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Mathematical Tools for Automatic Program Analysis

»

Outils mathématiques pour
Panalyse automatique de programmes

Philippe Flajolet

Abstract: This report consists of two notes by the author. Both are informal presentations of mathematical
methods that may be employed in order to automatically extract informations on the average case complexity of
some well-characterized classes of algorithms and programs. Such methods are amenable to implementation using
symbolic manipulation systems.

Résumé: Ce rapport consiste en deux notes qui présentent informellement les méthodes mathématiques que
Pon peut utiliser pour extraire automatiquement des informations sur la complexité en moyenne de classes
bien définies d’algorithmes et de programmes. Ces méthodes sont implémentables grace a 1'utilisation de
systémes de calcul formel.

=

Mathematical and Computational Tools for an “Assistant Programme Analyser”, November 1986. This
is a short abstract submitted to the EUROCAL’87 Conference (Leipzig, June 1987).
2. Elements of a General Theory of Combinatorial Structures. This is a version of an invited lecture given
at the FCT’85 Conference in Cotbus, GDR, in September 1985. The paper appears in:

Fundamentals of Computation Theory, Lecture Notes in Computer Science 199 (1985), pp. 112-127.
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Mathematical and Computational Tools

for an “Assistant Programme Analyser”

Philippe Flajolet
INRIA, 78150 Rocquencourt (France)

The field of average-case analysis of discrete algorithms and data structures has been largely founded by
Knuth (see The Art Of Computer Programming, esp. vol. III). Given an algorithm for sorting or searching,
like a binary search tree or heap-ordered tree algorithm, a hashing method of sorts etc., the problem is to
determine its expected behaviour under some reasonable random input model. The analysis of an algorithm
decomposes into an exact combinatorial counting problem, followed by asymptotic estimations meant to
express the average complexity in terms of a standard asymptotic scale, comprising such functions as n?,
n?8! nlog n...

Our past experience in the analysis of algorithms seems to indicate that a relatively restricted number
of “schemes” cover a majority (not all!) of existing analyses. To mention a specific example [1}, the digital
search tree model appeared independently in: (i) the analysis of digital searching with tries, (ii) dynamic
and extendible hashing algorithms for files on disk, (ili) network communication protocols, (iv) probabilistic
estimation algorithms in data bases, (v) some polynomial factorization algorithms.

Such schemes are indeed methods that permit the exact and/or asymptotic analysis of a large (and
well-characterised) class of parameters over certain combinatorial structures. The systematic nature of those
methods makes it tempting to transform them into algorithms and programmes that will take as input a
specification of some combinatorial counting problem and deliver, as output, asymptotic estimations.

We feel that such a task can be initiated using “off the shelf” technology in combinatorial analysis and
complex asymptotics. Our purpose here to indicate succintly what this technology is and how it can be used
to achieve our goal, putting in perspective some recent or on-going research [1,2,3,4,5,6].

1. Compiling Combinatorial Descriptions into Generating Functions Equations:

Around 1910-1920, Major Percy MacMahon developed a rather algebraic view of exact enumerations via
generating functions. That approach was revived in the 1960’s by Rota, Foata and Schitzenberger, and
later Joyal, then applied in the area of the analysis of algorithms by the author [2] and D. Greene (PhD
Thesis, Stanford Univ., 1984). It is exposed, in a systematic way, in the recent treatise by Jackson and
Goulden (Combinatorial Enumerations, 1983).

The basic idea of the approach - called the symbolic method- is that a fairly large collection of set-

theoretic constructions translate into functionals over generating functions.§ Thus, for instance, if C = AUB.
C = A x B, C = A" (the sequence-of construction), C = 24 (power-set construction), the corresponding
ordinary generating functions satisfy:

C(Z) = a(z) + b(z‘); c(z) = a(z)Ab(z); c(z) = .i_—la__

7y <) = exp (a(z) + 2la(2))).

where @[] is the Pélya operator:

_ G D) fEY
()] = -+ =3 -t

Extensions to labelled structures exist based on Foata’s partitional concept (or almost equivalently Greene's
labelled grammars). A

The class of elementary (iterative) struciures is defined as the closure of the finite sets under the
above operations. The class of elementary recursive structure is defined as a similar closure when recursive
definitions are allowed.

For elementary iterative structures, a simple tree transducer will translate a structural definition into
an explicit form for the associated generating function. For elementary recursive structures, a set of fixed
point functional equations will be obtained. We have:

Proposition 1: I is decidable whether an elementary structure definition ts well founded. For o well foundcd
definition, the corresponding counting problem can be solved in a polynomial number of operations.

