non-negative integer matrix with a;; in position

(i.7).

Proposition 1.2

a) If i>7, then a4;=0. So S is a nx upper triangular matrix.

b) If i<j, then i! divides Ay
Proof : a) is evident. To prove b), remark that one passes from one element to
the following in a path in F™ by modifying one and only one component of a
p-vector. If d(z,y)=1, then thereis exactly i! paths of length i joining z to y.
So ay=1!. Moreover, any path of length j joining  to y must contain one and
only one of these i! minimal paths. Since these last paths play completely
symmetric roles, the number of length j paths containing a given minimal

path must be a constant a independant of the chosen minimal path. Hence
O‘ij =ai!.

Remark 1.3 1f P;(l). l=0,..,n are the eigenvalues of I);,i=0,...,n, then by (1)

X n
Pi(l)=Y ay; P;(L) for j=0. (2)
i=0
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Since the Hamming scheme H(n.g) is P-polynomial with respect to the
class of Krawtchouk polynomials we may suppose that in (2) F(l) is the
evaluation on ! of the i—th Krawtchouk polynomial which shall be d'enoted by
the same letter F;. If P is the Krawtchouk matrix containing in position (l,%)

the number P;(L). we may express equation (2) in matrix form as follows.

Proposition 1.4 S=g ™ PV where the matrix V having in position (L,j) the

number P{' (1) is an infinite Vandermonde matrix.

Remark 1.5 Definition of matrix S, proposition 1.2 a) and equation (2) hold in
any metric scheme (X,F). In this general case the matrix equality in proposi-
tion 1.4 should be read S=|X|~1QV with PQ=QP=|X|I where in the eigenma-
trix P the Krawtchouk polynormials are replaced by another convenient class
of orthogonal polynomials ¢;{z). In the case of Hamming scheme, we have
@=P. Many of the following results may be extended to arbritrary metric

schemes.

Using the order two recurrence satisfied by Krawtchouk polynomials
written in the form
PP )=+ 1) Pj (L) +(g—R)jP; (L) +(g —1)(n —j +1) Pj (1) (3)
we deduce from (2) the linear recurrence

In matrix form, this gives
Sj+1=MS;

where S;=[ag;.....0n;}7 is the j—th column of S$(Sy=[1,0,..,0]7) and M is the

following tridiagonal (n+1)x(n +1) matrix :

[0 n(g—1) 0 0
PRI ST -
M: ) q ..n.2(q_1) 6 (5)
: : "(n-1)(g—2) (%-1)
0 - 0 n n{q-2)

So 5; =M7 Sy is the first column of M7 and we note that the eigenvalues of
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M are P,(0)=n(g-1)....Pi(l)=n(q¢—1)-lg....Pi(n) and the associated eigen-
vectors are the corresponding columns in the Krawtchouk matrix P because

the recurrence {(3) may be written in matrix form as PM=AP which gives
P MP7'=A

where A = diag | P,(0),....Py(l),....Py(n)}.

Proposition 1.6 $=[M%S,,MS,....M7S,...] where M the matrix given by (5)

have P,(l)=n(g—-1)—ql .l =0,..n as eigenvalues.

Remark 1.7 In the general case of a metric scheme we obtain a similar result
by using in place of (3) the order two recurrence satisfied by orthogonal poly-

nomials $;(z) which are associated to the scheme [1].

We may aiso look at the numbers a;; in matrix S by means of
exponential generating functions. Here is the result.

Proposition 1.8

j i -
DI Z_=q'n e(q—l)Z___e—Z] [e(q_l)z“'(q—l)e_zlﬂ 4=0,..,n (6)

Proof : Let z and y be given in F™ such that d{(z,y)=i and let

y=supp(z—y =ik |z, —y, #0} be Lthe support o
a,, = number of paths of length m joining two points at distance 1 apart

obtained by modifying only the component where they differ (this component
being in ),

b,, = number of cycles of length m starting from a given point and

obtained by modifying only one component (exterior to v),_.

€, = number of paths of length m joining the two points z and y (hence

Cm =%, ) and the associated exponential generating functions

(2)= ¥, am 2o b(2)= 5] b 2o and c(2)= 5 aum 2o
a = Qpy, ——0(4)= —= and ¢ = Oy —
. m“ao ™ m! m=0 ™ m! mz20 o m!