§ If C is a class of structures with ¢, the number of structures of size n, the ordinary generating function
(ogf) of C is ¢(z) = ¥_ cnz" and the exponential generating function (egf) is ) cn &
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One first needs to check that the operator associated to the specification is contracting. This may be done
by a reduction to the empty word problem for context-free languages. Next observe that the method of
“indeterminate coefficients” can be systematically applied in polynomial time. m
M. Soria (Orsay) has implemented that method (in the language ML). Her programme compiles such
structural specifications into functions/equations in the MAPLE symbolic manipulation system, and effec-
tively produces the corresponding (numerical) counting results. Greene (op. cit.) had an earlier implemen-
tation for a special subset of the above constructs, based on recurrences. Such systems pose, in passing, a
number of interesting optimization problems.
Examples of elementary structures include:
Regular languages; unambiguous context-free languages; integer partitions; integer compositions; per-
mutations with local order constraints (like up-and-down permutations); finite functions; occupancy
distributions; trees (labelled and unlabelled) etc.
What is also of interest is that, along with elementary structures, one can define a notion of elementary
parameters. Statistics for those parameters also satisfy a form of Prop. 1. Typical examples are: number of
summands for partitions and compositions; path length for trees; cycle length for finite functions etc. Those
have obvious applications to the analysis of algorithms since simple algorithms have costs usually expressible
in terms of such elementary parameters.

2. Analytic Functionals and Asymptotic Counting:

The functionals that apppeared in the previous section are not “random”: we could call them analytic (they
map functions analytic at the origin into themselves) monotone functionals since they preserve majorance
relations between functions: if f < ¢ in the sense that |f,| < |gn|, then we also have ¥(f) < ¥(g).

By the Darboux-Pélya class of methods (see Henrici’s book or [3] for expository material), it is known
that, for functions with isolated singularities, the asymptotic behaviour of the function near its dominant
singularities (the ones of smallest modulus) determines the asymptotic behaviour of the Taylor coeficients
of the function. Furthermore, by Pringsheim’s theorem, all our generating functions should be expected to
have a dominant positive real singularity.

These simple observations have important consequences for asymptotics since they lead to partial deci-
sion procedures regarding asymptotic estimates that cover many cases of interest in applications.

Assume for instance that C = A": class C is formed of all sequences (uy,us,...,ux) where u; € A and
k is an integer. If the ordinary generating function (ogf) a(z) of A is aperiodic (a(z) # a(z?) for any p > 2)
and is infinite at its dominant real singularity, then the ogf ¢(z) = (1 — a(z))~! will have a unique dominant
singularity that is a real pole. If we set p = al=1)(1), then:

1
n
pa'(p)’
Thus the asymptotic counting of class C can be done with very little information (also effectively computable
to any degree of accuracy) on a(z). To take a particular example, let A be the set of (non-zero) integer
partitions, so that C = A" is the collection of sequences of partitions, and ¢, is the number of such sequences
with total weight n. It is well known that:

=
l+a(z)=H1_zj.
j=1

The asymptotic analysis of a,, is difficult (it was done by Hardy and Ramanujan, and in its full generality
requires some theory of elliptic functions). However, any reasonable symbolic manipulation system will
enable us to find easily that:

-n

[

¢, =~ 0.4141137931 x 2.6983291064"

Fact 2: For elementary iterative structures, there is a partial algorithmic procedure to determine the asymp-
totics of their counting function.

The principle is as follows: Walking up the specification tree, one can (partly) compute inductively attributes
like: “is-a-polynomial”, “is-entire”, “is-aperiodic”, “is-infinite-at-singularity”. From there, obscrving that
the radii of convergergence decrease as we walk up the tree, one can determine a critical functional that
determines the value of the dominant singularity of the generating function. Functionals on top of this
critical functional then determine the nature of that singularity. m

>



The above theorem is actually the basis of a typology of iterative structures (see [4] for a detailed example
concerning “meromorphic” structures). In the case of recursive structures, extending results from Meir and
Moon (Canad. J. of Math, 1978), we get [5]:

Theorem 3: For elementary recursive structures defined using only unions, cartesian products and sequence-
of constructs, the asymplotic counting problem is effectively computable.

Corresponding generating functions are algebraic. Using elimination followed by applications of Newton’s
polygon rule, their singular behaviours can be effectively determined. Conclude via a proper use of the
Darboux-Pdlya method. =

Only partial results are available so far when a richer set of constructions is used. Notice however that,
in many cases, the appearance of the ® operator inside recursive definitions need not be dramatic since for
any ogf f(z) with radius of convergence < 1 ®[f(z)] has a radius of convergence strictly larger than that of
J(z). (See the counting of non-planar unlabelled trees in graph enumerations and some of Pdlya and Otter’s
original examples).

3. Extensions:

Our original problem of analyzing algorithms leads not only to the counting of structures but also to es-
timating asymptotically expectations and/or distributions of various structural parameters. Some results
have been earlier obtained by Bender, but they only deal with the application of a single functional (labelled
sequence-of or set-of) to an explicitly given structure. In [4], we indicate principles upon which a typology
of structural parameters can further be built. As only illustration, we shall cite:

Theorem 4: Let A, B and C be labelled siructures such that:
C=sequence-of( B) with B=set-of( A)

and assume that the sequence-of construction is critical in C. Then, the proportion of B-component in a
random C struclure conlaining ezactly k A-objects tends a limiting Poisson distribution with finite mean.
A number of similar results (with geometric or Gaussian distributions) regarding other general combina-
torial schemas can be obtained. Of course, all corresponding parameters can be computed explicitly (and
conveniently, using symbolic manipulation systems).

Again, for recursive structures, our knowledge is less advanced. However in [6], we describe a simple
programming language on trees - PL-TREE - for which systematic translation mechanisms exist (to gener-
ating functions and asymptotics). That language is powerful enough to express non trivial pattern matching
algorithms. There also, phenomena comparable to Theorem 4 can be detected.

Conclusions:

From what we often read in the literature, artificial intelligence systems distinguish themselves by
powerful reasoning capabilities. The system we propose uses instead a rather poor and limited form of
logic, and is based on a modest implementation of results from 19th century style mathematics. However, in
the course of our investigations, it appeared that the combined study of algebraic and analytic functionals
arising in combinatorial enumerations leads to results that are not only simple and somewhat powerful but
also amenable to implementation using current symbolic manipulation systems like MACSYMA or MAPLE.
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ELEMENTS OF A GENERAL THEORY
OF COMBINATORIAL STRUCTURES

Philippe Flajolet
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ABSTRACT

This paper presents some preliminary observations relating in
many cases structural definitions of combinatorial structures to
statistical properties of their characteristic parameters.

The developments are based on two observations: (i) for a large
family of classes of combinatorial structures, one can compile
structural descriptions into functional equations over counting
generating functions; (it) general analytical patterns arise from
the study of these functional equations.

As a consequence, statistical evaluations of a large number of
parameters of combinatorial structures can be automated using
symbolic manipulation systems.

The approach taken also suggests the existence of general
theorems concerning statistical properties of combinatorial
structures that may be used to analyse combinatorial structures
of a complez form.

1. Introduction.

A class of combinatorial structures in the widest sense is a finite or denumer-
able set C together with a size function denoted |.| or |.|¢ such that for all
integer n, the set of objects in C of size n is finite. The counting problem for C
consists in determining the sequence {c, |20 defined by

¢, =card{weC | |w| =n}

Classes usually considered in combinatorial analysis are formed of per-
mutations, words, trees, graphs, finite functions etc... . The size of a permuta-
tion or a word is the number of elements (letters) it comprises; the size of a
graph or a tree is its number of nodes ... .

A combinatorial construction is an operation, in the normal set-theoretic
sense, on classes of combinatorial structures. Its specification includes a
description on how the size of the result of the construction can be obtained
from the sizes of the operands.

As an example, the Cartesian product construction associates to each
pair C, D of classes a class E defined as usual by:

E=CxD=1{(y.8) | y€C.,é€D|

-l =
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n

with the natural notion of size:
1.8 lg=lrlc+|6lp.

The Algebra of Generating Functions. The most convenient way of approach-
ing counting problems is via the use of generating functions. The ordinary
generating function (0.g.f.) of class Cis:

c(z)= Ycaz™.
n20

The exponential generating function (e.g.j.‘) of class Cis:

n
c(z) =% 2.
P n!

A combinatorial construction K is admissible if the counting sequence of
the result, say E= K(C.D) when K is binary.is only determined by the count-
ing sequences of the arguments (here C and D). In that case, there exist
operators ¢ and $ over formal power series such that:

e(z) =¥(c(2).d(2)) : e(z) = ¥(c(z).d(z)).

(Note: here and in the sequel, we adhere to the notational convention of
representing systematically classes of combinatorial structures, counting
sequences and corresponding generating functions by the same groups of
letters).
Returning to the example of the cartesian-product construction, we see
by a direct argument that:
n

en = ) Cpdp_y
k=0
so that the cartesian-product construction is admissible. The corresponding
cp~rator over ordinary generating functions is:

e(z)=c(z).d(z).