Interpreting, as usual, the product of two exponential generating
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functions [3] as a kind of shuffle product, we may write

. ) j
¢ (2)=(a(2))(b(2)" =T ayy 2
: j=0 J
and itA remains to determine a(Z) and b(Z). Remark that

e,,=(q—2)a,, ., +b,, ., and b, =(g—-1)a,,_, with @,=0,8,=1,b,=1,b,=0, so that
we have the recurrence a,, —(q -2)a,, _,—(q—1)a,,_»=0,a,=0,a,=1 which gives

in terms of generating functions the differential equation'

a"(2)—(q—2)a'(Z)~(g-1)a(Z)=0

with initial conditions @ (0)=0,a’(0)=1. The solution of this problem is

(g-1)Z _,-2
a Z)z_e_"_Tg_

By integration, we deduce from b'(Z)=(qg—1)a(Z2)

e@-DZ4(g—-1)e~?

5(2) = p

since b(0)=1.

This completes the proof of proposition 1.8.

Remark 1.9 The preceding is a combinatorial proof. We may give a shorter
algebraic proof by using the generating function of Krawtchouk polynomials

P, (1) and proposition 1.4.

The generating function of polynemials P, (1) is

(X=V)(X+Hg-1) V"= 5 Py (i)xnky*

o<k sn
Setting X=e@YZ and Y=e~Z in this relation gives

(e(q—l)Z__e ~Z)1:(e(q—1)Z+(q _l)e—Z)n-—iz E B (i)e(q—l)Z(n--k)—Zk
osk=n .

= Y P(@)e?®) with Py(k)=n(q-1)—gk

osksn
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ZP(k))? . j
- 3 re g vl s papiw)|Z
osksn J=0 J: j=0 Ioslc <n J!
:q"z:a,-jz,)'—
j=0 J:

by proposition 1.4.

2. - THE COMBINATORIAL MATRIX OF A CODE
Let CC#F™ be an unrestricted code of length n over £'.

Definition 2.1 For any z€F™, let 4;(z) be the number of paths of length j join- .
ing z to an element of £ The combinatorial matrix of F™ with respect to C is

then the g"x« matrix 4 whose element in position (z,j) is
A(z.7)=4;(z).

If B;(z) is the number of elements of C at distance % apart from z, then the
distance matrix of F™ with respect to C [2] is the (g™x(n +1)) matrix B whose
element in position (z,1) is

Bz .i)=B{z).
By the very definition of the numbers in question we have
‘E‘
Aj(z)= ) ay; Bi(z) (7)
1=0
giving in matrix form the following equality.

Proposition 22 A=8S

As a consequence of proposition 1.8 and 2.2 we also have the following pro-

perty generahzing theorem 3.3 of [4].

Proposition 2.3

" % Aj(ac)%= $ a@) 72 e@07rg-nes[ T (@)
720 © =0
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Remark This resuit combined with proposiﬂion 1.4 may be viewed a% general-
ized Pless identities. The classical Pless identities [6] are obtained when the
code C islinear and z =0 in the formula. This is because, on the one hand

n ) . .
qrAi(z)=Y L,.—{(e @-1Z _¢-2)i(e@-1Z4(g—1)e ‘Z)""‘]Z=OB,-(.1: )
i=c 427
and on the'other hand, by proposition 2.2 and 1.4,

wmxm=imﬁﬁﬂ=%l§nuvww@u)
1=0 t= =

=9 B, (z)[n(g-1)-ql )

i=0

Proposition 2.4 Let C be an unrestricted code in F™. Then the following two

conditions are equivalent.
(i) s’ is the external distance of C

(ii) s' is the minimum of the natural numbers ¢ for which there
exists a linear recurrence of order £ +1

t+1
2 chj+m(.’r)=O, ZEW
i=0

where ¢g.¢4,...,C¢ 4y are integers with ¢;,,#0.

Moreover. the recurrence of minimum order s'+1 with ¢;,;=1 is unique and

the coeflicients ¢; are determined by

s+1 .
2 c;Z=T1(Z=P(l)), J={0.d'y,...d"}
j=0 leJ )

where d’y,....d's. are the dual distances of C.

 Proof : We shall work in the group algebra ﬁ[l""] of ™ over the complex

numbers and use the polynomial notation

a= Y a,7% a,ef
zEF

to represent an element acf[Fm].
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Remark that, if C=3, 29 and Y,= ¥ Z" thenin ¢[#™] we have
gec wi(h)=1

cYi= Y, Aj(z)z* (7)
zcF™

This is because, by definition of convolution product,

e = zza][ 5 zh]';z' % 1]2*
gecC w(h)=1 zei"‘[z=g+h,+..,+h,

where in the Jast sum g€C and W(h,)=1,..,W(h;)=1, and the fact that
Aj(z)=cardi(g.hy, ... hj)|lz=g+h +. . +h; g€C W(h,)="-" =W(h;)=1}

Now we shall prove that if there exists a linear recurrence of order t+1

t+1 . .
216 Ajem (2)=0, z€F™ m=0 (8)
o
then
t+1 )
2 [P()) =0 (9)
j=0
forlefod',.. .. ,d'g{.d"y,....d's being the dual distances of C.

From (8) and by (7) we may write

3 [:+1chj(x)]Z’=0
0

zef™

t+1 )
2, ¢;(Cr{)=0
=0

t+1 N

Ecjn]=o in £ (10)
i=0

Now, by theorem 7 p. 139 of [7], for all | such that (=0 or
l=d’; i=1,..s’, there exists w€F™ such that X, (C)#0 and w(u)=l where X, is

the character associated with . For such an u, we have

X [tt‘ln- .lz(\
Hul(: £y 1J g
7=0
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ie

Tl rof=o.
=

i=0

t+1
Hence the polynomial ¢(Z)= }] ¢; Z? is divisible by
i=o

P(2)=[1(Z~Py(1)). J={0.d",,... .d's}and s'st.
€

Finally we shall exhibit a linear recurrence of order s'+1. Take the
¥
annihilator polynomial 5(Z)=Z‘H1(Z-d 's) (up to a factor) decompose it in the
i=
basis {P9(Z).P(2)....P{(Z)...}

B(2)="5"¢,P{(2)
j=0

and note that in Lhe group algebra ¢[F"]

[ Y Yi|=0
becausel character Xy either X, (C)=0 or in case
wu)=d';i=1..5s"X, [Lc Yil= zoc,.{)q‘(yl)r;"z*;cjp{(d'i)=ﬁ(d’t—)=o
= .

Hence for all m=0
si+1 )
YT C1 Y c; Yij=0
i=0
i.e

s'+1 .
2 c; CYPHI=0
=0
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and by (7)
s+l |
j=0 zef™
i.e
ls’H
2 IZ chJ+m(x) Z* = 0.
zef"|j=0C
This gives the recurrence
s'+1

Z chj+m(z) =0.
=0
To show how the preceding are generalization of notions introduced in
[4,5], we specialize to the particular case where the code C is linear.

Proposition 2.5 l,et CCF™ be a (n,n—k) linear code with parity check matrix
H and let QcF* be the ordered set of columns (supposed distinct) of H.

If ze F™ and h=Hz is the syndrome of z, then 4,(z )=card éj(z) where
E;(Z)z{(hl ..... h’j')\l' N .)\]) |h=)\1h1+...+)\jhj.MEF,hiEQ,?:zl ..... ]]

Proof :

the set of paths of length 7 joining z to the code C.
Define p: @,-(I) ————— > Ej(x) by

p‘[(x,x(l), oz fEthy, hj A, A )
where h=Hz=H{(z—x(l))+(z(1)—x(2))+...+(::(j_,)—,x(j))]

=A:h:+A2h2+ e +)\Jh]
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This mapping p is well defined because w(z;_;)~Z(;))=1. In fact, the value
of the non-zero component of z(;_1)—Z(;) gives A; and its index gives the index
of h; in Q.

It is clear that p is onto. It is one-to-one because we have supposed the

columns of H distinct. The inverse ¥ of p is defined by
\[’[(h‘,,h:’ 'Al' v .A,) =(x,x(l), .o ,z(j))

where z(y).....2(,) are determined as follows :
Z(1)=x —A;e;, where 1 is the unique index such that f; =h,.