A collectinn of admissible constructions is given for instance in [GJ83] or
[FlaBSa]. In particular, [GJB3] show hnw most of classical combinatorial
analysis can be nicely expressed using that framework. We shall use some of
the following admissible constructions (listed together with the correspond-
ing operators on either ordinary or exponential generating functions):

A. Ordinary generating functions:

(disjoint) union E=CyD => e(z)=c(z)+d(z)

cartesian product E=CxD = e(z)=c(z).d(z)

sequence-of E=C’ = e(z)+(1—c(z))™

set-of E=2€ => e(z)=exp(c (z)—-l—c (zz)+;—c (z3) - )
substitution E=C[D] => e(z)=c(d(z))

(In all these constructions the size of the result is the sum of the sizes of
components)

B. Ezponential generating functions:

(disjoint) union E=CyD => e(z)=c(z)+d(z)



partitional product (P-product) E=C*D => é(z):c?(zl.a(z)
partitional complex (P-sequence-of) E=C<"> =>  e(z)=(1-c(z))™!
abelian partitional complex (P-set-of) E=cl*] =>  e(z)=exp(c(z))

(This last set of constructions formally introduced by Foata operate like the
classical constructions but they deal with well-labelled objects and distribute
labels in all possible ways consistent with the labellings of the arguments).

Thus many combinatorial constructions translate into operators over
generating functions. Direct constructions of a class from trivial (e.g. finite)
sets will lead to explicit equations for counting generating functions; indirect
constructions (e.g. recursive) will lead to functional equations determining
the counting generating functions implicitly.

The Analysis of Generating Functions: Another important component of
statistics for parameters of combinatorial structures comes from considera-
tion of analytic properties of generating functions.

To start with a simple example, if f(2z) is a (counting) generating func-
tion, and if we may determine that its radius of convergence is p, then for
arbitrary ¢, one has for the coefficients f, the inequalities:

PTM(1=E)" <go fn <ge PT(14E)"

where "<, " means "less than infinitely often” (for infinitely many values of
n) and "<;,"” means "less than almost everywhere” (except for possibly a
finite set of values of n).

Thus the radius of convergence (r.0.c.) of the counting generating func-
tion (which is also determined by the modulus of the singularity nearest to
the origin) carries useful information on the growth rate of the counting
sequence.

More refined estimates are usually available. The fundamental tool is
Cauchy's integral formula:

_ 1 dz
f" - 2_1;{1 (z) Zn+l

By taking contours that come close to the dominant singularities. using Dar-
bour’ method [He77] or the type of singularity analysis of [FO83], or by using
saddle point methods [He77],[DB57], one is often able to determine the
asymptotic form of coeflicients of functions either defined explicitly or acces-
sible through some functional equations.

As an example, the exponential generating function for the class F of
permutations without cycles of length 1 or 2 is:

- _ e-z-3%/2
F@)= =

and from the singular expansion (valid near the singularity z=1):
- e—3/2
fz)~ 50—

one is able to deduce:

-3/2

!.’!_~[zn]e ~ g2

n! 1-2

where we have used the classical notation [z™]f(z) to represent the
coeflicient of 2™ in the Taylor expansion of f(z).

-6=
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We are now in a position to explain our main goal in this paper:
Consider the functionals (operators) associated to admissible combdina-
torial constructions. These functionals can also be viewed as analytic
functionals, that is to say functionals mapping analytic functions into
analytic functions. Determine to what extent analytic properties of these
Sunctionals should reflect statistical properties of of combinatorial con-
structions of which they are images.

2. Classical Examples.

From the preceding discussion, we are interested in classes of combinatorial
structures deﬁnqd from trivial classes by closure under a set of admissible
constructions {K |, K5, - - - K, | that have the further property that the chain:

structural definitions = functional equations — asymptotic analysis

can be followed automatically. This requires a characterisation of some form
of the corresponding counting generating functions from which (via singular-
ity analysis or saddle point methods say) general asymptotic results will
derive.

To illustrate our subject, we briefly recall 3 known cases: the family of
regular languages and the family of context-free languages in formal
language theory ; the family of simple classes of trees in combinatorics.

Regular Languages and Regular Events:

A language is a set of words over a finite alphabet. The family of regular
languages is defined as the closure of the family of finite sets (of words)
under the operations of union, catenation product and star operation [Ei74].
It more or less corresponds to the family of combinatorial structures
obtained from the finite classes by means of union, cartesian product and the
sequence-of construct.

From the translation mechanism recalled in the introduction, there fol-
lows that regular languages have generating functions obtained from polyno-
mials by sequences of sum, product, and quasi-inverse operator
Q@(y)=(1—y)~". (To be precise, this requires some concideration about making
definitions deterministic.) Thus the generating functions of regular languages
are rational. Now the asymptotic behaviour of coeflicients of rational func-
tion is well known: such a coeflicient is expressible asymptotically as a combi-
nation of terms of the form:

Ca™n’ (1)
where C, a are algebraic and = is an integer. Hence the well-known
[Ei74].[SS78]:

Theorem 1: Let L be a regular language. Then its ordinary generating func-
tion is a rational function. Hence I, is asymptotically a finite sum of terms
of the form:

Ca™n” (2)

where C, a are algebraic and r is a non-negative integer.
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Observe also that any regular” parameter of a regular language (like the
counting of occurrences of letters, subwords etc...) will lead similarly to
rational generating functions for which an expansion of the type (2) will hold.
Thus for instance the expected number of occurrences of a fixed letter in a
random word of length n will be expressible as a quotient of two expansions
of the form (2) and hence it cannot be of the form DVn,

Context-free Languages.