This gives Hz(;)=Azha+..+A;jh;. We then repeat the argument to obtain

.‘t(z), .. ,.‘B(j). Final]y Hx(j)=0 and Z(j)GC.
3. - r-PARTITION DESIGNS

Definition 3.1 A rpartition-design of the Hamming scheme H(n.,q) is a parti-
tion of F™ into r+1 classes C4.Cy, . . . . (. such that for any z€(, the number
ouy of elements in C, at distance one from z is independant of the choice of

z in its class €.

We shall say that a code C admits the r-partition-design {Cq.Cy. ..., (.}
if C=yiC, |lves|,Jcl0,1....7{. (We shall also say that the partition-design con-

tains the code ().

Remark 3.2 1f {Cy.Cy. . . ., Gy} is a r-partition design, then for all v v €{0,...,r}
(card C,)oy,=(card C,)o,, =card{(zy)eC,xC,|d(z.y)=1}.
In matrix form this gives,

o"=KoK™' where K=diag{card C,,...card C,}.

Remark 3.3 Let C be a (n,n~—k)-linear code admitting a r —partition-design
C,.Cy.....C, with associated matrix ¢=(0y,) such that each C, is an union of
cosets of C. If QCF¥* is the set of columns (supposed distinct) of a parity
check matrix A for the code C, define the sets Q,=0,Q,, ...,Q, as follows:



..14,.

0,={Hz|zeC,}, Osusr

that is ), is the set of syndromes of elements in (, .

The set {Q4.Q,.....0,{ is a partition of F* because rank H=k and
0, N2, #0 implies Q, =0, (he€Qy, NQ,==>h=Hx=Hy for z€C,,
yeC,==>xey+C==>z€C,==>C,=(,.)

Then we have the following interpretation of the numbers o,,, :

for u,v€{0,1,...7} and a €0,
Ty =card (b h)eQ,XF Q|a=b+h]. (11)

This is because, if é ={yeC, |d(z.y)=1] for =ze€C, and
D ={(b.h)eQ, xF* Qla=b+h} for a €0, . then ¢ : y —(Hy H(z —y)) is a bijec-

tion of 2 onto.@,

We note that Q is the union of some Q, because if Q, NQ#0 then g,,#0

which implies that 0, <.

Conversely, if (33=0,Q;,....(, 1s a partition of F* satisfying (11) where
0= 0, . then we may define the r-partiton design {C;.C;, . ,C.1 by

H . - e e

This is a slightly more general definition of r-partition design than the
one given in [4] for the case of linear codes. Note also that a 2-partition
design is a partial difference set with two parameters [8]. So we may consider

r-partition-design as some kind of generalized difference sets.

,
Remark 3.4 ¥For any ©=0,...,r, Y} 0., =7n(g—1). Hence n(g—1) is an eigenvalue
v=0

of o.
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Remark 3.5 Let C be any code in #™. Then C always admits the trivial
r —partition design C4.Cy, ..., G, where r=q" -1, the classes C; consisting of

only one element. In this case 0=D,.

Remark 3.6 Let p be the covering radius of C and C, ... ,Ep be the classes
defined by

Ci={zef™|d(z2,C)=1}, i =0,.,p
If {Co.Cy... .C,} is a r—partition design containing C , then

E¢=chu i Cu l’\.éi,#o;- 1=0,...,p.

This is proved by induction on i. Hence p<r. Naturally the extremal case

r=p is expected to show interesting cornbinatorial structures.
Remark 3.7 Censider the partition Co=C,Cy, ...,C, where the code C is e-

error-correcting with covering radius p. Let o(z)=(0;;(z)).z€f™, be the

matrix defined by

(z)= cardl¥€C; | d(zy)=1}if z€C
U\T)= 1 0 otherwise.

Then we have
1/ oy(2)=0 for |i—j|=2
2/ 0y;.4(z)=1 forzel and 1<i<e

3/ o0,:(z)=i(g-2) for z€(; and Osi<e -1

4/ i‘aij(x)zn(q—l) forzedC; .
j=o

Hence for all 1,5 such that |1—j |22, O<i<e —1 and for i=e,j=e -1 the
numbers 0;;(z) are independant of the choice of z into the class ; . From

this we deduce the following results.
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Proposition 3.8 Let C be an e-error-correcting code over FF. Then C is per-
fect if and only if C admits an e-partition design. Moreover this e-partition

design is unique.