The family of context-free languages may be defined in the same manner as
regular languages, save that now recursive definitions are allowed. We are
interested in the subfamily of unambiguous context-free languages, the ones
for which these recursive specifications are unambiguous, each word in the
language being constructible in a unique manner.

It is well known from a theorem of Chomsky and Schutzenberger in 1963
that if L is an unambiguous context-free language, then its (ordinary) gen-
erating function l(z) is algebraic. This can be checked by arguments very
similar to the previous ones, since l(z) will be a component of a rational set
of equations and elimination can be performed leading to a unique polyno-
mial equation:

P(z.l(z)) =0 (3)

Asymptotic properties of coeflicients of algebraic functions are well-known
(See e.g. [Fla85b]) from a combination of Puiseux expansions _local expan-
sions in fractional powers__ around singularities and a Darboux type of argu-
ment. Hence:

Theorem 3: If L is an un.ambiguous contezt-free language, then its generating
Junction L(z) is an algebraic function. Hence l, is asymptotic to a finite sum
of terms of the form.:

" ~Ca™n" ' (4)

where r is a rational number in Q/{-1,-2,-3 - -- | ‘and CI(r+1) us well as a
are algebraic.

Here again for "context-free” parameters, statistical properties of the form
n eV™ are excluded.

Simple Classes of Trees.

The concept of a simple class of trees has been introduced by Meir and Moon
in [MM78]. It constitutes a combinatorial analogue of the probabilistic theory
of branching processes and is a prototype of the form of results we are aiming
at: a whole family of classes of combinatorial structures share many common
statistical properties concerning for instance height, level of nodes,
occurrences of subtrees etc... .

Simple classes correspond to recursive specifications that use a variant
of the "sequence-of” construction. Specifically, let CN be a set of integers

containing 0. For a given Q, define the construction
Kn(A)=sequence—of(4 with degree€(l) as:
Kn = UA‘
defl

where 4% denotes the d —fold cartesian product of A4 with itself. The simple
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class of trees (associated to 1) is defined by the recursive specification:
TREE = [node |xsequence—of(TREE with degree€); (5)

thus it is the class of planar trees whose outer degrees of nodes are con-
strained to be in the set {). The corresponding generating function tree(z)
satisfies the fixed-point equation:

tree(z) = z u(tree(z)) with o(u)= Jud . (6)
den
Assume also for simplicity of exposition that w(u) is a function with the miz-
ing property, that is to say it is not of the form ¢(u®) for some integer e22.
Meir and Moon argue as follows. Function t(z)=tree(z) is implicitly
defined by the equation:
J(z.t(z)) =0 where f(zy)=y~-zw(y). (7

By the implicit function theorem, t(z) will be analytic until the smallest posi-
tive value p such that the system of 2 equations in the unknown (p.7):

1 (p.7)=0
7'2(p.7)=0 (8)

where f'2(z.y)= QLES%}{-L

From there a bivariate Taylor expansion shows that the dependence
between 2z and t is locally around (p,7) of the form:

A(z—=p)+B(t-1)2~0
or equivalently

t(z)~c,-cz(x-§)"=. (9)

The proof then concludes by an appeal to Darboux’ theorem By which we can
conclude that t, is equivalent to the coeflicient of 2™ in the r.h.s., namely:

t,~Cpmn=2, (10)

Whence:

Theorem 3: [f 1 has the "miring” property, then the number of trees in the
simple class of trees associated to () satisfies:

t“ ~ Cp“'ln"afz

As we have ennounced already, simple classes of trees share many com-
mon statistical properties. For instance Flajolet and Odlyzko [FO83] have
shown that the expected height of a tree of size n is always of the form
~Dn'/2 In their original paper, Meir and Moon showed general results con-
cerning the profiles of such trees. Steyaert and Flajolet [SF83] showed that
the probabilities of occurrence of patterns in such trees have an exponential
tail...

The point that is of interest to us here is that despite differences in the
definitions, the generating function of trees always has dominant algebraic
singularities {branch points of order 1) and similar characterisations will hold
true for generating functions of a large number of tree parameters.

-9%-



3. Random Trains.

Now that our objective is (hopefully) clear, I would like to illustrate some of
the phenomena of interest by means of a concrete example, namely a
(perhaps somewhat unrealistic) combinatorial model of trains. (See Figure 1).

Figure 1: A random train: atoms (nodes) are labelled with distinct and
consecutive integers starting from 1 (not shown on the diagram). A
train is a complex graph structure in which wheels are defined up to
cyclic order and passengers can move freely inside wagons (they are not
ordered between themselves inside their respective wagons).

A possible specification for the model is the set of equations (S)

type (s)

train = P-product(locomotive P—sequence-of(wagon));

locomative = P-sequence—of(slice with degree=1);

slice = union(P-product(upper lower) .P-product(upper lower wheel));
wheel = P—product(center P—cycle—of(wheel_element));

wagon = P-product(locomotive ,P—set—of(passenger));

passenger = P-product(head belly);

head belly = P-cycle-of(passenger_element);

upper lower ,center wheel_element passenger_element = atom (1),

In words: a train is formed of one locomotive and a sequence of wagons; a
wagon is like a locomotive but it can contain passengers {considered free to
move within their wagon); locomotive and wagons may have wheels that can

«10w



rotate freely around their center and they are described as sequences of
(vertical) slices to which wheels are possibly attached etc...

A train is thus a sort of complex labelled graph structure (although it
does not show on Figure 1, distinct integers are associated to different
nodes). Natural questions (at least for people travelling by train!) are: What is
the expected number of wagons, passengers, whee!ls in a random train? What
is the expected number of (passenger) empty wagons? What is the expected
size of the largest wagon? ...

We shall see that many such characteristics of random trains can be
analyzed and so, en passant, we shall illustrate how general methods are
available to analyze statistical properties of many diverse types of combina-
torial structures.

Generating Functions.

Trains are labelled structures, so that from what we saw in the introduction,
we should resort to exponential generating functions (e.g.f). This is implicit
in what follows: train(z) will denote the e.g.f. of the class train (we omit the
“hats” for the sake of notational simplicity).

The definitions (S) translate at sight into the system of equations:

train(z) = locomotive (z).{1 ~wagon(z))~!; (T)
locomotive (z) = slice (z).(1-slice (z))7!;

slice (z) = upper(z).lower(z) + upper(z).lower (z). wheel (z);

wheel (z) = center(z).log(1-wheel_element(z))~!;

wagon (z) = locomotive (z).exp(passenger(z));

passenger (z) = head (z).belly(2);

head(z)belly(z) = log(1-passenger_element (z))-?;

upper (z).lower(z).center (z),wheel_element (z ). passenger_element (2) = z;

Now a reasonable symbolic manipulation system ! starting from these
equations will readily provide the result:

! We have been using here the University of Waterloo’s MAPLE System, thanks to the
courtesy of Gaston Gonnet.
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train =
2 1
z +2z In(------- )
-2
(z +z In(------)) exp(In(1 3
2 31 . z +2z In — exp(In(1 - z) )
(1-2 -2 In(==) (1 - )
1-2z -2 In(-——--- )
-z

It is of some interest to represent the expression of train(z) in tree form, in
the usual way. What we obtain is depicted in Figure 2. This form also shows
the clear connection between subtrees of the expression train(z) and subc-
lasses entering the definition of the train type.

22 . Q exp
/N |
# /\ 7\ 7\
z/ \L z \ . / \L
lz VAN

Figure 2: The tree corresponding to function train(z). (Here @(y)=(1-y)™%
Q1(y)=y.(1~y)~" and L(y)=log(1-y)™")
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Asymptotic Analysis.

We now propose to prove:

Theorem 4: The number of trains of size n satisfies asymptotically:
train, ~ CA™n!
where C. A are real constants and A=1.9302981 - - - .

Notice that one can label the nodes of the tree of Figure 2 by the radius of
convergence (r.o.c.) of the associated series. That labelling can be con-
structed inductively starting from the leaves that are monomials labelled with
+e. It is non-increasing along any branch from a leaf to the root. Simple rules
concerning convergence of sums, products, quasi-inverses... might even be
used to determine it automatically as well.

Function train (z) is of the form:

train(z):a(z).l—_b‘—(z—) (11)

where a(z)=locomotive(z) and b(z)=wagon(z). Since b(z) which has positive
coeflicients reaches the value 1 before it becomes singular, we see that
train(z) becomes singular at p=b{-1)(1)=0.5180546 - - - where it has a simple
pole and the result of Theorem 4 follows by a singularity analysis with 4 being
equal to p~! and:

x ., . . elp) _n _ locomotive(p) ..
T8 p6'(0)” = “pwagon'(p) - " (12)

It is important to notice at that stage that the same line of reasoning
(11),(12) will generally apply to all classes defined by a schema of the form:

F = P—product(A,P-sequence-of(B)) (13)
or even more simply:
F = P-sequence—of(B)

provided some mild conditions are satisfied (like B has the mixing property;
the "density” of A measured by the inverse of the r.o.c. of its e.g.f. should be
less than that of B...).