Proposition 3.9 Let C be an e-error-correcting quasi-perfect code over .
Then

C is (A,u)-uniformly packed code [9] if and only if C admits an (e+1)-
partition design. Moreover this (e+1)-partition design is unique and

Ope=(e +1)A+e(g—2), Opuyo=(e+1)u.

Example 3.10 If & is a subgroup of the group of Hamming isometries of /™
and if Cq,C).....C, are its orbits, then {Cg,Cy.....C,.{ is a r —partition design.

We now give sorne general results that show the interest of the combina-

torial matrix 4.

Proprosition 3.11 Let CCF™ be an unrestricted code of length n over the
alphabet F. If C admits a r-partition design {Cy C,...;;€,{ with associated
matrix o=(ag,,), then '

a) for all z,y(—?Cu, A] (.'r)=AJ(y)=AJ(u), ij

b) the numbers 4;(u)u€{0,...,7{,j20 satisfy the linear recurrence of

order r

Aj(u)= Zi)oawAj_l(v), (11)

¢) the number of distinct rows in the distance matrix B and in the

combinatorial matrix 4 is less than or equal to r+1,
d) the external distance s' of C is less than or equal to r.

Proof (by induction on j). Let C={C, |veJ},JCi0.1,...7). If z&C, vel/. then
Ao(z)=1 and if zECv,vffJ, then 44(z)=0.

Now suppose thati for m=j~—1 the numbers 4,, (¥ )=4,,{v) only depends on
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the class (, to which y belongs and let z€(,,.

For any path ¥ of length j joining z to C, there exists one and only one v
such that 7 is obtained by concatenation of a path of length one joining z to
vy €C, and a path of length j—1 joining y to C. Since the number Oyy of length
1 paths joining ¢ to C, does not depend on the chosen z in C, and that, by
induction hypothesis, the number Aj_l(‘u) of paths of length j—1 joining ¥ to
C does not depend on ¥y, we deduce that 4,;(z) does not depend on the chosen

z in (, and moreover that
,
- - Aj (x)zAj (u)= E auvAj-1(v) ______
v=0

. This proves a) and b). Finally, condition a) means that the combinatorial
matrix 4 has at most r+1 distinct rows. Proposition 2.2 then implies that the
distance matrix A has also at most »+1 distinct rows proving part ¢). Part d)

of the proposition is then an immediate consequence of theorem 3.1 of [2].

Corollary 3.12 Let © be an unrestricted code in F™ with external distance

s', d'y,.. ,d’g being the dual distances.

If C admits a s’-partition-design with associated matrix o, then the
eigenvalues of o are .?;(l) for 1 €{0,d"y,....d 5.
Proof : First note that (11) may be written in matrix form
A] =0’Aj__1, le
with initial vector 44 defined by

_1 i GcC
Aolu)= [O otherwise

This gives 4;=074;, and
A=[Ao,0Ao, Ce . ,O’jAo,...]

where 4 is the restricted combinatorial matrix obtained from 4 by taking the
s'+1 rows A(u), u=0,.,s"

Since A=HS by proposition 2.2, the rank of 4 is equal to the rank of B
which is equal to s'+1 by [2,th.3.1]. Hence there exists a unique monic
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s'+1 .
polynomial of degree s'+1 p(Z)= 3] p; Z? such that
Jj=0

s'+1 )
P (U)A0= E ijJA0=0.
j=0
Multiplying by o™ mw=o this yields

s'+1 .
2P0’ ™M A=0
i=0

and

s+

2 PjAjem=0.
7=0

The conclusion of corollary is then obtained by applying proposition 2.4.

Remark 3.13 This corollary yields strong necessary conditions for the
existence of s'-partition-design containing a code of external distance s’. The
characteristic polynomial of ¢ may replace Lloyd polynomial to obtain non-
existence theorem concerning particular classes of codes for example perfect
codes. uniformly packed codes etc. [10,11,12]. This is because the parameter
e (and A, u in case of uniformly packed codes) completly determines the

matrix o for these classes of codes.

Proposition 3,14

external distance of C. Then the three following conditions are equivalent.

ot
%

=

CHFT ho an iinroctri
- ce an nresuy

(e
®
5
o
0
%
)
3
-y
3
3
o
Ly

" be
(i) € admits a s'-partition design

(ii) The number of distinct rows in the distance matrix B is s'+1.

(iii) The number of distinct rows in the combinatorial matrix 4 is s'+1.