4. Statistical Properties of Random Trains.

Consider again the train type and assume we are interested in the expected
number of wagons in a random train of size n. Returning to the form (11) of
train (z), we see that the total number of wagons in all trains of size n is:

n d a
Wu=[;_,][5;‘1‘_1—‘%(zL) u=1] (14)

and the e.g.f. ¥(z) is again a meromorphic function with a double pole at z =p.
One finds via a singularity analysis that:

1 locomotive (p)
_| W" ~ > 2 n
n: p*wagon’'(p)
The variance of the number of wagons can be studied in the same way; it is
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again linear, so that:

Theorem 5: There exists a non-zero real constant w, such that the erpected
number of wagons in a random train of size n satisfies:
= Wn

n = train,

~won .

Furthermore the distribution is concentrated: for any w, and w, such that
wy<wo<wy, there is a vanishing probability that the number of wagons in a
random train will be outside that interval: {wn wan].

The same type of argument could be applied to the general schema (13-11),
again under mild and automatically testable conditions so that Theorem 5
could be extended to a sort of “meta-theorem” concerning structures of the
form (13):

F = P-product{A P-sequence—of(B)) .

In that context, results on the distribution of the number of wagons _and
more generally of the number of components in a “sequence-of” constructs__
can be obtained using saddle point arguments.

Theorem 6: The probability A\\¥) that a random train of size n has k wagons
tends to a limiting Gaussian distribution.

The proof starts from the generating function expression:

(k) = _1.._ E:. l 7 k
AN Frain, [ o Jlocomotive {2 ). wagon (z)
dz_

~._1_ n k _Ge
go" Ja(z)ek(z)

n+t -

The integral can be evaluated along a circle centered at the origin and pass-
ing through the approximate saddie point ¢ = ¢( i—-) defined by:

ELQ L,
n Q@) '
Studying the dependence of the saddle point approximation as a function of
k /n leads to the local limit theorem:
_ [k =kq)*
AE) - ea\/:—::?— with kg=owgn . ®

The random variable "number of wagons” could be called a critical
parameter: it corresponds to the number of components in a “sequence-of”
construct that determines the radius of convergence of the global e.g.f. of the
structure under consideration. Other subcritical parameters counting the
number of constructs in the tree below wagon, like number of passengers,
number of wheels in wagons will be analyzable in the same way:

Theorem 7: The parameters number of passengers and number of wagon
wheels have O(n) expectation and O(n) variance so that their distributions
are concentrated around their means.
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The proof here is again achieved by a singularity analysis. With our previous
notations, the bivariate generating functions are all of the form;

a(z) '
T—e(z.uy(z)) "itb p(z.9(2)) =b(z). ® (15)

In contrast, non-critical parameters coming from the A component in the
top-level product will have radically different behaviours. Consider for
instance the parameter L defined as the size of the locomotive in a random
train. The cumulated value over all trains of size n, L, admits the eg.tl

1

2 . |
v locomotive (uz)m | wet (16)

a series that now has only a simple pole at z=p. Whence:

Theorem B: The erpected size of the locomotive in @ random train of size n
has asymptotically finite mean and finite variance. The expectation satisfies:

e _In o
L, = fraing locomotive '(p) .

Furthermore, the distridution of the "locomotive size” parameter admits a
limiting distribution that has an exponential tail.

Regarding the distribution result, we see that the probability n{¥) that the
locomotive has size k in a random train of size n tends to the limiting distri-
bution:

[l
wagon, T
wagon (p)
which does have an exponential tail from our assumption:

r.o.c.(wagon)>r.o.c.(train).»

k) ~

Similar results will hold true for other non-critical parameters like the
number of slices, wheels... of the locomotive. All will have asymptotically
finite mean and variance and an exponential tail.

Let us also give a brief indication on the filling of passengers in wagons.
The generating function for the total number of wagons containing k
passengers, k a fixed integer, is of the form:

P)(z) = 2 alz) J
1—c(z)(e¢(=)+(u—1)%,ﬁl

u =] (17)

whence, after a singularity analysis which shows that the corresponding pro-
babilities are proportional to

4t (p)
k!

the result:

Theorem 9: The probability that @ random wagon in a random train of sizen
has exactly k passengers tends ¢o the limiting Poisson distribution
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k
B-L)::T with A = passenger(p) .

An only slightly modified argument applied now to functions of the form:
1a (z) (18)
- — Lt u-1)g* !
1=f () qmgrpy Hu—1)g* (=)

recording cases of application of a subcritical "sequence-of" construct _like
the number of slices in wagons__ leads to:

Theorem 10: The probability that a random wdgon in a random train has
exactly k slices tends to the limiting geometric distribution
k-1

%:;- with u = slice (p)

Other interesting problems leading to more complicated equations are
mazrimal parameters like size of fattest passenger, largest wagon, most
crowded wagon... but we do not have time to discuss them here. For instance,
Feller and Knuth have discussed the expected length of the longest run of
ones in a random binary string; Shepp and LLoyd study the size of the largest
cycle in a permutation, Flajolet and Odlyzko consider the size of the largest
component in a random functional graph. Results about the largest com-
ponent in a random allocation have been obtained by Gonnet [Go81}...