Moreover if it exists the s'-partition design containing C is unique.

Proof Proposition 3.11 and the fact that rank B=s'+1 [2] prove the implica-
tion (i) => (ii). Moreover (ii) <==> (iii) by proposition 2.2.
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To prove the converse, consider the equivalence relation on F™ defined

by

z=z'if and only if the rows B(z) and B(z') of B are equals and denote by
Co.Cy.....Cs: the equivalence classes of this relation. By proposition 2.2, we
may also say that z,z'€C, if and only if 4;(2)=4;(z ")=A4;(w) for all 520.

For ze(C, and v€{0,1,....s'], set

Ouy (Z)=cardiy €C, |d(zy)=1}

Then we have that for all j=1 and z€C,

s’
Aj(2)= Y Oyy (z)4;-1(v).
v=0
Now, if z'€C,,. this gives
) ) s; s’
Aj(z)zAj (z’)=‘4j (u)= Z Ouy (x)Aj—l(v)z 2 Ouy (x ')Aj-l(”)
* v=0 v=0

That is

¥ [ow (@) 0w (=) (v)=0, j=1.

v=0

Since rank 4 = rank B =s'+1. we conclude that
Oy (T) =0y, (2')=0 for all z,z'€Cy

and v€{0.1...,s'{. Hence {C,.C,.....C,} is a s'-partition design. If C is distance-
invariant then C will be one of the classes C,, otherwise it will be the union of

some classes C,. Finally this s'-partition design is unique By proposition 3.11.

Corollary 3.15 Let C be a code with covering radius p. Then C is completely
regular if and only if € admits a »-partition-design for r = p. Moreover
p=s' and the eigenvalues of the associated matrix o are Pi(l) for
lef0,d'y, ... .d';} where Pi(z) =n(g-1) —qz is the degree one Krawtchouk

polynomial of parameter n and d’,, . . .,d’;. are the dual distances of C.

In the particular case where the code C is additive we may use theorems
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6.10 and 6.11 of {1] to obtain the following results.

Proposition 3.16 Lei CCF™ be a additive code and s’ be the number of non-

zero weights of the dual C~ of C. Then the following conditions are equivalent.
(i) C admits a s’partition-design n={Co.C,y.. ..C'}.

(ii) The partition m={Co,Cy,. .| of the quotiept group C'=F™/ C defines

an association scheme over (' '
(iii) The restriction to €~ of the Hamming scheme ‘H(n,q) is a subscheme.

The association scheme (ii) whose relations R’; are well defined by

(z+C)R';(y+C)

if and only if
T—yel;

because, by definition, (; is an union of cosets of C, is called the coset

The P-matrix of the coset scheme has been determined by A Montpetit
[13].

Let P, be the left eigenmatrix of 0 whose row number 1 is the vector v

with first component 1 such that
vy 0=P(d’ )y Osiss’.

Proposition 3.17 {13]

the coset association scheme is P, the lell eigenmatrix
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4. - EXAMPLES

We shall give the matrices ¢ and P, for perfect codes, some uniformly

packed codes and some other codes not of these types.
4.1. - Perfect codes

4.1.1. - One-error-correcting perfect codes

If C is a perfect one-error-correcting q-ary code of length n, then by
proposition 3.8 there exists a 1-partition-design {Co=C.C,} in FZ with associ-

ated matrix

ll n(q 1) 1]
By remark 3 2
[Ci1=0101 Cy1=00,]Col=n(g-1)|C]|
where [X|= card X denotes the cardinality of X. Hence
qn=Col+|Cyl=]C|[14n(g-1)]

so that n=(g™-1)/(g~1) and |C|=¢™™™ for some natural number m. The

dual distances are by coroilary 3.12
d',=[n{g-1)—n(g-1)]/g=0 and d',=|n(q—1)-(-1)]/ g=q™"!

because the eigenvalues of o are n(g—1) and -1. Thus the matrices o and P,

for one-error-correcting codes over [y are
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|
o=1° qm-1

[
-1 ¢q™—1
1 gm_2 and Pf"’l -1 ]

4.1.2. - Golay code of iength n=11

The parameters are e =2,g =3. So matrices 0 and P, are

lo 22 0o [1 22 220
o=|1 1 20| and P,=|1 4 -5
0 2 20 1 -5 4

the eigenvalues of ¢ being P,;(0)=n(q-1)=22,Pi(d'y)=n(g—-1)-gd';=4 and
P,(d';)=n(q-1)—qd's=~5 from which we deduce the two non-zero weights of
the orthogonal . d’y=6 and d'3=9.

4.1.3. - Golay code of iength n =23

The parameters are e =3, ¢ =2. So matrices o and P, are

o 23 202 0 [1 23 2533 17271
_|t o 0 1 7 13 -21
o=lp 2 0 2112MPe=l 1 o1 11 11

0.0 3 20) 1 -9 20 -21]

the eigenvalues of o being P;(0)=n(q-1)=23, P,(d'y)=n(q-1)—qd’ =7,
Pi(d';)=-1 and P,(d’'3)=—9 from which we deduce the three non-zero weights
of the orthogonal : d 1=8,d';=12,d'3=186. '

4.2 - Some uniformiy packed codes

4.2.1. - BCH 2-error-correcting code of length n=22m+!1_1,

Here we have a (A u)-uniformly packed code .with )\=n—6_—7— and

,u,=)\+1=2'—gl. The matrices v and P, are
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0 22m*iy 0 0
|1 0 22m+l_o
9Slo 2 22m _4 22m 4y

0 0 22m_1 22m

' 22m+1_1 (22m__1)(22m+1_1) (22m+1)(22m+1_1)

1

1o2mrig (2m—1)2 ~(2%m 41
and Po=[ ;% -'(22'"-)1) (22"'-1 )

b—(@mi) (2m+1)2 ~(22m +1)

the eigenvalues of ¢ being P(0)=22m*+1-1 P (d';)=2™m*1~1,P (d'p)=~1 and
Pi(d'3)=—(Rm*1+1) _from which we deduce the three non zero weights of the -
orthogonal : d*;=2%m ~2™ d',=23M and d'5=22Mm+2™

4.2.2. - Golay code of length 24

It is the only (Au)-uniformly packed 3-error-correcting code {12]. The
parameters are e =3, ¢ =2, A=0,u=6.

The matrices o and P, are

[ 1 24 276 2024 1771

1 8 20 -8 -21
P,=|1 0 -12 o0 11
1 -8 20 8 -21

1 —24 276 —-2024 1771

the eigenvalues being £(0)=24,P,(d’'1)=8,P(d'3)=0,P(d'3)=~8,P,(d",)=—24
from which we deduce the four non-zero weights of the orthogonal
d'1=8.d'>,=12,d'3=16.d'4,=24.

4.2.3. - Preparata codes of length n=22m—1 m2>2.
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These are binary 2-error-correcting non-linear (A,u)-uniformly packed

codes with A= -:1-3-[22"‘ —4] and ,u,=—:13—[22"‘—1 ]. The matrices ¢ and P, are

0 22m_ 0 o
o=l 1 0 22m-20
0 2 s2mog 1

’ 0 0 22”&..1 0

[ . 22m__1 ( 22m_1)(22m—1_1) 22"‘"—1

b
P.= 1 2m-1 —(2™-1) -1
N -1 _( 22m-1__,1) 22m-—.!_1
1 —(2m+1) 2m 41 -1
The eigenvalues of o are P,(0)=2%™, P,(d')=2™-1, P(d'3)=-1,

Pi(d'3)=—(2™+1), so that the dual distances are d'y=2Mm~1(2™ -1) d’',=22m~1
and d’3=2™m"1 (2™ +1).
4.2.4. - Van Lint code of length n=11 [12]

This is a binary non-linear 2-error-correcting (A.u)-uniformily packed
code with A=2 and ©=3. The matrices ¢ and P, are

1011 0 O
a_ll 0 10 0
'[o 2 6 3
00 9 2
[ 1 11 55 55/3
o 1 -1 -5 5
1 -5 7 -3

The eigenvalues of o are P{(0)=11, P,(d',)=3, P,(d';)=—1 and P,(d';)=-5. So
the non-zero dual distances are d’;=4,d';=6,d'3=8.
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4.3 - Some non-uniformly packed codes admitting s'-partition-design
We shall use remark 3.3 to define a s’-partition desigﬁ of F® by means of
subset ,=0.0,Q,. . . ., Q,', of F*. ‘
4.3.1. -
Set

lo 1100 fo i1
eele) =Rate] el

f11000
C= Ker H where H =|01101]| ie. OQ=0,Q,
00110
Wehavehere

o410 1 4 1 2
1112 |t 0 1 -2
o= 1400-Pa‘l1 0 -1 0
0401 1 -4 1 2

"and the eigenvalueé of ¢ are 5+1,-1.-3 that is n(g~1)-qu; for
n=5,4=2,w;%{0,2,3,4{, the w; being the weights of C: -