We summarise in Table 1 some of the main characteristics of random
trains.

Param. Exp/Var. Distribution
loco. size <0(1),0(1)> L.D., exp. tail
loco. wheels <0(1).0(1)> L.D., exp. tail
loco. slices <0(1).0(1)> L.D., exp. tail
numb. wagons <0(n),0(n)> L.D.: Gaussian
numb. passeng. <0(n),0(n)> concentr.
numb. wag. wheels <0(n),0(n)> concentr.
weight passeng. <0(n),0(n)> concentr,
size random wagon <0(1),0(1)> L.D.
numb. pass. rand. wagon <0(1),0(1)> L.D.: Poisson
numb. slices rand. wagon <0(1),0(1)> L.D.. Geometric

Table 1: A summary of characteristics of random trains. ("L.D.” means
existence of a limiting distribution; "exp. tail” means exponential tail;
"concentr.” means that the distribution is concentrated in the sense of
Theorem 5).
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5. Extensions.

There is not much that is special about random trains. Only the situation was
made a little easier since the critical construct that determines the radjus of
convergence of the whole series is a P-sequence—of which induces a pole.
However, other critical constructs can also be analysed in similar general
terms.

Assume for instance we consider a ratlways system defined by:
type railways_system = P-—se‘l-of(train) . (19)
Then (19) translates into:
ratlways_system (z) = exp(train(z)) . (20)

If looking for the expected number of trains in a random railways system
(There are quite a few in real life!) of size n, we find it to be a quotient of 2
Taylor coeflicients:

ny 0 a(z
. [z ]a—uexp(T:&,‘),T) |u=l ' (1)
(=) exp(; 22k

Quantity (21) is also the quotient of 2 integrals

fexp( a(z) ) a(z) dz

1=b0(z) " 1-b(z) zn+!

Sexp(-2{2)_y dz_

1-b (2) ) zn+!
which may be both evaluated using an approximate saddle point of the form:
¢=¢n)=p=-KVn

(22)

from which follows:

Theorem 11: The expected number of trains in a random railways system of
size n is asymptotic to K,Vn .

The work of Hayman on “admissible functions” (“admissible” has here a mean-
ing different from that of Section 1) enters as a necessary ingredient in these
analysis: Hayman gives general conditions under which saddle point methods
can be applied to Cauchy integrals.

Another important and interesting question is to incorporate recursive
definitions in the specification language for combinatorial structures. Some
of the methods introduced by Darboux, Polya, Meir, Moon and others should
also be of help there.

8. General Conclusions.

This paper contains many (partly unsupported) claims that I will now sum-
marise:



1. Most of current analyses of algorithms and combinatorial enumera-
tions deal with objects having relatively short specifications, say about 20
lines of PASCAL programme for instance. One could use “off-the-shelf" tech-
nology developed for these analyses in order to analyze many structurally
complex objects without a considerable increase in the mathematical
machinery. In that enterprise, symbolic manipulation systems (MACSYMA,
MAPLE ...) are of course a necessity.

. 2. Many mathematically interesting phenomena should appear when con-
sidering various statistics of these structures; furthermore many of them
should be simple. We have hinted at a few such phenomena when discussing
linear versus constant expectation (in relation with critical/subcritical/non-
critical parameters), concentration of distributions (or variance estimates),
exponential tails, Gaussian, Poisson or Geometric limiting distributions etc....
From an analytical standpoint, the problem is largely the study of some sim-
ple analytic functionals operating on series with positive coeflicients.

3. Concerning the analysis of algorithms, two direction's are conceivable:

- Abstract Analysis of Algorithms: by this I mean the study of simple algo-
rithms using decomposition primitives that are dual of the combinatorial con-
structs we have examined. For instance, what can be said of a schema of the
form:

type F = P-sequence—of(B)
procedure search{b : B);
var ¢ : component_of B;

begin

¢ := first(d);

while not [i(c) do

¢ = next(c);
end;

for various predicates Il,under various cost measures associated to the test-
ing [T and to moving to the next component? In plain words, examine prob-
iems like: How much time does it take to find a (passenger) empty wagon? ...

- Specialise this type of study to more restricted data types like expression
trees, heap-ordered trees and the like, taking into account more specific
mechanisms (See e.g. [FS82], {St84] for such an attempt regarding expression
trees).

As a final word, it seems that there might be a promising area of
research in the investigation of statistical properties of combinatorial sche-
mata and the closely related domain of the average case analysis of pro-
gramme schemata which were extensively studied for their structural proper-
ties in the seventies.
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