432 -
Set
lo 1100101 11 - .lo1i010 foi
_lo _loi1001 I _|100101 ot} ~_ . _
Q=g 'Ql“loiono -92“11 23011001 '94‘101 C=Co=Ker{l,.
0 010101 1 010110 10

We have here



foso000 1 6 1 6 2
10140 1 2. 1 -2 =2
0=/ 06000, P,=|1 0O -1 0 O
04002 121 -2 2
00060 1 6 1 6 -2

and the eigenvalues of o are 6, 2 , 0, -2, -6 that is n{g—1)~qw; for n=6 and
w; €40,2,3,4,6}, the w; being the weights of C

Note : If we merge £y and C, because o0g, =0, and 0,4=0,, for all v=0,...,5,

then C'4g=Cq1,Cs,.(.C3.Cy form a 3-partition design but it doesn't contain C.

4.3.3. -
Set
fo 101000000101 101
0 01100000001 101 1
a.=191 @ 00010100010101 1
e=lol 170000t 100001 1110¢f
0 0000001011011 1t0
0 0000000110111 01
111
101
010
04"111.'
101
011

and let the columns of (3 be the complements of Q50 UQ, inF$.

If C=Ker (1, then

015 0 0 [1 15 45 3
o= 1 R 120 ,_|1 3 -3 -1
0 4 101 71 -1 -3 3
0 0 150 1 -5 5 -1

and the eigenvalues of ¢ are 15,3,-1,-5 that is n(g—1)~qw, for n=15, q=2
and w;€{0,6,8,10] the w; being the weights of C.

4.3.4. - Nordstrom-Robinson of length 16 [MacWilliams-Sloane p. 171]
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- This is- a non-linear formally self-dual code C with distances
d,=6,d,=8,d3=10,d,=16. C admits the 4-partition design CO,C,,CZ,(}, C, where
miz €F}®|d(z,C)=i}. The matrices 0 and P, are

fo16 0 00

1 0 15 0 0

o=l 0 2 0 14 0

0 0 15 0 1

0 0 0 .16 0

[ 1 16 120 112 7
-l1 4 0 -4 =1
and P,=| 1 0 -8 0 4
1 -4 0 4 -
1 —-16 120 -112 7 -

The eigenvalues of o are 16, 4, 0. -4. -16 that is n(q—1)—gd; with n=16,¢=2 '
and d,;€{0,6,8.10,16} as it should be.

4.3.5. - An exemple [13] where there doesn't exist a s ‘partition design : First
order Reed-Muller code of length i8. ' '
If C denotes the first order Reed-Muller code of length 16, then the
covering radius is p=6 and s’ = 6 because the extended Hamrming code has
weights 0,4.6,8.10,12,16. C admits the 7-partition-design" {C,Cy.Ca. . .., Cy}
where the (; are the equivalence classes for the relation over F3¢.z=y if and

only if the cosets z + C and ¥ + C have the same weight distributions.

The matrices 0 and P, are here

016 0 000 00
1 015 000 0O
02 01400 00
s=| © 0 3 0 1120 0
00 0160 0 0 O
00 0 800 80
00 0 0 015 0 1
:0 0 0 00 0 160

['1 16 120 560 35 840 448 28

1 8 24 24 3 -24 -32 -4

1 4 0 -20 -5 0 18 4
p=f1 0O -8 0 0 14 0 -7
1 0 -8 O 1 12 0 -6
1 -4 0 20 -5 0 -—16 4

1 -8 24 -24 3 -24 32 -4
1 —18 120 -560 35 840 —448 28 |
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The eigenvalues of o are 16,8.4,0,-4,-8,-16 ; 0 being a double eigenvalue. Note
that there doesn't exist a 6-partition-design containing C because B has 8
distinct rows. We may also note that the eigenvalues are n(q—1)—quw; with w;

the weights of C .
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